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1. Introduction

The 3x+ 1 problem remained open for over 80 years. It was formulated in 1937 by Lothar Collatz. The
problem became quite popular due to its wording, for it is short and easy to comprehend.
Collatz remarked that for any given natural number n > 0 , the sequence {ni} defined by the following
recurrence

n0 = n

ni+1 =

{
ni ÷ 2 when ni is even
3 · ni + 1 when ni is odd

for i ≥ 0

 (rec1)

seem always reach the value 1.

He formulated the following conjecture

for all n exists i such that ni = 1 (Collatz conjecture)

One can give another formulation of the hypothesis of Collatz 1.
The number of papers devoted to the problem surpasses 200, c.f. [Lag10] . It is worthwhile to consult
social media: wikipedia, youtube etc, there you can find some surprising ideas to prove the Collatz
hypothesis as well as a technical analysis of the problem.
Computers are used and still work in the search of an eventual counterexample to the Collatz conjecture.
The reports on progress appear each year. We claim that the counterexample approach is pointless, i.e.
the computers can be turned off. We shall prove that the program that searches a counterexample will
never stop.
Our goal will be achieved if we prove that for each number n the computation of the following Cl
algorithm is finite.

Cl :


while n 6= 1 do

if even(n) then n := n÷ 2 else n := 3n+ 1 fi
od


Now, a couple of questions arise. Programs (algorithms) are expressions without possibility to assign
a logical meaning to them. We need a formula ΘCl such that it obviously expresses the termination
property of program Cl, a verifiable proof Π of the formula and a definition of relation C of deducibility.

1Let f(n, 0)
df
= n , and f(n, i+ 1)

df
=

{
f(n, i)/2 if f(n, i) is even
3 · f(n, i) + 1 if f(n, i) is odd

. Now, conjecture reads ∀n ∃i f(n, i) = 1.
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Ah, we need also a specification of the domain in which the algorithm is to be executed, i.e. the axioms
Ax of the algebraic structure of natural numbers.

QUESTION 1. How to express the termination property of a program K as a formula ΘK (i.e. a Boolean
expression)?
Note, there is no first-order logical formula that express the halting property. First, let us recall the
theorem on incompleteness of arithmetics, cf. Kurt Gödel . According to Gödel, the property to be a
natural number is not expressible by any set of first-order formulas. The reader may wish to note, that
halting property of the algoritm

q := 0; while q 6= n do q := q + 1 od

is valid in a data structure iff n is a standard (i.e. reachable) natural number. Therefore the halting
property allow to define the set of natural numbers. In this situation it seems natural to pass from first-
order language to larger algorithmic language. We enlarge the set of well formed expressions: beside
terms and formulas of first order language we accept algorithms and we modify the definition of logical
formulas. The simplest algorithmic formulas are of the form: 〈algorithm〉〈formula〉.
As an example of an algorithmic formula consider the expression

∀n{q := 0; while q 6= n do q := q + 1 od} (n = q)

The latter formula is valid iff every element n can be reached from 0 by adding 1.
Now our goal is to prove the following formula

∀n


while n 6= 1 do

if even(n) then n := n÷ 2 else n := 3n+ 1 fi
od

 (n = 1) (1)

from the axioms of algorithmic theory of natural numbers AT N , c.f. subsection 7.4. For the formula
(1) expresses the termination property of program Cl.
QUESTION 2. How to prove such algorithmic formula?
Note, all structures that assure the validity of axioms are isomorphic (this is the categoricity theorem).
Therefore, the termination formula, can be either proved (with the inference rules and axioms of calculus
of programs AL, or validated in this unique model of axioms of AT N .

Let us make made a simple observation. The computation of Collatz algorithm if succesful goes through
intermediate values. The following diagram illustrates a computation where odd numbers were encoun-
tered x times.

n→ n

2k0
→
(
3 ∗ (

n

2k0
) + 1

)
→
(

3 ∗ (
n

2k0
) + 1

)
/2k1 → · · · → (· · · )

2kx
= 1

(Dg)

where k0 = exp(n, 2), k1 = exp(3 · n
2k0

+ 1, 2), k2 = exp(3 ∗
(3· n

2k0
+1)

2k1
+ 1, 2), . . . 2.

2Note, the function exp returns the largest exponent of 2 in the prime factorization of number x .

exp(x, 2)
df
= {l := 0; y := x; while even(y) do l := l + 1; y := y/2 od}(result = l) i.e. l = exp(x, 2) .
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How the present paper is related to our earlier one? In our previous paper [MS21] we remarked
that the computation of Collatz algorithm is finite iff there exist three natural numbers x, y, z such that:
a) the equation n · 3x + y = 2z is satisfied and
b) the computation of another algorithm IC is finite, the algorithm computes on triples〈x, y, z〉.
It is worthwhile to mention that the subsequent triples are decreasing.
The proof we wrote there [MS21] is overly complicated.

Here we show that the 4-argument relation

{n, x, y, z} : {IC}(true).

is elementary recursive, since it may be expressed by an arihmetic expression with operator
∑

.
The present paper shows arguments simpler and easier to follow.

Main points of the proof

• Collatz algorithm does not require multiplication operation, addition suffices.

• There is a computable data structure M (c.f. table 1, page 22 ) such that:
a) there are infinite computations of Collatz algorithm (c.f. subsection 7.1) and
b) all axioms of elementary theory of addition in natural numbers (c.f. subsection 7.2) are valid in
the structure M.

• Therefore the Collatz hypothesis is not a theorem of the first-order theory of addition, nor Peano
arithmetic.

• Moreover, the hypothesis can not be written as a first-order formula.

• For a given element n Collatz algorithm terminates iff there exist three elements x, y, z such that
the equality n · 3x + y = 2z holds and triple’s algorithm IC terminates (c.f. [MS21]).

• The second,underlined part of the latter conjunction can be stated as: there is the least triple x, y, z
that satisfies following conjunction

n · 3x +

(
x−1∑
j=0

(
3x−1−j · 2

xf∑
j=0

kj))
= 2

x∑
j=0

kj
∧ z =

x∑
j=0

kj ∧ y = 2z − n · 3x

• From this we will show that, for every standard, reachable natural number n, Collatz algorithm
halts, or equivalently, if for an element n the computation of Collatz algorithm is infinite, then the
element n is not a standard natural number (see below).

2. A counterexample
We argue, that the formulation of the Collatz problem must be made with more precision. For there are
several algebraic structures that can be viewed as structure of natural numbers of addition. Some of them
admit infinite computations of Collatz algorithm.
We recall less known fact: arithmetic (i.e. first-order theory of natural numbers) has standard (Archimedean)
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model N as well as another non-Archimedean model M3. The latter structure allows for the existence of
infinitely great elements.
Goedel’s incompleteness theorem shows that there is no elementary theory T of natural numbers, such
that every model is isomorphic to the standard model.
Two things are missing from the commonly accepted text: 1) What do we mean by proof? 2) what
properties of natural numbers can be used in the proof? We recall an algebraic structure M that mod-
els [Grz71] all axioms of elementary theory of addition of natural numbers, yet it admits unreachable
elements [Tar34]. It means that the model contains element ε, such that the computation of Collatz algo-
rithm that starts with ε is infinite.
Example of a finite execution

〈13, 0〉 ×3+1→ 〈40, 0〉 ÷ 2→ 〈20, 0〉 ÷ 2→ 〈10, 0〉 ÷ 2→, 〈5, 0〉 ×3+1→ 〈16, 0〉 ÷ 2→ 〈8, 0〉 ÷ 2→ 〈4, 0〉 ÷ 2→ 〈2, 0〉 ÷ 2→ 〈1, 0〉

Example of an infinite execution

〈8, 1

2
〉 ÷ 2→ 〈4, 1

4
〉 ÷ 2→ 〈2, 1

8
〉 ÷ 2→ 〈1, 1

16
〉 ×3+1→ 〈4, 3

16
〉 ÷ 2→ 〈2, 3

32
〉 ÷ 2→ 〈1, 3

64
〉,×3+1→ 〈4, 9

64
〉 ÷ 2→ 〈2, 9

128
〉 ÷ 2→ · · ·

As you can guess, the data structure contains pairs 〈k,w〉 where k is an integer and w is a non-negative,
rational number. The addition operation is defined componentwise. A pair 〈k,w〉 divided by 2 returns
〈k ÷ 2, w ÷ 2〉 .
The reader may prefer to think of complex numbers instead of pairs, e.g. (2 + 9

128 i) may replace the pair
〈2, 9

128〉.
The following observation seems to be of importance:.

Remark 2.1. There exists an infinite computation c of Collatz algorithm in the structure M , such that
the computation c does not contain a cycle, and the sequence of pairs is not diverging into still growing
pairs. The latter means, that there exist two numbers l1 ∈ Z and l2 ∈ Q, such that for every step 〈k, v〉
of computation c, the inequalities hold k < l1 ∧ v < l1.

More details can be found in subsection 7.1.

3. Collatz tree

It is easy to notice that the set of those natural numbers for which the computation of the Collatz algo-
rithm is finite, forms a tree.

Definition 3.1. Collatz tree DC is a subset D ⊂ N of the set N of natural numbers and the function f
defined on the set D \ {0, 1}.

DC = 〈D, f〉

where D ⊂ N, 1 ∈ D, f : D \ {0, 1} → D.
Function f is determined as follows

f(n) =

{
n÷ 2 when n mod 2 = 0

3n+ 1 when n mod 2 = 1

3A. Tarski [Tar34] confirms that S. Jaśkowski observed (in 1929) that the subset of complex numbers M
df
=
{
a+ bi ∈ C :

(
a ∈

Z ∧ b ∈ Q ∧ (b ≥ 0 ∧ (b = 0 =⇒ a ≥ 0))
}

satisfies all axioms of Presburger arithmetic.
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, the set D is the least set containing the number 1 and closed with respect to the function f ,

D = {n ∈ N : ∃i∈N f i(n) = 1 } .

As it is easy to see, this definition is highly entangled and the decision whether the set D contains every
natural number is equivalent to the Collatz problem.

Remark 3.1. Set D has the following properties :

x ∈ D =⇒ (x+ x) ∈ D (2)(
x ∈ D ∧ ∃yx = y + y

)
=⇒ y ∈ D (3)(

x ∈ D ∧ ∃yx = y + y + 1
)

=⇒ (x+ x+ x+ 1) ∈ D (4)(
x ∈ D ∧ (∃e∃ze = z + z + 1 ∧ x = e+ e+ e+ 1)

)
=⇒ e ∈ D (5)

Implications (2) and (5) show left and right son of element x.
Let us note,

Remark 3.2. Let p be an odd , natural number p = 2j + 1, then if p ∈ D then the number 4p+ 1 is an
element of the Collatz tree too, 4p+ 1 ∈ D.

Similar, interesting properties has the complement of set D, if it is a non-empty set. Let cD
df
= N \ D

denote the complement of set D.

Remark 3.3. If the complement cD is a non-empty set, then it has similar properties:

x ∈ cD =⇒ (x+ x) ∈ cD (6)(
x ∈ cD ∧ ∃yx = y + y

)
=⇒ y ∈ cD (7)(

x ∈ cD ∧ ∃yx = y + y + 1
)

=⇒ (x+ x+ x+ 1) ∈ cD (8)(
x ∈ cD ∧ (∃e∃ze = z + z + 1 ∧ x = e+ e+ e+ 1)

)
=⇒ e ∈ cD (9)

Note, both sets D and cD may be considered as graphs. Their structures are similar. However, the graph
cD is not a tree .

Remark 3.4. If Collatz conjecture is not true, then both sets D and N \D are infinite.

From properties (6) and (7) follows the

Fact 3.1. If an x element does not belong to the Collatz tree then the computation of the Collatz algo-
rithm starting with the state v(n) = x is not finite.

Let us note the following observation

Remark 3.5. In a non-standard model of elementary theory of natural numbers with addition, the com-
plement of Collatz tree is an infinite, arborescent graph.

Conjecture 3.1. If the Collatz computation of element x is infinite x ∈ cD then for any natural numbers
n,m > 0 the computation of nx÷m is infinite too, (nx÷m) ∈ cD.



M
irkow

ska,Salw
icki/C

ollatz
hotelAugust9,2022

7

16

32

64

128

256

512

1024

2048

4096

8192

16384

327685461

1365

2730

5460

341

682

1364

2728

5456909

227

454

908151

85

170

340

680

1360

2720

5440

453

906

113

226

452

904

75

150

21

42

84

168

336

672

1344

2688

5376

5

10

20

40

80

160

320

640

1280

2560

5120853

213

426

852

53

106

212

424

848141

35

70

14023

13

26

52

104

208

416

832

69

138

17

34

68

136

11

22

3

6

12

24

48

96

192

384

768

Figure 1. A fragment of Collatz tree, levels 4-15. It does not include levels 0-3, they consist of elements 1 — 2 — 4 — 8 — .
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4. Four algorithms, relatives of Cl algorithm

In this section we present an algorithmGr equivalent to the algorithmCl and three algorithmsGr1, Gr2, Gr3
that are successive extensions of the Gr algorithm.

Lemma 4.1. The following algorithm Gr is equivalent to Collatz algorithm Cl.

Gr:

READ(n);
while even(n) do n:= n ÷ 2 od ;
while n 6=1 do

n:= 3*n+1;
while even(n) do n:= n ÷ 2 od

od ;

Proof:
The equivalence of the algorithms Cl and Gr is intuitive. Compare the recurrence of Collatz (rec1) and
the following recurrence (rec2 ) that is calculated by the algorithm Gr.

k0 = exp(n, 2) ∧ m0 = n
2k0

ki+1 = exp(3mi + 1, 2) ∧ mi+1 = 3mi+1

2ki+1
for i ≥ 0

}
(rec2)

One can say the algorithm Gr is obtained by the elimination of if instruction from the Cl algorithm.
However, construction of a formal proof is a non-obvious task. We are leaving this task to the reader. ut

Next, we present the algorithm Gr1, an extension of algorithm Gr.

Gr1:

var n,l, i :integer ; K,M :arrayof integer;

Γ1:
READ(n); i := 0; l := 0;

while even(n) do n:= n ÷ 2; l := l + 1 od ; Ki := l; Mi :=n:
while n 6=1 do

∆1:

{ Mi=n } n:= 3*n+1; l := 0;
while even(n) do n:= n ÷2; l := l + 1od ; Ki+1 := l; Mi+1 :=n;

{Mi+1 = 3·Mi+1

2Ki
∧Ki+1 = exp(3 ∗Mi + 1, 2)} i := i+ 1

od

Lemma 4.2. Algorithm Gr1 has the following properties:
(i) Algorithms Gr and Gr1 are equivalent with respect to the halting property.

(ii) The sequences {Mi} and {Ki} calculated by the algorithm Gr1 satisfy the recurrence rec2 i.e. for
every natural number i ≥ 0 the equalities Mi = mi and Ki = ki hold.

Proof:
Both statements are very intuitive. Algorithm Gr1 is an extension of algorithm Gr. The inserted in-
structions do not interfere with the halting property of algorithm Gr1. Second part of the lemma fol-
lows easily from the remark that K0 = exp(n, 2) and M0 = n

2K0
and that for all i > 0 we have

Ki+1 = exp(3 ∗Mi + 1, 2) and Mi+1 = 3·Mi+1

2Ki+1
. ut
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Each odd number m in Collatz tree, m ∈ D, initializes a new branch. Let us give a color number x+ 1
to each new branch emanating from a branch with color number x.. Note, for every natural numberp the
set of branches of the color p is infinite. Let Wx denote the set of natural numbers that obtained the color
x.
Besides the levels of Collatz tree, one can distinguish the structure of storeys ( or floors) in the tree .

Definition 4.1. Inductive definition of storey (a bunch of branches of the same color).

W0
df
= {n ∈ N : ∃ i∈N n = 2i}

Wx+1
df
=
{
n ∈ N : ∃m∈Wx ∃ i∈N

(
n = 3 · m

2exp(m,2)
+ 1
)
· 2i
}

Storey number 0 is composed of all numbers being powers of 2. Different storeys are marked by colors .
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Figure 2. Storeys 0 - 4 of Collatz tree
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Let s be a variable not occurring in algorithm Gr1. The following lemma states the partial correctnes of
the algorithm Gr1 w.r.t. precondition s = n and postcondition s ∈Wi.

Lemma 4.3. Algorithm Gr1 computes the number i of storey Wi of number n,

{Gr1}(true) =⇒
(
(s = n) =⇒ {Gr1}(s ∈Wi)

)
Now, we present another algorithm Gr2 and a lemma.

Gr2:

var n ,l, i, x, y, z :integer ; k,m :arrayof integer;

Γ2:
READ(n); i := 0; l := 0;

while even(n) do n:= n ÷ 2; l := l + 1 od ;
z, ki := l; mi:=n; y := 0;

while mi 6=1 do

∆2:
n:= 3*n+1; i := i+ 1; l := 0 ;
while even(n) do n:= n ÷ 2; l := l + 1 od ;
ki := l; mi:=n; z := z + ki; y := 3 ∗ y + 2z; x := i

od

Lemma 4.4. Algorithm Gr2 has the following properties:
(i) Both algorithms Gr1 and Gr2 are equivalent with respect to the halting property.

(ii) Formula ϕ : n · 3i + y = mi · 2z is an invariant of the program Gr2 i.e. the formulas (10) and (11)

{Γ2} (n · 3i + y = mi · 2z) (10)

and
(n · 3i + y = mi · 2z) =⇒ {∆2}(n · 3i + y = mi · 2z) (11)

are theorems of the algorithmic theory of numbers AT N .

Proof:
Proofs of these formulas are easy, it suffices to apply the axiom of assignment instruction Ax18, ut
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Figure 3. Tree of triples (levels 4 – 15)
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Subsequent algorithm Gr3 exposes the calculations of x, y, z.

Gr3:

var n,i,aux :integer ; k,m,X,Y,Z : arrayof integer;
Γ3: READ(n); i := 0; ki := exp(n, 2); mi := n,

2ki
; Zi := k0; Yi, Xi := 0;

while n ·3i + Yi 6= 2Zi do

∆3:

aux:=3*mi+1;
i := i+ 1 ;
ki := exp(aux, 2); mi :=aux/2ki ;
Yi := 3Yi−1 + 2Zi−1 ; Zi := Zi−1 + ki; Xi := i;;

od

See some properties of the algorithm Gr3.

Lemma 4.5. Both algorithms Gr2 and Gr3 are equivalent with respect to the halting property.
For every element n after each i-th iteration of algoritm Gr3, the following formulas are satisfied

ϕ : n · 3i + Yi = mi · 2Zi Xi = i

Zi =
i∑

j=0
kj Yi =

i−1∑
j=0

(
3i−1−j · 2Zj

)
where the sequences {mi}and {ki} are determined by the recurrence (rec2).
In other words

Γ3

⋂
{if mi 6= 1 then ∆3 fi}ϕ

Remark 4.1. Hence, for every element n algorithm Gr3 calculates an increasing, monotone sequence
of triples 〈i (= Xi), Yi, Zi〉.

We can say informally that the algorithm Gr3 performs as follow

i := 0;
while n /∈Wi do i := i+ 1 od

Note, one test n · 3i + Yi 6= 2Zi suffices to assert that n /∈ Wi. There is at most (only) one way from n
to W0.
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Hotel Collatz

The next figure 4 seems to be somewhat chaotic. Many have heard of Hilbert Hotel. This is an implementation of the Hilbert’s idea.
Imagine, we have to disposition a quarter of infinite plane of land. Our architect envisioned an inifinite set of corridors, or are they towers.
Hotel contains rooms of any natural number. Let n = 2i · (2j + 1) . It means that the room number n is located in tower number j on
the floor number i . Each tower is equipped with an elevator (shown as a green line). Moreover, each tower is connected to another by
a staircaise that connects numbers k = 2j + 1 and 3k + 1. This is shown as a red arrow

−−−−−−−→
〈k, 3k + 1〉. Note that the red line is drawn if

128 384 640 896 1152 1408 1664 1920 2176 2432 2688 2944 3200 3456 3712 3968 4224 4480 4736 4992 5248 5504 5760 6016 6272 6528 6784 7040 7296 7552 7808 8064 8320 8576 8832 9088 9344 9600 9856 10112 10368 10624 10880 11136 11392 11648 11904 12160 12416 12672 12928 13184 13440 13696 13952 14208 14464 14720 14976

64 192 320 448 576 704 832 960 1088 1216 1344 1472 1600 1728 1856 1984 2112 2240 2368 2496 2624 2752 2880 3008 3136 3264 3392 3520 3648 3776 3904 4032 4160 4288 4416 4544 4672 4800 4928 5056 5184 5312 5440 5568 5696 5824 5952 6080 6208 6336 6464 6592 6720 6848 6976 7104 7232 7360 7488

32 96 160 224 288 352 416 480 544 608 672 736 800 864 928 992 1056 1120 1184 1248 1312 1376 1440 1504 1568 1632 1696 1760 1824 1888 1952 2016 2080 2144 2208 2272 2336 2400 2464 2528 2592 2656 2720 2784 2848 2912 2976 3040 3104 3168 3232 3296 3360 3424 3488 3552 3616 3680 3744

16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496 528 560 592 624 656 688 720 752 784 816 848 880 912 944 976 1008 1040 1072 1104 1136 1168 1200 1232 1264 1296 1328 1360 1392 1424 1456 1488 1520 1552 1584 1616 1648 1680 1712 1744 1776 1808 1840 1872

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 264 280 296 312 328 344 360 376 392 408 424 440 456 472 488 504 520 536 552 568 584 600 616 632 648 664 680 696 712 728 744 760 776 792 808 824 840 856 872 888 904 920 936

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 156 164 172 180 188 196 204 212 220 228 236 244 252 260 268 276 284 292 300 308 316 324 332 340 348 356 364 372 380 388 396 404 412 420 428 436 444 452 460 468

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 194 198 202 206 210 214 218 222 226 230 234

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117

Figure 4. Hotel Collatz

and only if both of its ends lie inside the drawn fragment of the Collatz hotel. Thus, many lines are omitted. The full (infinite) picture
contains infinitely many of red arrows.

Definition 4.2. The graph HC = 〈V,E〉 is defined as follows
V = N i.e. the set of vertices is the set of standard, reachable, natural numbers

E = {
−−−→
〈k, p〉 : ∃p k = p+ p} ∪ {

−−−−−−−→
〈k, 3k + 1〉 : ∃pk = p+ p+ 1} edges of the graph

Conjecture 4.1. The hotel Collatz is an infinite, connected, acyclic graph, i.e it is a tree. Number 1 is the root.
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5. On finite and infinite computations of Collatz algorithm

QUESTION Can some computation contain both reachable and unreachable elements?
No. The subset of reachable elements is closed with respect of division by 2 and multiplication by 3.
The same observation applies to the set of unreachable elements.
We know, cf. subsection 7.1 that computations of nonreachable elements are infinite. Therefore, it
suffices to show that any infinite computation requires that a non-standard element is present in it.

5.1. Finite computations

Let M = 〈M ; 0, 1,+,=〉 be any algebraic structure that is a model of elementary theory of addition of
natural numbers, c.f. subsection 7.2.
Denotation. Let θ(x, y) be a formula. The expression (µx)θ(x, y) denote the least element x(y) such
that the value of the formula is truth.
EXAMPLE. (µx)(x+ x > y).

Lemma 5.1. Let n be an arbitrary element of the structure M. The following conditions are equivalent

(i) The sequence n0 = n and ni+1 =

{
ni ÷ 2 when ni mod 2 = 0

3ni + 1 when ni mod 2 = 1
determined by

the recurrence (rec1) contains an element nj = 1

(ii) The computation of the algorithm Cl is finite.

(iii) The sequence m0 = n
2k0

and mi+1 = 3mi+1
2ki

determined by the recurrence (rec2) stabilizes, i.e.
there exist l such that mk = 1 for all k > l

(iv) The computation of the algorithm Gr is finite.

(v) The computation of the algorithm Gr1 is finite and the subsequent values of the variables Mi and
Ki satisfy the recurrence (rec2) .

(vi) The computation of the algorithm Gr2 is finite and the subsequent values of the variables mi and
ki satisfy the recurrence (rec2). The formula n · 3x + y = mi · 2z holds after each iteration of
while instruction, i.e. it is the invariant of the program ∆2. The final valuation of variables x, y, z
and n satisfies the equation n · 3x + y = 2z .

(vii) The computation of the algorithm Gr3 is finite.
The subsequent values of the variables mi and ki satisfy the recurrence (rec2) .
The subsequent values of the variables Xi, Yi, Zi form a monotone, increasing sequence of triples.
The formula n · 3Xi + Yi = mi · 2Zi is satisfied at each i-th iteration of the program Gr3.

The proof of this lemma is left to the reader.
Suppose that for a given element n the computationof algorithm Gr2 is finite.

Let x̄ = (µx)

(
n · 3x +

[
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl)]
= 2

x∑
j=0

kj
)

. Put ȳ =
x̄−1∑
j=0

(
3x̄−1−j · 2

j∑
l=0

kl)
and
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z̄ =
x̄∑
j=0

kj .

We present the algorithm IC ′, which is a slightly modified version of the algorithm IC devised in
[MS21] .

IC ′ :



var x,y,z, j : integer, Err : Boolean;

READ(x,y,z); j :=x; Err := false;

while x+y+z6= 0 do

Tr :
if
(
odd(y) ∧ ((x= 0) or (y< 3x−1))

)
then Err := true; exit fi;

if even(y) then y:=
y

2kj−x
; z:=z−kj−x else x:=x−1;y:=y−3x fi

od


The algorithm makes use of the elements ki that are determined by the recurrence (rec2). We observe
the following fact

Lemma 5.2. For every element n

(n = b) ∧ {Gr2}

((
(x = x̄ ∧ y = ȳ ∧ z = z̄) ∧ (b · 3x̄ + ȳ = 2z̄)

)
⇒ {IC ′}(x = y = z = 0)

)
and

(x = x̄ ∧ y = ȳ ∧ z = z̄) ∧ (b · 3x̄ + ȳ = 2z̄)
)
∧(

{IC ′}(x = y = z = 0) =⇒ (n = b) =⇒ {Gr2}(x = x̄ ∧ y = ȳ landz = z̄)

)
The contents of this lemma is best explained by the commutativity of the diagram below.

(n
b

) (x
0

y

0

z

0

) (
(
x

x̄

y

ȳ

z

z̄
)(
n

1
) ∧ (b · 3x̄ + ȳ = 2z̄)

)Gr2(n)

IC(x y z)

Proof:
The proof makes use of two facts:

1) even(n) ≡ even(
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl)
)

2)
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl)
= 2k0 · (3x−1 + 2k1 · (3x−2 + 2x−3 · (· · ·+ 2kx · 30)))

One can prove this lemma by induction w.r.t. number of encountered odd numbers.
The thesis of the lemma is very intuitive. Look at the Collatz hotel Fig. 4. The lemma states that for
every room number n the two conditions are equivalent (1) there is a path from room number n to the
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exit, which is located near room number 1, (2) there is a path from entry to the hotel near room number
1 to the room number n. It is clear that such a path must be complete, no jumps are allowed.

ut

Lemma 5.3. For every element n the following conditions are equivalent

(i) computation of Collatz algorithm Cl is finite,

(ii) there exists the least element x such that the following equality holds

n · 3x +

(
x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl))
= 2

x∑
j=0

kj
. (Mx)

Note, If there is the least element x satisfying the equation (Mx) then it is a reachable natural number.

Denote this element x0. The length L(n) of the computation is then x0 +
x0∑
j=0

kj . Which means: x0 is the

number of multiplication by 3, z =
x∑
j=0

kj is the total number of divisions by 2 and for every 0 ≤ j ≤ x− 1 the number kj is

the number of divisions by 2 excuted in between the j-th and j + 1-th execution of multiplication by 3.

The algorithm Cl executes x+ z iterations.

Proof:

We shall illustrate and summarize the considerations on finite computations in the following com-
mutative diagram. ut

x, Yx, Zx x0, Ȳx0 , Z̄x0 x1, Ȳx1 , Z̄x1 x2, Ȳx2 , Z̄x2 · · · 1, Ȳ1, Z̄1 0, 0, 0

n m1 m2 m3 · · · mx−1 mx = 1

0, 0, 0 0, 0, k0 1, Y1, Z1 2, Y2, Z2 · · · x− 1, Yx−1, Zx−1 x, Yx, Zx

Tr

IC′

Tr Tr Tr Tr

/2k0

3m1+1

/2k1

3m2+1

/2k2

3m3+1

/2k3

3mx−1+1

/2
kx−1

Γ3

Gr3

∆3 ∆3 ∆3 ∆3

Figure 5. CASE OF FINITE COMPUTATION EXEMPLIFIED
Middle row, (with red arrows) represents computation of Gr1, elements ki and mi are given by the recurrence (rec2)
third row shows computation of Gr3, the subsequent triples are Xi+1 = i+ 1, Yi+1 = 3Yi + 2Zi , Zi+1 = Zi + ki

first row (blue arrows) shows computation of algorithm IC on triples, Ȳx = Yx and Z̄x = Zx and for i = x, . . . , 1 we have Z̄i−1 = Z̄i−ki
and Ȳi−1 = (Ȳi/2

ki )− 3i−1

What happens if someone executes one more iteration of algorithm ∆3?

mx+1 = 1 ∧ kx+1 = 2 ∧Xx+1 = x+ 1 ∧ Yx+1 = 3Yx + 2Zx ∧ Zx+1 = Zx + kx+1

and we see that the equality n · 3x+1 + Yx+1 = 2Zx+1 holds again. This explains and justifies the use of
the word "least".
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5.2. Infinite computations

Lemma 5.4. Let n be an arbitrary element of the structure M. The following conditions are equivalent

(i) The computation of the algorithm Cl is infinite.

(ii) The computation of the algorithm Gr is infinite.

(iii) The computation of the algorithm Gr1 is infinite and the subsequent values of the variables mi

and ki satisfy the recurrence (rec2) . and for every i > 0 the element mi is not equal 1.

(iv) The computation of the algorithm Gr2 is infinite and the subsequent values of the variables mi

and ki satisfy the recurrence (rec2) . and for every i > 0 the element mi is not equal 1.
Moreover, for every i > 0 the formula n · 3i + y = mi · 2z is invariant of algorithm Gr2.

(v) The computation of the algorithm Gr3 is infinite and the subsequent values of the variables mi

and ki satisfy the recurrence (rec2) . and for every i > 0 the element mi is not equal 1.
After every i-th iteration of the algorithm the equation n · 3Xi + Yi = mi · 2Zi is satisfied by
the current valuation of variables Xi, Yi, Zi. The triples 〈Xi, Yi, Zi〉 form an infinite, monotone,
increasing sequence of reachable numbers. Therefore, there is no a triple 〈Xi, Yi, Zi〉 such that
the equation n · 3Xi + Yi = 2Zi is satisfied.

Lemma 5.5. If for a certain element n the computation is infinite then n is not a reachable number.

Proof:
If the computation for an element n is infinite then it is uniquely determined by its origin, i.e. the number
n. This is easily seen from the diagram below.

n m1 m2 · · · → mx−1 mx 6= 1→ · · · →

〈0, 0, 0〉 〈0, 0, k0〉 〈1, 1, , k0〉 · · · → 〈x− 1, Yx−1, Zx−1〉 〈x, Yx, Zx〉 → · · · →

/2k0

3m1+1

/2k1

3mx−1+1

/2kx

Γ3 ∆3 ∆3

The sequence of triples 〈
i,

i−1∑
j=0

(
3i−1−j · 2

j∑
l=0

kl)
,

i∑
j=0

kj

〉
i∈Nat

is unique, infinite computation for n. By lemma 5.3 we see that the value of the expression

(µx)

(
n · 3x +

(x−1∑
j=0

(
3x−1−j · 2

j∑
l=0

kl))
= 2

x∑
j=0

kj
)

is undefined. This means that,
there is no triple 〈x̄, ȳ, z̄〉 such that

• the triple 〈x̄, ȳ, z̄〉 is the least triple satisfying the equation n · 3x̄ + ȳ = 2z̄

and simultaneously
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• the algorithm IC ′ starting with the numbers x̄, ȳ, z̄ terminates.

On the other hand, from the lemma 7.4, we see that there is a triple 〈xn, yn, zn〉 of elements that satisfy
the equation n · 3x + y = 2z and for every reachable element i ∈ Nat the triple

〈i,
i−1∑
j=0

(
3i−1−j · 2

j∑
l=0

kl)
,

i∑
j=0

kj〉 provided by the algorithm Gr3 differs from the triple 〈xn, yn, zn〉.

As a consequence, the computation of algorithm IC ′ starting from triple 〈xn, yn, zn〉 is a decreasing
infinite sequence of triples.

〈xn, yn, zn〉 〈xn − 1, Ȳxn−1, Z̄xn−1〉 〈xn − 2, Ȳxn−2, Z̄xn−2〉 · · ·
Tr Tr Tr

(It can not be finite in the view of lemma 5.3 .)
This means that elements xn, zn, yn all are unreachable. For xn /∈ Nat and yn > xn and zn > xn.
Hence by the remark 7.1 the whole computation is entirely contained in the set of unreachable elements.
By the lemma 7.6 we obtain that element n is unreachable. ut

5.3. Collatz theorem

Consider the structure N of reachable natural numbers.

Theorem 5.1. Let n be any standard (reachable) element od the structure N. The computation of Collatz
algorithm Cl that begins with n is finite.

Proof:
The proof follows immediately from the lemmas 5.3 and 5.5. ut

Corollary 5.1. Conjectures 3.1 and 4.1 formulated above are valid statements.

6. Final remarks

Reportedly, Pál Erde̋s said: "mathematics is not ripe enough to solve this problem (Collatz)". We dis-
agree. In our opinion a consortium of Alfred Tarski, Kurt Goedel and Stephen Kleene was able to solve
the Collatz conjecture in 1937.
Andrzej Mostowski expected that many arithmetic theorems independent of the Peano axioms should
be found. Here is one example. The theorem on termination of Euclid’s algorithm is another example
of a theorem which is valid and unprovable in Peano theory.. Note, both theorems need to be stated as
algorithmic formulas, there is no first-order formula that expresess the termination property of Euclid’s
algorithm or Collatz algorithm.

We hope the reader will forgive us for a moment of insistence (is it an agitpropaganda?) .
Calculus of programs AL is a handy tool. For there are some good reasons to use the calculus of pro-
grams

(i) The language of calculus AL contains algorithms (programs) and algorithmic formulas
besides terms and elementary.



20 Mirkowska, Salwicki / Collatz hotel August 9, 2022

(ii) Any semantical property of an algorithm can be expressed by an appropriate algorithmic
formula. Be it termination, correctness or other properties.

(iii) Algorithmic formulas enable to create complete, categorical specifications of data struc-
tures in the form of algorithmic theories.

(iv) Calculus of programs AL brings a complete set of tools for proving theorems of algorith-
mic theories.

The contribution presented here leaves some open questions: first of all the cost of the algorithm Cl
remains to be estimated. The lower bound is obviously O(x + z). A tight upper bound remains to be
found .

Another goal, that will take more time, is to write a complete syntactical (i.e. free of any semantical
considerations, like studies of computation ) proof of Collatz theorem. We expect that the proof will
pass the checking by a proof-checker proper for calculus of programsAL 4. The subsections 7.5 and 7.6
contribute to this work.

Acknowlegments

7. Suplements

For the reader’s convenience, in this section we have included some definitions, some useful theorems,
and samples of proofs in algorithmic natural number theory.

7.1. A structure with counterexamples

where Collatz computations may be of infinite length

Here we present some facts that are less known to the IT community.
These facts may seem strange. The reader may doubt the importance of those facts. Yet, it is worth
considering, strange data structures do exist, and this fact has ramifications. Strange as they seem, still it
is worthwhile to be aware of their existence.
Now, we will expose the algebraic structure M, which is a model of the theory Ar, i.e. all axioms of
theory Ar are true in the structure M. First we will describe this structure as mathematicians do, then
we will write a class (ie a program module) implementing this structure. medskip

Mathematical description of the structure

M is an algebraic structure
M = 〈M ; 0, 1,⊕; =〉 (NonStandard)

4such proof-checker does not exists yet and it is to be built
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such that M is a set of complex numbers k + ıw, i.e. of pairs 〈k,w〉, where element k ∈ Z is an integer,
and element w ∈ Q+ is a rational, non-negative number w ≥ 0 and the following requirements are
satisfied:

(i) for each element k + ıw if w = 0 then k ≥ 0,

(ii) 0 df
= 〈0 + ı0〉 ,

(iii) 1 df
= 〈1.+ ı0〉 ,

(iv) the operation ⊕ of addition is determined as usual

(k + ıw)⊕ (k′ + ıw′)
df
= (k + k′) + ı(w + w′).

(v) the predicate = denotes as usual identity relation.

Lemma 7.1. The algebraic structure M is a model of first-order arithmetic of addition of natural num-
bers T , cf. next subsection 7.2

The reader may check that every axiom of the T theory (see definition7.2, p.24), is a sentence true in the
structure M.

The substructure N ⊂ M composed of only those elements for which w = 0 is also a model of the
theory T .
It is easy to remark that elements of the form 〈k, 0〉 may be identified with natural numbers k, k ∈ N .
Have a look at table 1

The elements of the structure N are called reachable, for they enjoy the following algorithmic property

∀n∈N {y := 0; while y 6= n do y := y + 1 od}(y = n)

The structure M is not a model of the AT N , algorithmic theory of natural numbers, cf . subsection
7.4. .Elements of the structure 〈k,w〉. such as w 6= 0 are unreachable. i.e. for each element x0 = 〈k,w〉
such that w 6= 0 the following condition holds

¬{y := 0; while y 6= x0 do y := y + 1 od}(y = x0)

The subset N ⊂ M composed of only those elements for which w = 0 is a model of the theory AT N
c.f. subsection 7.4. The elements of the structure N are called reachable. A very important theorem of
the foundations of mathematics is

Fact 7.1. The structures N and M are not isomorphic. See [Grz71], p. 256.

As we will see in a moment, this fact is also important for IT specialists.

An attempt to visualize structure M is presented in the form of table 1.
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Table 1. Fragment of structure M

STANDARD (reachable) elements Unreachable ( INFINITE ) elements

· · ·
−∞ · · · −11 + ı2 −10 + ı2 · · · 0 + ı2 1 + ı2 2 + ı2 · · ·∞

· · ·
−∞ · · · −11 + ı 53

47
−10 + ı 53

47
· · · 0 + ı 53

47
1 + ı 53

47
2 + ı 53

47
· · ·∞

· · ·
−∞ · · · −11 + ı 28

49
−10 + ı 28

49
· · · 0 + ı 28

49
1 + ı 28

49
2 + ı 28

49
· · ·∞

· · ·
−∞ · · · −11 + ı 3

47
−10 + ı 3

47
· · · 0 + ı 3

47
1 + ı 3

47
2 + ı 3

47
· · ·∞

· · ·
0 1 2 · · · 101 · · · ∞

The universe of the structure M decomposes onto two disjoint subsets (one green and one red). Every
element of the form 〈k, 0〉 (in this case k > 0) represents the natural number k. Such elements are called
reachable ones. Note,

Definition 7.1. An element n is a standard natural number (i.e. is reachable ) iff the program of adding
ones to initial zero terminates

n ∈ N df⇔ {q := 0; while q 6= n do q := q + 1 od}(q = n)

or, equivalently

n ∈ N df⇔ {q := 0}
⋃
{if n 6= q then q := q + 1 fi}(q = n)

The other elements are called unreachable. Note that the subset that consists of all non-reachable ele-
ments is well separated from the subset of reachable elements. Namely, every reachable natural number
is less that any unreachable one. Moreover, there is no least element in the set of unreachable elements.
I.e. the principle of minimum does not hold in the structure M.
Moreover, for every element n its computation contains either only standard, reachable numbers or is
composed of only unreachable elements. This remark will be of use in our proof.

Remark 7.1. For every element n the whole computation is either in green or in reed quadrant.

Elements of the structure M are ordered as usual

∀x,y x < y
df
= ∃z 6=0 x+ z = y.

Therefore, each reachable element is smaller than every unreachable element.
The order defined in this way is the lexical order. (Given two elements p and q, the element lying higher
is bigger, if both are of the same height then the element lying on the right is bigger.)
The order type is ω + (ω∗ + ω) · η

Remark 7.2. The subset of unreachable elements (red) does not obey the principle of minimum.
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Definition in programming language

Perhaps you have already noticed that the M is a computable structure. The following is a class that
implements the structure M. The implementation uses the integer type, we do not introduce rational
numbers explicitly.

unit StrukturaM: class;
unit Elm: class(k,li,mia: integer);
begin

if mia=0 then raise Error fi;
if li * mia <0 then raise Error fi;
if li=0 and k<0 then raise Error fi;

end Elm;

add: function(x,y:Elm): Elm;
begin

result := new Elm(x.k+y.k, x.li*y.mia+x.mia*y.li, x.mia*y.mia )
end add;

unit one : function:Elm; begin result:= new Elm(1,0,2) end one;

unit zero : function:Elm; begin result:= new Elm(0,0,2) end zero;

unit eq: function(x,y:Elm): Boolean;
begin

result := (x.k=y.k) and (x.li*y.mia=x.mia*y.li )
end eq;

end StrukturaM

The following lemma expresses the correctness of the implementation with respect to the axioms of
Presburger arithmetic (c.f. subsection 7.2) treated as a specification of a class (module of program).

Lemma 7.2. The structure E = 〈E, add, zero, one, eq〉 composed of the set E = {o object : o inElm}
of objects of class Elm with the add operation is a model of the Ar theory,

E |= Ar

Infinite Collatz algorithm computation

How to execute the Collatz algorithm in StructuraM? It’s easy.

pref StrukturaM block
var n: Elm;
unit odd: function(x:Elm): Boolean; ... result:=(x.k mod 2)=1 ... end odd;
unit div2: function(x:Elm): Elm; ...
unit 3xp1: function(n: Elm): Elm; . . . result:=add(n,add(n,add(n,one))); . . . end 3xp1;

begin
n:= new Elm(8,1,2);

Cl:

while not eq(n,one) do
if odd(n) then

n:=3xp1(n) else n:= div2(n)
fi

od

(* a version of algorithm Cl that uses class Elm *)

end block;
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Below we present the computation of Collatz algorithm for n = 〈8, 1
2〉.

〈8, 1

2
〉, 〈4, 1

4
〉, 〈2, 1

8
〉, 〈1, 1

16
〉, 〈4, 3

16
〉, 〈2, 3

32
〉, 〈1, 3

64
〉, 〈4, 9

64
〉, 〈2, 9

128
〉, · · ·

Note, the computation of algorithm Gr for the same argument, looks simpler

〈8, 1

2
〉, 〈4, 1

4
〉, 〈2, 1

8
〉, 〈1, 1

16
〉, 〈1, 3

64
〉, 〈1, 9

256
〉, · · ·

None of the elements of the above sequence is a standard natural number. Each of them is unreachable.
It is worth looking at an example of another calculation. Will something change when we assign n a
different object? e.g. n: = new Elm (19,2,10)?

〈19, 10
2 〉, 〈58, 30

2 〉, 〈29, 30
4 〉, 〈88, 90

4 〉, 〈44, 90
8 〉, 〈22, 90

16〉, 〈11, 90
32〉, 〈34, 270

32 〉, 〈17, 270
64 〉,

〈52, 810
64 〉, 〈26, 405

64 〉, 〈13, 405
128〉, 〈40, 1215

128 〉, 〈20, 1215
256 〉, 〈10, 1215

256 〉, 〈5,
1215
512 〉, 〈16, 3645

512 〉, 〈8,
3645
1024〉,

〈4, 3645
2048〉, 〈2,

3645
4096〉, 〈1,

3645
8192〉, 〈4,

3∗3645
8192 〉, 〈2,

3645∗3
2∗8192〉, 〈1,

3∗3645
4∗8192〉, 〈4,

9∗3645
4∗8192〉, · · ·

And one more computation.

〈19, 0〉, 〈58, 0〉, 〈29, 0〉, 〈88, 0〉, 〈44, 0〉, 〈22, 0〉, 〈11, 0〉, 〈34, 0〉, 〈17, 0〉, 〈52, 0〉, 〈26, 0〉,
〈13, 0〉, 〈40, 0〉, 〈20, 0〉, 〈10, 0〉, 〈5, 0〉, 〈16, 0〉, 〈8, 0〉, 〈4, 0〉, 〈2, 0〉, 〈1, 0〉.

Corollary 7.1. The structure M, which we have described in two different ways, is the model of the Ar
theory (you can also say that this structure implements the specification given by the axioms of the Ar
theory), with the non-obvious presence of unreachable elements in it.

Another observation

Corollary 7.2. The halting property of the Collatz algorithm cannot be proved from the axioms of the
T theory, nor from the axioms of Ar theory.

7.2. Presburger arithmetic

Presburger arithmetic is another name of elementary theory of natural numbers with addition.
We shall consider the following theory , cf. [Pre29],[Grz71] p. 239 and following ones.

Definition 7.2. Theory T = 〈L, C, Ax〉 is the system of three elements:

L is a language of first-order. The alphabet of this language consist of: the set V of variables, symbols
of operations: 0, S,+, symbol of equality relation =, symbols of logical functors and quantifiers,
auxiliary symbols as brackets ...
The set of well formed expressions is the union of te set T of terms and the set of formulas F .
The set T is the least set of expressions that contains the set V and constants 0 and 1 and closed
with respect to the rules: if two expressions τ1 and τ2 are terms, then the expression (τ1 + τ2) is a
term too.
The set F of formulas is the least set of expressions that contains the equalities (i.e. the expressions
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of the form (τ1 = τ2)) and closed with respect to the following formation rules: if expressions α
and β are formulas, then the aexpression of the form

(α ∨ β), (α ∧ β), (α =⇒ β), ¬α

are also formulas, moreover, the expressions of the form

∀x α, ∃x α

where x is a variable and α is a formula, are formulas too.

C is the operation of consquence determined by axioms of first-order logic and the inference rules of
the logic,

Ax is the set of formulas listed below.

∀x x+ 1 6= 0 (a)

∀x ∀y x+ 1 = y + 1 =⇒ x = y (b)

∀x x+ 0 = x (c)

∀x,y (y + 1) + x = (y + x) + 1 (d)

Φ(0) ∧ ∀x [Φ(x) =⇒ Φ(x+ 1)] =⇒ ∀xΦ(x) (I)

The expression Φ(x) may be replaced by any formula. The result is an axiom of theory This is the in-
duction scheme.
We augment the set of axioms adding four axioms that define a coiple of useful notions.

even(x)
df
≡ ∃y x = y + y (e)

odd(x)
df
≡ ∃y x = y + y + 1 (o)

x div 2 = y ≡ (x = y + y ∨ x = y + y + 1) (D2)

3x
df
= x+ x+ x (3x)

The theory obtained in this way is a conservative extension of theory T .

Below we present another theory Ar c.f. [Pre29], we shall use two facts: 1) theory A∇ is complete and
hence is decidable, 2) both theories are elementarily equivalent.

Definition 7.3. Theory Ar = 〈L, C, AxP 〉 is a system of three elements :
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L is a language of first-order. The alphabet of this language contains the set V of variables, symbols
of functors : 0,+, symbol of equality predicate =.
The set of well formed-expressions is the union of set of terms T and set of formulas F . The set
of terms T is the least set of expressions that contains the set of variables V and the expression 0
and closed with respect to the following two rules: 1) if two expressions τ1 and τ2 are terms, then
the expression (τ1 + τ2) is also a term, 2) if the expression τ is a term, then the expression S(τ) is
also a term.

C is the consequence operation determined by the axioms of predicate calculus and inference rules
of first-order logic

AxP The set of axioms of the Ar theory is listed below.

∀x x+ 1 6= 0 (A)

∀x x 6= 0 =⇒ ∃yx = y + 1 (B)

∀x,y x+ y = y + x (C)

∀x,y,z x+ (y + z) = (x+ y) + z (D)

∀x,y,z x+ z = y + z =⇒ x = y (E)

∀x x+ 0 = x (F)

∀x,z ∃y (x = y + z ∨ z = y + x) (G)

∀x ∃y (x = y + y ∨ x = y + y + 1) (H2)

∀x ∃y (x = y + y + y ∨ x = y + y + y + 1 ∨ x = y + y + y + 1 + 1) (H3)

. . . . . . . . .

∀x ∃y



x = y + y + · · ·+ y︸ ︷︷ ︸
k

∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+1∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+ 1 + 1︸ ︷︷ ︸
2

∨

. . .

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−2

∨

x = y + y + · · ·+ y︸ ︷︷ ︸
k

+ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k−1



(Hk)

. . .
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The axioms H2 -Hk ... may be given a shorter form. Let us introduce numerals, ie. the constants repre-
senting term of the form

2 df
= 1 + 1

3 df
= 1 + 1 + 1

· · ·

k df
= 1 + 1 + . . . 1︸ ︷︷ ︸

k times

· · ·

Now, the axioms take form

∀x xmod 2 = 0 ∨ xmod 2 = 1 (H2’)

∀x xmod 3 = 0 ∨ xmod 3 = 1 ∨ xmod 3 = 2 (H3’)

· · ·

∀x
k−1∨
j=0

xmod k = j (Hk’)

Let us recall a couple of useful theorems
F1. Theory T is elementarily equivalent to the theory Ar.[Pre29, Sta84]
F2. Theory Ar is decidable. [Pre29].
F3. The computational complexity of theory Ar, is double exponential O(22n) this result belongs to
Fisher and Rabin, see [FR79].
F4. Theories T and Ar have non-standard model, see section 7.1, p. 20.
Now, we shall prove a couple of useful theorems of theory T .

First, we shall show that the sentence ∀n∃x,y,z n · 3x + y = 2z is a theorem of the theory T of addition.
Operations of multiplication and power are inaccessible in the theory T . However, we do not need them.
We enrich the theory T adding two functions P2(·) and P3(·.·). defined in this way
P2(0) = 1 P3(y, 0) = y

P2(x+ 1) = P2(x) + P2(x) P3(y, x+ 1) = P3(y, x) + P3(y, x) + P3(y, x)

Lemma 7.3. The definitions given above are correct, i.e. the following sentences aretheorems of the
theory with two definitions

T ` ∀x∃y P2(x) = y and

T ` ∀x,y,zP2(x) = y ∧ P2(x) = z =⇒ y = z.
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Similarly, the sentences ∀y,x∃z P3(y, x) = z and ∀y,x,z,uP3(y, x) = z ∧ P3(y, x) = u =⇒ z = u are
theorems of theory T .

An easy proof goes by induction with respect to the value of variable x.

In the proof of the lemma 7.4 , below, we shall use the definition of the order relation

a < b
df
= ∃c 6=0 a+ c = b.

Making use of the definition of function P2 and P3 we shall write the formula P3(n, x) + y = P2(z)
as it exppresses the same content as expression n · 3x + y = 2z .

Lemma 7.4. The following sentence is a theorem of the theory T enriched by the definitions of P2 and
P3 functions.

∀n∃x,y,zP3(n, x) + y = P2(z)

Proof:
We begin proving by induction that T ` ∀n n < 2n. Namely, we areto prove T ` ∀n n < P2(n). It is
easy to see that T ` 0 < P2(0). We shall prove that T ` ∀n(n < P2(n) =⇒ (n + 1 < P2(n + 1)).
Inequality n+ 1 < P2(n+ 1) follows from the two given below T ` n < P2(n) and T ` 1 < P2(n).
Hence the formula n+ 1 < P2(n) +P2(n)) is a theorem of theory T . By definition P2(n) +P2(n) =
P2(n+ 1).

In the similar manner, we can prove the formula T ` ∀n ∀x P3(n, x) < P2(n+ x+ x)
As a consequence we have T ` ∀n∃x,y,z P3(n, x) + y = P2(z). ut

Lemma 7.5. Let M be any model of Presburger arithmetic. An element n is reachable iff there exists
a triple 〈x, y, z〉 of reachable elements such that it satisfies the equation P3(n, x) + y = P2(z) i.e.
n · 3x + y = 2z and elements x, y, z are reachable.

Proof:
If the following formulas are valid in the structure M
{q := 0; while q 6= x do q := q + 1 od}(x = q),
{q := 0; while q 6= y do q := q + 1 od}(y = q),
{q := 0; while q 6= z do q := q+ 1 od}(z = q) and the following equatuin is valid too P3(n, x) + y =
P2(z) then it is easy to verify that the formula {t := 0; while n 6= t do t := t + 1 od}(t = n) is valid
too.

Nr Argument
1 a1=P2(z) is reachable
2 y+a2 =a1, a2 is reachable and a2=2z-y
3 a3=P3(1,x) is reachable , a3=3x

4 { q:=1; a5:=a3; while a56= a2 do q :=q+1; a5:=a5+a3 od } ( q* a3=a2) hence q=n
ut

A similar fact will be used in the proof of lemma 5.5.
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Lemma 7.6. For every element n, if elements x, y, z satisfy the equation n · 3x + y = 2z and they are
unreachable then the element n is unreachable too.

Proof:
It is easy to observe that x < z and y < 2z . Hence there exists an unreachable element a 6= 0 such
that y + a = 2z , where a is the difference. We define auxiliary function D3(m,n) by the following
recurrence

D3(p, q) =

{
p when q = 0

D3(p, q − 1)÷ 3 in the opposite case.

It is evident that n = D3(a, 3x). Since a and 3x are unreachable then n is also unreachable. ut

7.3. An introduction to calculus of programs AL

For the convenience of reader we cite the axioms and inference rules of algorithmic logic.
Note. Every axiom of algorihmic logic is a tautology.
Every inference rule of AL is sound. [MS87]

Axioms

axioms of propositional calculus

Ax1 ((α⇒ β)⇒ ((β ⇒ δ)⇒ (α⇒ δ)))

Ax2 (α⇒ (α ∨ β))

Ax3 (β ⇒ (α ∨ β))

Ax4 ((α⇒ δ) ⇒ ((β ⇒ δ) ⇒ ((α ∨ β)⇒ δ)))

Ax5 ((α ∧ β)⇒ α)

Ax6 ((α ∧ β)⇒ β)

Ax7 ((δ ⇒ α)⇒ ((δ ⇒ β)⇒ (δ ⇒ (α ∧ β))))

Ax8 ((α⇒ (β ⇒ δ))⇔ ((α ∧ β)⇒ δ))

Ax9 ((α ∧ ¬α)⇒ β)

Ax10 ((α⇒ (α ∧ ¬α))⇒ ¬α)

Ax11 (α ∨ ¬α)

axioms of predicate calculus

Ax12 ((∀x)α(x)⇒ α(x/τ)))
where term τ is of the same type as the variable x

Ax13 (∀x)α(x)⇔ ¬(∃x)¬α(x)

axioms of calculus of programs

Ax14 K((∃x)α(x))⇔ (∃y)(Kα(x/y)) for y /∈ V (K)

Ax15 K(α ∨ β)⇔ ((Kα) ∨ (Kβ))
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Ax16 K(α ∧ β)⇔ ((Kα) ∧ (Kβ))

Ax17 K(¬α)⇒ ¬(Kα)

Ax18 ((x := τ)γ ⇔ (γ(x/τ) ∧ (x := τ)true)) ∧ ((q := γ′)γ ⇔ γ(q/γ′))
Ax19 begin K;M end α⇔ K(Mα)

Ax20 if γ then K else M fi α⇔ ((¬γ ∧Mα) ∨ (γ ∧Kα))

Ax21 while γ do K od α⇔ ((¬γ ∧ α) ∨ (γ ∧K(while γ do K od(¬γ ∧ α))))

Ax22

⋂
Kα⇔ (α ∧ (K

⋂
Kα))

Ax23

⋃
Kα ≡ (α ∨ (K

⋃
Kα))

Inference rules

propositional calculus

R1
α, (α⇒ β)

β
(also known as modus ponens)

predicate calculus

R6
(α(x) ⇒ β)

((∃x)α(x) ⇒ β)

R7
(β ⇒ α(x))

(β ⇒ (∀x)α(x))

calculus of programs AL

R2
(α⇒ β)

(Kα⇒ Kβ)

R3
{s(if γ then K fi)i(¬γ ∧ α)⇒ β}i∈N

(s(while γ do K od α)⇒ β)

R4
{(Kiα⇒ β)}i∈N

(
⋃
Kα⇒ β)

R5
{(α⇒ Kiβ)}i∈N

(α⇒
⋂
Kβ)

In rules R6 and R7, it is assumed that x is a variable which is not free in β, i.e. x /∈ FV (β). The rules
are known as the rule for introducing an existential quantifier into the antecedent of an implication and
the rule for introducing a universal quantifier into the successor of an implication. The rules R4 and R5

are algorithmic counterparts of rules R6 and R7. They are of a different character, however, since their
sets of premises are infinite. The rule R3 for introducing a while into the antecedent of an implication
of a similar nature. These three rules are called ω-rules. The rule R1 is known as modus ponens, or the
cut-rule. In all the above schemes of axioms and inference rules, α, β, δ are arbitrary formulas, γ and γ′

are arbitrary open formulas, τ is an arbitrary term, s is a finite sequence of assignment instructions, and
K and M are arbitrary programs.
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Theorem 7.1. (meta-theorem on completeness of the calculus of programs AL)
Let T = 〈L, C,Ax〉 be a consistent theory, let α ∈ L be a formula. The following conditions are
equivalent

(i) Formula α is a theorem of the theory T, α ∈ C(Ax),

(ii) Formula α is valid in every model of the theory T, Ax |= α.

The proof may be found in [MS87].

7.4. An introduction to algorithmic theory of natural numbers AT N

The language of algorithmic theory of natural numbers AT N is very simple. Its alphabet contains one
constant 0 zero , one one-argument functor s and predicate = of equality. We shall write x+ 1 instead of
s(x). Axioms of AT N were presented in the book [MS87]

A1 ∀x{q := 0; while q 6= x do q := s(q) od}(q = x) (R)

A2 ∀x s(x) 6= 0 (N)

A3 ∀x∀y s(x) = s(y) =⇒ x = y (J)

We can add another two-argument functor + and its definition
A4 ∀x ∀y{q := 0;w := x; while q 6= y do q := s(q) ;w := s(w)od}(x+ y = w) (D)

The termination property of the program in A4 is a theorem of AT N theory as well as the formulas
x+ 0 = x and x+ s(y) = s(x+ y).

A sample (12 – 15) of Theorems of AT N

AT N ` ∃x α(x)⇔ {x := 0}
⋃
{x := x+ 1}α(x) (12)

AT N ` ∀x α(x)⇔ {x := 0}
⋂
{x := x+ 1}α(x) (13)

scheme of induction

AT N `
(
α(x/0) ∧ ∀x

(
α(x)⇒ α(x/s(x))

))
=⇒ ∀xα(x) (14)

Correctness of Euclid’s algorithm

AT N `

(
n0 > 0∧
m0 > 0

)
=⇒



n := n0; m := m0;

whilen 6= mdo

if n > m then n := n ._ m
else m := m ._ n

fi

od


(n = gcd(n0,m0)) (15)

The theory AT N enjoys an important propety of categoricity.



32 Mirkowska, Salwicki / Collatz hotel August 9, 2022

Theorem 7.2. ( meta-theorem on categoricity of AT N )
Every model A of the algorithmic theory of natural numbers is isomorphic to the structure N, c.f. sub-
section 7.1.

7.5. Proof of lemma 4.1
Let P and P ′ be two programs. Let α be any formula. The semantic property programs P and P ′ are equivalent with respect to the
postcondition α is expressed by the formula of the form ({P}α⇔ {P ′}α).
We shall use the following tautology of calculus of programsAL.

`



P :︷ ︸︸ ︷
while γ do

if δ then K else M fi
od;

 α⇔

P ′:︷ ︸︸ ︷
while γ do

while γ ∧ δ do K od;

while γ ∧ ¬δ do M od
od

 α


(16)

We apply the axioms Ax20 and Ax21

`




while γ do

if δ then K else M fi
od;

 α⇔



if γ then
while γ ∧ δ do K od;

while γ ∧ ¬δ do M od ;

while γ do
while γ ∧ δ do K od;

while γ ∧ ¬δ do M od
od

fi


α


(17)

We can omit the instruction if (why?) . We swap internal instructions while inside the instruction while.

`




while γ do
if δ then K else M fi

od;

 α⇔



while γ ∧ δ do K od ;

while γ ∧ ¬δ do M od
while γ do

while γ ∧ ¬δ do M od;

while γ ∧ δ do K od
od


α


(18)

We can safely skip the second instruction while.

`




while γ do
if δ then K else M fi

od;

 α⇔



while γ ∧ δ do K od ;

while γ do
while γ ∧ ¬δ do M od;

while γ ∧ δ do K od
od


α

 (19)

Now, we put (γ
df
= n 6= 1), (δ

df
= even(n)), (K

df
= n÷ 2) and (M

df
= 3n+ 1). We make use of two theorems (even(n) =⇒ n 6= 1) and

(Mδ) of theory T c.f. subsection 7.2 ( hence, they are valid in the structure of natural numbers).

T `





while n 6= 1 do
if even(n)

then n := n÷ 2

else n := 3n+ 1

fi
od;


(n = 1)⇔



while even(n) do n := n÷ 2 od;

while n 6= 1 do
n := 3n+ 1;

while even(n) do n := n÷ 2 od
od


(n = 1)


. (20)

This ends the proof.

�
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7.6. Proof of invariant of algorithm Gr3

We are going to prove the following implication (22) is a theorem of algorithmic theory of natural numbers AT N .

AT N ` (ϕ =⇒ {∆3}ϕ) (21)

Symbols ϕ and ∆3 are explained below.

ϕ︷ ︸︸ ︷

n · 3i + Yi = mi · 2Zi∧

Zi =
i∑

j=0

kj ∧Xi = i∧

Yi =
i−1∑
j=0

(
3i−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤i

(
ml = ml−1/2

kl∧

kl = exp(ml, 2)
)


=⇒

∆3︷ ︸︸ ︷

aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;

Zi+1 := Zi + ki+1;

Xi := i; ;

i := i+ 1;



ϕ︷ ︸︸ ︷

n · 3i + Yi = mi · 2Zi∧

Zi =
i∑

j=0

kj ∧ ∧Xi = i

Yi =
i−1∑
j=0

(
3i−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤i

(
ml = ml−1/2

kl∧

kl = exp(ml, 2)
)


(22)

We apply the axiom of assignment instruction Ax18. Note, we applied also axiom Ax19 of composed instruction.

Namely, in the implication (22) we replace the its successor {∆3}ϕ by the equivalent formula {∆(1)
3 }ϕ

(1).

ϕ =⇒

∆
(1)
3︷ ︸︸ ︷

aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;

Zi+1 := Zi + ki+1;

Xi := i; ;



ϕ(1)︷ ︸︸ ︷

n · 3(i+1) + Y(i+1) = m(i+1) · 2Z(i+1)∧

Z(i+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

Y(i+1) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(23)

ϕ =⇒



aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;

Zi+1 := Zi + ki+1;





n · 3(i+1) + Y(i+1) = m(i+1) · 2Z(i+1)∧

Z(i+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

Y(i+1) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)
∧


(24)

ϕ =⇒


aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;

Yi+1 := 3Yi + 2Zi ;





n · 3(i+1) + Y(i+1) = m(i+1) · 2(Zi+ki+1)∧

(Zi + ki+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

Y(i+1) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(25)
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ϕ =⇒


aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

mi+1 := aux/2ki+1 ;





n · 3(i+1) + (3Yi + 2Zi) = m(i+1) · 2(Zi+ki+1)∧

(Zi + ki+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(26)

ϕ =⇒

{
aux := 3 ∗mi + 1;

ki+1 := exp(aux, 2);

}


n · 3(i+1) + (3Yi + 2Zi) = (aux/2ki+1) · 2(Zi+ki+1)∧

(Zi + ki+1) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(27)

ϕ =⇒
{

aux := 3 ∗mi + 1;
}


n · 3(i+1) + (3Yi + 2Zi) = (aux/2(exp(aux,2))) · 2(Zi+(exp(aux,2)))∧

(Zi + (exp(aux, 2))) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(28)

ϕ =⇒ {}

ψ︷ ︸︸ ︷

n · 3(i+1) + (3Yi + 2Zi) = ((3 ∗mi + 1)/2(exp((3∗mi+1),2))) · 2(Zi+(exp((3∗mi+1),2)))∧

(Zi + (exp((3 ∗mi + 1), 2))) =
(i+1)∑
j=0

kj ∧Xi+1 = (i+ 1)∧

(3Yi + 2Zi) =
i∑

j=0

(
3(i+1)−1−j · 2Zj

)
∧

m0 = n ∧ k0 = exp(m0, 2)∧
∀

0<l≤(i+1)

(
ml = ml−1/2

kl ∧ kl = exp(ml, 2)
)


(29)

The implications (22) –(29) are mutually equivalent.
One can easily verify that the last implication (ϕ =⇒ ψ) (29) is a theorem of Presburger arithmetic T and hence it is a
theorem of AT N theory.
Therefore the first implication (ϕ =⇒ {∆3}ϕ) (22) is a theorem of algorithmic theory of natural numbers AT N .

q.e.d.

Remark 7.3. Note, the process of creation a proof like this can be automatized.
The verification of the above proof can be automatized too.
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