
Coroutines and Processes in Block Structured Languages.

A. Kreczmar
Institute of Informatics
University of Warsaw, PKiN
VIII floor, 00901 Warsaw, Poland

~uldner
School of Computer Science
Acadia University, Wolfville
Nova Scotia, BOP IXO, Canada

ABSTRACT.

This paper considers the semantics of coroutines and processes in block

structured languages; in particular, the problem of existence of static and dynamic

environments. It is shown that a definition of inaccessible module instances may

result in an inconsistent meaning of some operations. Both an Algol-like language

and a SIMULA-Iike language, (with pointers yet without coroutines), are proven to

have well-defined semantics. The examples provided in this paper show that some

coroutine and concurrent operations may, however, destroy the static environment.

L INTRODUCTION.

The problem of the existence of the static and dynamic environments in block

structured languages with coroutines and processes seems to be up-to-date, see e.g.

ADA, [i0]. The literature on coroutines and processes is rich and diverse see e.g.

[7], [8] [9].

Should the structure of the module instances reflect an actual storage

management system, it has to include an operation which deallocates inaccessible

instances. The deletion of an instance, however, may perturb the normal program

execution since the structure of static and dynamic connections could be destroyed.

For completeness, Section 2 quotes the well-known results concerning the semantics

of Algol-like languages. The following section comprises the corresponding

analysis of language with pointers yet without coroutines. Section 4 introduces

coroutine and semi-coroutine operations, and examines their semantics. The last

section extends the analysis to the languages with concurrent processes. A

conclusion is that the languages with coroutines and processes do not satisfy the

basic requirement of an existence of the static environment. Therefore, a new

approach to storage management and referencing mechanisms is needed.

2. BLOCK STRUCTt~ED LANGUAGES.

This section will introduce some basic concepts and recall the main properties

of Algol-like languages (see [2,3,11]). Let Y be any syntactic entity, such as a

variable or a module. We write Y decl M for Y is declared in the module M. For

any program, the set T of all its modules with the relation decl forms a tree

denoted T[decl] = <T,decl> with the main block (MB) as its root. For any binary

232

relation R, denote by R+ (R*) the transitive (and reflexive) closure of P~

A module N is a static container (cf [2]) for the occurrence of the

identifer X in a module M, N = SC(X,M), if (i) X decl N, (ii) M decl* N, (iii)

there is no module N' for which M decl* N' decl+ N and X decl N'. #

The instances of a module M will be denoted by P(M), Q(M), etc. (with

indexes, if necessary), or simply by P, Q, etc. A state of the program execution

is considered as a finite set of instances that exist when a snap-shot of the

execution is taken. The states will be denoted by S, S', etc.

The changes of states will now be considered. According to the syntactic

structure for an occurrence of the identifier X in the module M, the instance P(N)

of the module N = SC(X,M) is accessed. The instance P is called the dynamic

container for the occurrence of X in M, F = DC(X, M) (compare [2]). For any

instance P (except of MB) another instance Q, called the syntactic father of P,

will be uniquely defined (see def. 2). The relation between P and Q will be

denoted by P => Q. ghe main property of => is

(2.1) if P(M) => Q(N) then M decl N. #

The relation P => Q will sometimes be denoted by P.SL = Q, because P's Static Link

points to Q.

Definition i.

The sequence Pk,...,PI is the static chain of the instance Pk' if Pi+l => Pi for i

= k-l,..,l; and P1 is the instance of the main block. #

The existence of the static chain of the currently executed instance will be

proved later (see 2.5). From (2.1) and the above definition, it follows:

(2.2) If Pk(Mk), Pk_I(Mk_I),..,P!(MI) is a static chain of the instance P1 then

Mk,..,M 1 forms a path from M k to the root MB, in the tree T[decl]. #

(2.3) If Pk(Mk), Pk_l(Mk_l),.., PI(MI) is the static chain of the instance Pk then

for any occurrence of an identifier Y, such that the static container SC(Y,Mk)

exists, there is a unique j, 1 < j < k, for which Mj = SC(Y,Mk). #

For any state S of a program execution we define a structure S[syn] = <S, =>>.

This structure reflects the syntactic structure of the program. When acontrol

enters a module, say M, a new instance P(M) is generated. Therefore the structure

S[mem] with the operation insert(P) is introduced. The control structure of the

program will be described by means of another structure S[dyn] = <S,->> where the

relation -) determines a dynamic father. If P -> Q we shall also write P.DL = Q

because P' S Dynamic Link points to Q. An active instance at state S is the

instance which is being executed at S. In all sections, except the last, we

consider sequential languages for which at most one instance is active at a given

state. Below, the relations =>, and -> are defined, and moreover, the transitions

between states are determined:

Definition 2.

Consider a state S at which an instruction call F is executed in the active

233

instance P(N). Suppose that the static container M = SC(F,N) and the static chain

of M exist. Then, by (2.2), a unique instance R(M) of the module M belongs to this

static chain. The generation of a new instance Q(F) results in the following

actions: (i) insert(Q) for S[mem]; (ii) add an edge Q => R for S[syn]; (iii) add an

edge Q -> P for S[dyn] ; (iv) the instance Q becomes active. The termination of

the instance Q with the dynamic father P (Q->P) results in the following actions:

(i) delete the edge Q -> P for S[dyn] ;

(ii) the instance Q becomes active. #

The following propositions describe the properties of the structures S[syn],

S[dyn]. The proofs are straightforward and are therefore omitted.

(2.4) If P => Q then non Q ->* P. #

(2.5) The structure S[s!as] is a tree; the static chain of the active instance P

forms a path from P to the root (so this chain always exists). #

(2.6) The structure S[dyn] consists of a chain, (called operational chain) with

the active instance as its leaf, and a number of isolated nodes. #

Clearly, any real memory management system cannot afford allocating more and

more memory fields without any garbage collection. Therefore, the structure S[mem]

will have an additional operation delete(P) which deallocates the instance P. ~]is

operation, however, may cause the structures S[syn] and S[dyn] to no longer be

graphs.

If

then after delete(Q) we could obtain

We shall call such an edge a pseudo-edge, and a structure with nodes and pseudo-

edges, a pseudo-graph.

The termination effect (def. 2) is redefined by adding the action.

(iii) delete(Q) for S[mem]. #

We shall investigate the following questions:

(2.7) When an instance becomes inaccessible, and what does it really mean?

(2.8) When the inaccessible instances should be deallocated?

(2.9) What are the consequences of the deallocation for the semantics of the

language?

For an Algol-like language, an instance Q, is said to be accessible from the

instance P at a state S iff P ->* R =>* Q (for some instance R.) The instance Q is

said to be inaccessible in a state S, iff Q is not accessible from the active

instance.

The following proposition answers the question 2.7:

(2.10) A terminated instance is inaccessible at any state.

The proof goes by induction. Let a state S' satisfy (2.10), and state S be

obtained from S' as a result of a termination of the instance P. Then P is

234

inaccessible from the dynamic father Q of P, because this contradicts (2.4).

If P' ~ P is a terminated instance accessible from Q (which is active at S): P -> Q

->* R =>* P' then P' would be accessible from P at S', which contradicts the

inductive assumption. #

The proofs of the following propositions are simple enough to be left to the

reader:

(2.11) The structure S[syn] is a tree, the active instance being its leaf.

(2.12) The structure S[dyn] consists of an operational chain the active instance

being its leaf. #

(2.13) The syntactic environment of the active instance is always defined, i.e.

the static chain of the active instance P(M) exists and contains all the dynamic

containers for all occurrences of identifiers in M. #

In accordance with the above follows the well known property of standard

implementation of block structured languages follows:

(2.14) A block structured language is "stack implementable'~, i.e. insert and

delete operations of S[mem] are performed in the LIFO scheduling strategy. #

In the following sections we shall investigate the semantical properties of

the languages which extend an Algol-like language with the following properties:

- storage management, the terminated instances are accessible;

- control structure, the instance can be re-entered;

- parallelism, more than one active instance may exist at a time.

3. POINTER LANGUAGES.

The main feature of a language with pointers is that a terminated instance can

be accessed via the pointer, (i.e. reference variables) the value of which is the

address of the instance. Using SIMULA notation (certify [6]) for a reference

variable X of a module type M, the instruction

X: = new M results in a generation of memory field for the instance P(M), an

execution of M's instruction (if any), and eventually, assigning the address of

P(M) to X. The relation between X and P(M) will be denoted by X ->> P(M).

Similarly, Q ->> P means that the instance P is pointed to by an

attribute of the instance Q. The static container for dotted identifier is defined

as follows: Consider the occurrence of X.W in a module N. The module N' = SC(X,N)

contains the declaration of, e.g. vat X:M. Therefore, the module N" = SC(M,N')

contains the declaration of M. If M has the attribute W, then M = SC(X.W,N),

otherwise the program is syntactically incorrect. Note that (2.2) from Section 2

still holds, while (2.3) is no longer true. Consider the following:

235

Example i.
unit N: class;

unit M: class;
vat W: integer;

end M;

unit NI: class;
vat X: M;
unit N2: class;

... X.W

end N2;

i"" new M;

i:" "= new M;

end ~i;

end'~i

Then we have P(N2) =>+ P(NI) =>+ P(N) and P(M) =>+ P(N) where X points to P(M),

hence P(SC(X.W, N2)) does not belong to the static chain of P(N2). #

A generation and a termination of an addressable instance are described as

follows:

Definition 3.

The description of a generation is similar to that of Def. 2. However, if a new

instance Q(N) is indirectly generated from the active instance P(M), via X.N, then

the syntactic father of Q is the object pointed to by X. Now let us consider a

termination. Let P be the dynamic father of the instance Q, i.e., Q-> p. Then the

following actions will be performed: (i) delete Q -> P for S[dyn] (i.e.Q.DL

becomes none): (ii) the instance P becomes active; (iii)if Q is an addressable

instance generated by means of X:=new M instruction, then X points to Q. #

From this definition the analogon of (2.4) follows immediately:

(3.1) If P => Q, then non Q ->* P. #

Note that a structure S[slas] does not have to be a tree any longer: Suppose that

the generation X:= new M takes place within the body of a procedure F, M is

declared in F1 and F is called from R:

I °
After the termination of F, R becomes active, P(F) is deleted, but P(M) remains

alive and without a syntactic father:
?

This situation will not harm the execution of a program provided P(M) will be

inaccessible. The latter notion has to be redefined in a language with pointers:

Definition 4.

An instance Q is accessible from an instance P at a state S iff

P -> * R=>* R' ->>* Q for some instances R, R'. #

236

(3.2) I f Q i s non-addressabble, and [] ~ ~her! ~ ~i~

Proof. P(M) =>+ Q(M') so M is nested in M'. Moreover, R(N) ->> P(M) , so N

contains the declaration of variable X of type M. Therefore, a static chain of R

contains an instance Q'(M'). Our purpose is to show that Q = Q'. Suppose the

contrary is true. Two different instances of the same module may communicate only

via non-local variables, or via parameters. The first case is excluded, i.e. the

reference to P cannot be transmitted in a remote expression via Q to Q.SL because

M' is a non-addressable module (i.e. procedure /block instance). The second case

is excluded because M is nested in M' and a parameter of M' has to be of a type

which is visible from M'. #

(3.3) If Q is non-addressable and

~her,
+

A terminated non-addressable instance may be a root of static sub-tree. A

structure S[syn] is a pseudo-tree with pseudo-edges. By virtue of (3.3), if Q is

a non-addressable instance and there is a reference chain between an instance P

and a node of Q's sub,tee STQ then P belongs to STQ:

The analogons of (2.5) and (2.6) a r e the f o l l o w i n g :

(3.4) The structure S[syn] consists of a single tree S[T] and a

number of pseudo-trees. Any instance P accessible from the active instance belongs

to s[~].

(3.5) The structure S[dyn] consists of a chain and a number of isolated vertices,

the active instance is the leaf of the chain.

Proof. These propositions will be proved by simultaneous induction. If S'

consists solely of the instance of MB, then the proof is trivial. Let S' be a

state with the active instance Q(M). Consider a generation of an instance P(N).

Put S = S' u (P). If P is directly generated by means of a new N instruction

then N is visible from M; so the syntactic father R(N') of P(N) belongs to the

static chain of Q(M): ~ ~) ~

From the inductive assumption R(N') belongs to S'[T], so R(N) belongs to S[T].

Therefore, S[T] consists of S'[T] augmented by the leaf P(N). Any instance

accessible from P at state S is accessible at the state S', either from Q or from

R, therefore from the inductive assumption, (3.4) holds. If P is indirectly

237

generated by means of X.~ N instruction then

By the inductive assumption R belongs to S'[T] and so to S[T]. Therefore (3.4)

holds. Now the termination of Q will be considered. Put S=S'- (Q). The only non-

trivial case is that of non-addressable Q. Clearly S'[T] = SIT] - STQ, so we shall

prove that

,//[~3(< * \\

is not possible. Note that R ~ R" = Q cannot hold because Q is non-addressable.

Hence R =>* Q and from (3.3) R' =>* Q: ~ i ~ ~] ~

Therefore Q ->* R and R =>* Q which contradicts (3.1). #

The following analagon to (2.10) holds:

(3.6) Any accessible instance belongs to the tree S[T]. Hence, the syntactic and

dynamic environment of the active instance is always defined as follows: the

static chain of the active instance exists, and moreover, the dynamic containers

(for all the occurrences of identifiers in Q) belong to the tree S[T]. #

Let us return now to the questions (2.7)-(2.9). A language with pointers is not

"stack implementable" and we encounter one of the most difficult implementation

problems. There are two well-known memory management techniques, (see [3]): -

retention technique, which retains an instance as long as this instance is

accessible (this requires expensive garbage collection to search inaccessible

instances); - deletion technique, which deletes non-addressable instances

immediately after termination. The latter technique may be fully exploited by

virtue of (3.4); together with a non-addressable instance, the entire subtree of

this instance may be deallocated. The reader may refer to [i], and [2] for more

detailed discussion of the subject and application to the implementation of

universal programming language LOGLAN.

4. COROUTINE LAN(~JAGES.

The term "coroutines" is used for the module instances able to cooperate in a

sequential fashion. This means that the execution of a coroutine instance can be

suspended, and at the same time the operations of another coroutine instance are

resumed. The coroutine instance may create a number of module instances that are

238

dynamically contained within it (e.g. some

instances of procedures and blocks). These module instances form a coroutine

chain, say Y:

I a¢~ i re instance I "-~..-'~ corou t ine he~.d ~ ~
chain Y

The control transfer from a coroutine chain to another one is a result of a

certain coroutine operation, say attach. The suspended coroutine

chain, say Z, will be pictured as follows: ll~c~ive in~t~nceI---~..----> tcor~u~ine head]
I ,i

chain Z

One can define the result of attach in the following way:

chain Z chain Y

One can also define this result as follows:

i~ctive ins~ancel-----~,---~-Ic0r0u~ine headl

chain Z chain Y

Tn this section we shall consider the second possibility, k~cause we regard

processes to be considered the special cases of coroutines.

A coroutine is generated by new instruction. The generation is completed when

return instruction is performed; if Q(C) is a coroutine instance with a dynamic

father R:

then return will suspend Q and resume R:

The main program MB is considered to be a coroutine instance pointed to by a

system variable main. The user is alowed to use this variable only in the

instruction attach(main). A chain is active if control executes its active

instance, otherwise it is suspended. Directly from the definitions follows:

(4.1) A coroutine chain contains neither generated nor terminated coroutine

instances except of the head of a chain. #

The analogon to (3.1) has the following form:

(4.2) If P => Q and Q does not belong to the dynamic chain leading to the head of

a suspended coroutine chain then non Q - >* P. #

Lemma (3.2) is still valid while another auxiliary lemma is necessary to prove the

analagons of (3.4), (3.5) :

(4.3) If a suspended coroutine head R is accessible at a state S, then any

instance of its chain is in S[T].

Proof. The only non-trivial case is that of a termination of a non-addressable

instance Q. Consider the coroutine chain of R and the instance Q with the dynamic

father P: ,~ ,r;- l I

239

%

Proof goes by induction on k. Suppose that Ri_ 1 belongs to S[T]. If R i = Q then

R i does not belong to the chain of R after the termination of Q, so (4.3) holds.

Suppose that R i =>+ Q. The instance R i cannot be created in Ri_ 1 directly, because

Ri_ 1 =>* Ri.SL implies Ri_ 1 belongs to STQ. Therefore R i is created in Ri_ 1

indirectly by means of X.new M, so Ri_ 1 =>* R'->>* R i. SL. The instance Q is

non-addressable, so Q ~ Ri.SL; and from (3.3)

Now Ri_ 1 =>* R' =>* Q implies that Ri_ 1 belongs to STQ which contradicts the

inductive assumption. #

The analogons of (3.4), (3.5) have the following form:

(4.4) The structure S[syn] consists of a tree S[T] and a number of pseudo-trees.

The active instance and any accessible instance belongs to S [T]. #

(4.5) The structure S[syn] consists of a single operating chain, a number of

suspended coroutine chains, and a number of isolated vertices. The active instance

is a leaf of the operating chain. #

The following example illustrates (4.3).

Example 2.

Consider the following the program:

begin

unit B: pr(~dure;

vat X: C;

unit C: coroutine;

b~

return;

call A;

begin

X: = new C:

attach (X) ;

end B;

unit A: procedure;

begin

attach (main)

end A;

begm

call B;

end

Just after the execution of attach(main) the state of computation looks as

240

follows :

Thus the head Q(C) belongs to the subtree with the root Q(B), while the instance

Q(~ d~s not. After the termination of Q(B), the he~ Q(C) will be inaccessible.

Note that in virtue of the above propositions, the proposition (3.6) still holds.

For some applications semi-coroutines are necessary. There is an additional

operation de~ch on semi-coroutine which returns control to the callee, i.e. the

coro~i~ he~ which r~tly res~ed this s~i~oroutine. Unfortu~tely, such a

~mi-coroutine operation my destroy a syntactic enviro~ent: if one ~ds detach

after the ins~uction "call E' in ~e example 2, then after the termination of Q(~

we ~ve:

Hence, Q(A) is active, Q(C) is accessible from Q(A), but Q(C) does not belong to

SIT]. This example shows that (4.4) does not fully hold. The structure S[syn]

consists of a tree S[T] and a number of pseudo-trees but accessible instances need

not belong to SIT]. So some kind of run-time checking is indispensable. Note

that the dynamic structure is not harmed by the operation detach.

5. PARALLEL LANGUAGES.

We consider a coroutine as a particular kind of a process; for a program with

processes more than one instance may be active at a time. There is an important

difference, however, between coroutines, and processes which are performed by a

single multiplexed processor. In the former case the switch of the control from

one coroutine chain into another one is programmable, and so it cannot happen

behind the scenes. In the latter case, it is the scheduler which switches the

control, so a user has no control of this, and has to consider all the active

processes as the operating ones.

The operations on processes are simply extensions of those on coroutines;

stop suspends a process; resume(X) resumes the process pointed to by ~L It is easy

to see that the basic theorems describing with syntactic and dynamic structure

slightly generalize (4.3) and (4.4):

(5.1) The structure S[sym] consists of a tree S[T] with main program being its

root, and a number of pseudo-trees. #

(5.2) The structure S[dyn] consists of a number of operating chains, and a number

of suspended process chains, suspended coroutine chains, and isolated vertices.

The active instances are the leafs of the operating chains. #

241

For parallel languages a syntactic environment may be destroyed, and so

appropriate memory management systems have to be developed. A retention technique

delays a process termination if that could destroy a syntactic environment of

another process. A deletion technique deletes inaccessible instances, but a process

may explicitly wait for the termination of his sons.

It is worthwhile to notice that one can consider a programmable deallocation

technique- an instruction, say kill(X) deallocates a memory field pointed to by X,

(in PASCAL: dispose, in ADA: free). The point is that such an operation can be

"secure", i.e. the access to memory instances killed as a side-effect of these

instructions results in run-time error. Because of the lack of space, further

issues of memory management systems and of processes synchronization will be

considered in a forthcoming paper.

BIBLIOGRAPHY

[i] Bartol, W. M., Kreczmar, A., Lao, M., Litwiniuk, A., M(]idner, T.,
Oktaba, H., Salwicki, A., Szczepanska-Wasersztrum, D., Report on the
Programming Language Loglan 79. Internal Report, University of Warsaw.

[2] Bartol, W. M., Kreczmar~ A., Litwiniuk, A., Oktaba, H., Semantics and
Implementation_of Prefixing at many Levels. IInf UW Report NR 94
Institute of Informatics, University o~ Warsaw.

[3] Berry, D. M., Block Structure: Retention vs. Deletion. Proc. Third
Symposium on Theory of Computation, 1971, The MIT Press, 1979.

[4] Bobrow, D. G., Wegbreit, B., A Model and Stack Implementation of
Multiple Environments. BBN Report 2334, 1972.

[5] Brinch-Hansen, P., Operating System Principles. Prentice Hall, 1973.

[6] Dahl, O. J., Myhrhaug, B., Nygaard, K., Common Base Language. NCC S-22,
October, 1970.

[7] Dahl, O. J., Wang, A~, Coroutine Sequencing in a Block Structured
Environment. BIT 1971, pp. 425-49.

[8] Lindstrom, G., Soffa, M. L. Referencing and Retention in Block
Structured Coroutines. AGM TOP[AS Vol. 3, N 3, July 1981.

[9] Naur, P., (Ed.), Revised Report on the Algorithmic Language ALGOL 60.
CACM 6, 1963, pp. 1-17.

[i0] Organick, E. I., Computer System Organization. ~e B5700/6700 Series.
Academic Press 1973,]New York.

[ii] Reference Manual for the ADA Programming Language, United States
Depart. of Defense, July 1980.

[12] Wegner, P., Programming Languages - Concepts and Research Directions.
In: Research Directions in Software Technology, edited by P. Wegner.

[13] Wirth, N., The Programming Language Pascal. Acta Informatica 1971, i,
pp. 35-63.

