## Collatz conjecture becomes theorem

11 August 2023
Grażyna Mirkowska
UKS W University of Warsaw, Institute of Informatics
Andrzej Salwicki
Dombrova Research, Łomianki, PolandKey words: algorithm of Collatz, halting property, Collatz tree,calculus of programs.
11 August 2023
Contents
1 Introduction ..... 2
2 Collatz tree ..... 6
3 Four algorithms, relatives of Cl algorithm ..... 9
3.1 Hotel Collatz ..... 16
4 On finite and infinite computations of Collatz algorithm ..... 17
4.1 Finite computations ..... 17
4.2 Infinite computations ..... 22
4.3 Collatz theorem ..... 23
4.4 A counterexample ..... 24
5 Final remarks ..... 26
5.1 Historical remarks ..... 26
6 Suplements ..... 27
6.1 A structure with counterexamples ..... 27
6.2 Presburger arithmetic ..... 33
6.3 An introduction to calculus of programs $\mathcal{A L}$ ..... 39
6.4 An introduction to algorithmic theory of natural numbers $\mathcal{A T} \mathcal{N}$ ..... 42
6.5 Proof of lemma 4 ..... 43
6.6 Proof of invariant of algorithm $G r 3$ ..... 44
References ..... 46

## 1 Introduction

The $3 x+1$ problem remained open for over 80 years. It has been noticed in 1937 by Lothar Collatz. The problem became quite popular due to its wording, for it is short and easy to comprehend. Collatz remarked that for any given natural number $n>0$, the sequence $\left\{n_{i}\right\}$ defined by the following recurrence

$$
\left.\begin{array}{l}
n_{0}=n \\
n_{i+1}=\left\{\begin{array}{ll}
n_{i} \div 2 & \text { when } n_{i} \text { is even } \\
3 \cdot n_{i}+1 & \text { when } n_{i} \text { is odd }
\end{array} \text { for } i \geq 0\right. \tag{rec1}
\end{array}\right\}
$$

seem always reach the value 1 .

He formulated the following conjecture

$$
\text { for all } n \text { exists } i \text { such that } n_{i}=1 \quad \text { (Collatz conjecture) }
$$

One can give another formulation of the hypothesis of Collatz ${ }^{1}$. The number of papers devoted to the problem surpasses 200, c.f. [Lag10. It is worthwhile to consult social media: wikipedia, youtube

[^0]etc, there you can find some surprising ideas to prove the Collatz hypothesis as well as a technical analysis of the problem.
Computers are used and are still crunching numbers in the search of an eventual counterexample to the Collatz conjecture. The reports on progress appear each year. We claim that the counterexample approach is pointless, i.e. the computers can be turned off. Namely, we shall prove that the program that searches a counterexample will never stop.
Our goal will be achieved if we prove that for each number $n$ the computation of the following $C l$ algorithm is finite.
\[

C l:\left\{$$
\begin{array}{l}
\text { while } n \neq 1 \text { do } \\
\text { if } \operatorname{even}(n) \text { then } n:=n \div 2 \text { else } n:=3 n+1 \mathbf{f i} \\
\text { od }
\end{array}
$$\right\}
\]

One needs

- a formula $\Theta_{C l}$ such that it expresses the termination property of program $C l$,
- a verifiable proof $\Pi$ of the formula and
- a definition of relation $\mathcal{C}$ of deducibility.

Ah, we need also a specification of the domain in which the algorithm is to be executed, i.e. the axioms $\mathcal{A} x$ of the algebraic structure of natural numbers.

Question 1. How to express the termination property of a program $K$ as a formula $\Theta_{K}$ (i.e. a Boolean expression)?
Note, there is no a universal algorithm that expresses the halting property of a given program $K$ by an appropriate first-order logical formula $\Theta_{K}$. First, let us recall the theorem on incompleteness of arithmetics, cf. Kurt Gödel . According to Gödel, the property to be a natural number is not expressible by any set of first-order formulas. The reader may wish to note, that halting property of the algoritm

$$
q:=0 ; \text { while } q \neq n \text { do } q:=q+1 \text { od }
$$

is valid in a data structure iff $n$ is a standard (i.e. reachable) natural number. Therefore the halting property allow to define the set of natural numbers. In this situation it seems natural to pass from first-order language to another more expressive language. There are three candidates: $1^{\circ}$ a second-order language admitting variables and quantifiers over sets, $2^{\circ}$ the language of infinte disjunctions and conjunctions $\mathcal{L}_{\omega_{1} \omega}$ and $3^{\circ}$ language of algorithmic logic. Problem with second order logic is in lack of adequate definition of consequence operation. True, we can limit our considerations to the case of finite sets (aka, weak second order logic). Still we do not know a complete set of axioms and inference rules for the weak secondorder logic. Applying second-order logic to program analysis results in a heavy overhead. Because first you have to translate the semantic property of the program into a property of a certain sequence or set. prove this property and make a backward translation. The question of whether this approach is acceptable to software engineers seems to be appropriate.
The language of infinite disjunctions and conjunctions is not an acceptable tool for software engeeners.

We shall use the language and the consequence operation offered by algorithmic logic i.e. calculus of programs. We enlarge the set of well formed expressions: beside terms and formulas of first order language we accept algorithms and we modify the definition of logical formulas. The simplest algorithmic formulas are of the form: $\langle$ algorithm $\rangle\langle$ formula $\rangle$.
As an example of an algorithmic formula consider the expression

$$
\forall_{n}\{q:=0 ; \text { while } q \neq n \text { do } q:=q+1 \text { od }\}(n=q)
$$

The latter formula is valid iff every element $n$ can be reached from 0 by adding 1 .

Now our goal is to prove the following formula

$$
\forall_{n}\left\{\begin{array}{l}
\text { while } n \neq 1 \text { do }  \tag{1}\\
\text { if } \operatorname{even}(n) \text { then } n:=n \div 2 \\
\text { else } n:=3 n+1 \mathbf{f i} \\
\text { od }
\end{array}\right\}(n=1)
$$

from the axioms of algorithmic theory of natural numbers $\mathcal{A T} \mathcal{N}$, c.f. subsection 6.4. For the formula (1) expresses the termination property of program $C l$.
Question 2. How to prove such algorithmic formula?
Note, all structures that assure the validity of axioms of the $\mathcal{A T} \mathcal{N}$ theory are isomorphic (this is the categoricity meta-theorem). Therefore, the termination formula, can be either proved (with the inference rules and axioms of calculus of programs $\mathcal{A L}$, or validated in this unique model of axioms of $\mathcal{A T \mathcal { N }}$.
Let us make a simple observation. The computation of Collatz algorithm if succesful goes through intermediate values. The following diagram (Dg) illustrates a computation where all odd numbers were exposed as stacked fractions.

$$
\begin{equation*}
n \rightarrow \frac{n}{2^{k_{0}}} \rightarrow \frac{3 *\left(\frac{n}{2^{k_{0}}}\right)+1}{2^{k_{1}}} \rightarrow \frac{3 * \frac{3 * \frac{n}{2^{k_{0}}}+1}{2^{k_{1}}}+1}{2^{k_{2}}} \cdots \rightarrow \frac{3 \cdot \frac{3 \cdot \frac{3 \cdot \frac{3 \cdot \frac{n}{2^{k_{0}}+1}}{2^{k_{1}}+1} 2^{2^{k_{2}}}+1}{(\ldots)}}{2^{k_{x-1}}+1}}{2^{k_{x}}}+1 / \tag{Dg}
\end{equation*}
$$

where $k_{0}=\operatorname{expo}(n, 2), k_{1}=\operatorname{expo}\left(3 \cdot \frac{n}{2^{k_{0}}}+1,2\right), k_{2}=\operatorname{expo}(3 *$ $\left.\frac{\left(3 \cdot \frac{n}{2^{k_{0}}}+1\right)}{2^{k_{1}}}+1,2\right), \ldots 2$. In our earlier paper [MS21] we studied the halting formula of the Collatz algorithm. We remarked that the computation of Collatz algorithm is finite iff there exist three natural numbers $x, y, z$ such that:
a) the equation $n \cdot 3^{x}+y=2^{z}$ is satisfied and

[^1]b) the computation of another algorithm $I C$, cf. page 19, is finite, the algorithm computes on triples $\langle x, y, z\rangle$.
It is worthwhile to mention that the subsequent triples are decreasing during computation.
The proof we wrote there MS21 is overly complicated.
Here we show that the 4 -argument relation
$$
\{n, x, y, z\}:\{I C\}(\text { true }) .
$$
is elementary recursive, since it may be expressed by an arihmetic expression with operator $\Sigma$.
The present paper shows arguments simpler and easier to follow.

## 2 Collatz tree

Definition 1 Collatz tree $\mathcal{D C}$ is a subset $D \subset N$ of the set $N$ of natural numbers and the function $f$ defined on the set $D \backslash\{0,1\}$.

$$
\mathcal{D C}=\langle D, f\rangle
$$

where $D \subset N, 1 \in D, f: D \backslash\{0,1\} \rightarrow D$.
Function $f$ is determined as follows

$$
f(n)=\left\{\begin{array}{lll}
n \div 2 & \text { when } n & \bmod 2=0 \\
3 n+1 & \text { when } n & \bmod 2=1
\end{array}\right.
$$

, the set $D$ is the least set containing the number 1 and closed with respect to the function $f$,

$$
D=\left\{n \in N: \exists_{i \in N} f^{i}(n)=1\right\} .
$$

As it is easy to see, this definition is highly entangled and the decision whether the set $D$ contains every natural number is equivalent to the Collatz problem.

Remark 2 Set $D$ has the following properties :

$$
\begin{array}{r}
x \in D \Longrightarrow(x+x) \in D \\
\left(x \in D \Longrightarrow\left(\exists_{y} x=y+y \Longrightarrow y \in D\right)\right) \\
\left(x \in D \Longrightarrow\left(\exists_{y} x=y+y+1 \Longrightarrow(x+x+x+1) \in D\right)\right) \\
\left(x \in D \Longrightarrow\left(\exists_{e} \exists_{z} e=z+z+1 \wedge x=e+e+e+1 \Longrightarrow e \in D\right)\right) \tag{5}
\end{array}
$$

Implications (2) and (5) show left and right son of element $x$.

Conjecture 3 The Collatz tree contains all the reachable natural numbers.


Fig. 1. A fragment of Collatz tree, levels 4-15. It does not include levels $0-3$, they consist of elements $1-2-4-8-$.

## 3 Four algorithms, relatives of Cl algorithm

In this section we present an algorithm $G r$ equivalent to the algorithm $C l$ and three algorithms $G r 1, G r 2, G r 3$ that are successive extensions of the $G r$ algorithm.

Lemma 4 The following algorithm $G r$ is equivalent to Collatz algorithm Cl.

```
    while even( \(n\) ) do \(n:=n \div 2\) od;
    while \(n \neq 1\) do
        \(\mathrm{n}:=3^{*} \mathrm{n}+1\);
    while even( \(n\) ) do \(n:=n \div 2\) od
od ;
```

Proof. The equivalence of the algorithms $C l$ and $G r$ is intuitive. Compare the recurrence of Collatz (rec1) and the following recurrence (rec2) that is calculated by the algorithm $G r$.

$$
\left.\begin{array}{rl}
k_{0}=\operatorname{expo}(n, 2) & \wedge m_{0}=\frac{n}{2^{k_{0}}} \\
k_{i+1}=\operatorname{expo}\left(3 m_{i}+1,2\right) & \wedge m_{i+1}=\frac{3 m_{i+1}}{2^{k_{i+1}}}
\end{array} \quad \text { for } i \geq 0\right\}(\mathrm{rec} 2)
$$

One can say the algorithm $G r$ is obtained by the elimination of if instruction from the $C l$ algorithm. However, construction of a formal proof is a non-obvious task. A sketch of a proof is given in subsection 6.5 We are encouraging the reader to fill the details.

Next, we present the algorithm $G r 1$, an extension of algorithm $G r$.

```
    var \(\mathrm{n}, l, i\) :integer ; \(k, m\) :arrayof integer;
            \(\Gamma_{1}: \quad \begin{aligned} & i:=0 ; l:=0 ; \\ & \text { while even }(\mathrm{n}) \text { do } \mathrm{n}:=\mathrm{n} \div 2 ; l:=l+1 \text { od } ; k_{i}:=l ; m_{i}:=\mathrm{n}:\end{aligned}\)
while \(n \neq 1\) do
Gr1:
    \(\Delta_{1}:\)\begin{tabular}{|l|}
\(\begin{array}{l}\left\{m_{i}=\mathrm{n}\right\} \quad \mathrm{n}:=3^{*} \mathrm{n}+1 ; \quad l:=0 ; \\
\text { while even(n) do } \mathrm{n}:=\mathrm{n} \div 2 ; l:=l+\operatorname{1od} ; k_{i+1}:=l ; m_{i+1}:=\mathrm{n} ; \\
\left\{m_{i+1}=\frac{3 \cdot m_{i}+1}{2^{K_{i}}} \wedge k_{i+1}=\exp \left(3 * m_{i}+1,2\right)\right\} \quad i:=i+1\end{array}\) \\
\hline
\end{tabular}
od
```

Lemma 5 Algorithm Gr1 has the following properties:
(i) Algorithms Gr and Gr1 are equivalent with respect to the halting property.
(ii) The sequences $\left\{m_{i}\right\}$ and $\left\{k_{i}\right\}$ calculated by the algorithm $G r 1$ satisfy the recurrence rec2.

Proof. Both statements are very intuitive. Algorithm $G r 1$ is an extension of algorithm $G r$. The inserted instructions do not interfere with the halting property of algorithm $G r 1$. Second part of the lemma follows easily from the remark that $k_{0}=\exp (\mathrm{n}, 2)$ and $m_{0}=\frac{n}{2^{k_{0}}}$ and that for all $i>0$ we have $k_{i+1}=\exp \left(3 * m_{i}+1,2\right)$ and $m_{i+1}=\frac{3 \cdot m_{i}+1}{2^{k_{i+1}}}$.
Each odd number $m$ in Collatz tree, $m \in D$, initializes a new branch. Let us give a color number $x+1$ to each new branch emanating from a branch with color number $x$. Note, for every natural numberp the set of branches of the color $p$ is infinite. Let $W_{x}$ denote the set of natural numbers that obtained the color $x$.
Besides the levels of Collatz tree, one can distinguish the structure of strata in the tree.

Definition 6 Inductive definition of strata.

$$
\begin{gather*}
W_{0} \stackrel{\text { df }}{=}\left\{n \in N: n=2^{\text {expo }(n, 2)}\right\}  \tag{W0}\\
W_{x+1} \stackrel{d f}{=}\left\{n \in N: \exists_{m \in W_{x}}\left(3 \cdot \frac{n}{2^{e x p o(n, 2)}}+1=m\right)\right\} \tag{Wx+1}
\end{gather*}
$$

A couple of observations will be used in the sequel.
Remark 7 Among properties of sets $W_{i}$ we find
(1) Each set $W_{i}$ is infinite. If it contains a number $n$ then the number $2 n \in W_{i}$.
(2) The set $W_{0}$ contains one odd number 1. All other sets contain infinitely many odd numbers. For if $a=2 j+1$ and $a \in W_{i}$ then $4 a+1 \in W_{i}$.
(3) We define the function $f: N \rightarrow N$ as follow: $f(n)= \begin{cases}n \div 2 & \text { when } n \text { is even } \\ 3 n+1 & \text { when } n \text { is odd } n \neq 1 \\ \text { undefined } & \text { when } n=1\end{cases}$
(4) Let $x>0$ be a natural number. Let the sequence $\left\{o_{j}\right\}_{i \in N}$ contain all odd numbers that are in the set $W_{x}$. Let $S_{o_{j}}=\left\{2^{i} \cdot o_{j}\right\}$ be the set. Every set $W_{x}$ may be partitioned as follow $W_{x}=\bigcup_{j=0}^{\infty} S_{o_{j}}$. If $j \neq j^{\prime}$ then $S_{o_{j}} \cap S_{o_{j^{\prime}}}=\emptyset$
(5) For every $i, j \in N a t$ if $i \neq j$ then $W_{i} \cap W_{j}=\emptyset$.
(6) For every $n, j \in N$ at if $n \in W_{j} \wedge j>1 \wedge n \bmod 2=1$ then $3 n+1 \in W_{j-1}$.
(7) The sequence of sets $\left\{\bigcup_{i=0}^{j} W_{i}\right\}_{j \in N}$ is monotone, increasing.


Fig. 2. Strata $W_{0}--W_{4}$ of Collatz tree

Let $s$ be a variable not occurring in algorithm Gr1. The following lemma states the partial correctnes of the algorithm $G r 1$ w.r.t. precondition $s=n$ and postcondition $s \in W_{i}$.

Lemma 8 Algorithm Gr1 computes the number $i$ of storey $W_{i}$ of number $n$,

$$
\{G r 1\}(\text { true }) \Longrightarrow\left((s=n) \Longrightarrow\{G r 1\}\left(s \in W_{i}\right)\right)
$$

Next, we present another algorithm $G r 2$ and a lemma.

|  | var | $\mathrm{n}, l, i, x, y, z$ :integer ; $\mathrm{k}, \mathrm{m}$ : arrayof integer; |
| :---: | :---: | :---: |
|  | $\Gamma_{2}$ : | $i:=0 ; l:=0$ <br> while even( n ) do $\mathrm{n}:=\mathrm{n} \div 2 ; l:=l+1$ od; $z, k_{i}:=l ; m_{i}:=\mathrm{n} ; \quad y:=0$ |
| Gr2: |  | e $m_{i} \neq 1$ do |
|  | $\Delta_{2}$ : | $\mathrm{n}:=3^{*} \mathrm{n}+1 ; i:=i+1 ; l:=0 ;$ <br> while even( n ) do $\mathrm{n}:=\mathrm{n} \div 2 ; l:=l+1$ od ; $k_{i}:=l ; m_{i}:=\mathrm{n} ; z:=z+k_{i} ; y:=3 * y+2^{z} ; x:=i$ |
|  | od |  |

Lemma 9 Algorithm Gr2 has the following properties:
(i) Both algorithms Gr1 and Gr2 are equivalent with respect to the halting property.
(ii) Formula $\varphi$ : $n \cdot 3^{i}+y=m_{i} \cdot 2^{z} \quad$ is an invariant of the program $G r 2$ i.e. the formulas (6) and (7)

$$
\begin{gather*}
\left\{\Gamma_{2}\right\}\left(n \cdot 3^{i}+y=m_{i} \cdot 2^{z}\right)  \tag{6}\\
\left(n \cdot 3^{i}+y=m_{i} \cdot 2^{z}\right) \Longrightarrow\left\{\Delta_{2}\right\}\left(n \cdot 3^{i}+y=m_{i} \cdot 2^{z}\right) \tag{7}
\end{gather*}
$$

are theorems of the algorithmic theory of numbers $\mathcal{A T \mathcal { N }}$.
Proof. Proofs of these formulas are easy, it suffices to apply the axiom of assignment instruction $A x_{18}$,


Fig. 3. Tree of triples (levels $4-15$ )

Subsequent algorithm $G r 3$ exposes the history of the calculations of $x, y, z$.

```
var n, \(i\), aux : integer ; \(k, m, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\) : arrayof integer;
    \(\Gamma_{3}: i:=0 ; k_{i}:=\exp (\mathrm{n}, 2) ; m_{i}:=\frac{\mathrm{n}}{2^{k_{i}}} ; Z_{i}:=k_{0} ; Y_{i}, X_{i}:=0 ;\)
while \(n \cdot 3^{i}+Y_{i} \neq 2^{Z_{i}}\) do
        aux: \(=3^{*} m_{i}+1\);
        \(i:=i+1\);
        \(k_{i}:=\exp (\) aux, 2\() ; m_{i}:=\operatorname{aux} / 2^{k_{i}}\);
        \(Y_{i}:=3 Y_{i-1}+2^{Z_{i-1}} ; Z_{i}:=Z_{i-1}+k_{i} ; X_{i}:=i ;\)
od
```

See some properties of the algorithm $G r 3$.
Lemma 10 Both algorithms $G r 2$ and $G r 3$ are equivalent with respect to the halting property.
For every element $n$ after each $i$-th iteration of algoritm Gr3, the following formulas are satisfied

$$
\begin{array}{ll}
\varphi: n \cdot 3^{i}+Y_{i}=m_{i} \cdot 2^{Z_{i}} & X_{i}=i \\
Z_{i}=\sum_{j=0}^{i} k_{j} & Y_{i}=\sum_{j=0}^{i-1}\left(3^{i-1-j} \cdot 2^{Z_{j}}\right)
\end{array}
$$

where the sequences $\left\{m_{i}\right\}$ and $\left\{k_{i}\right\}$ are determined by the recurrence (rec2).
in other words, the following formula is valid in the structure $\mathfrak{N}$

$$
\mathfrak{N} \models \Gamma_{3} \bigcap\left\{\text { if } m_{i} \neq 1 \text { then } \Delta_{3} \mathbf{f i}\right\} \varphi
$$

Remark 11 Hence, for every element $n$ algorithm Gr3 calculates an increasing, monotone sequence of triples $\left\langle i\left(=X_{i}\right), Y_{i}, Z_{i}\right\rangle$.

Remark 12 We can say informally that the algorithm Gr3 performs as follow

$$
\begin{aligned}
& i:=0 ; \\
& \text { while } n \notin W_{i} \text { do } i:=i+1 \text { od }
\end{aligned}
$$

Note, $\left\{G r_{3}\right\}\left(n \in W_{i}\right)$

Hotel contains rooms of any natural number. Let $n=2^{i} \cdot(2 j+1)$. It means that the room number $n$ is located in tower number $j$ on the floor number $i$. Each tower is equipped with an elevator (shown as a green line). Moreover, each tower is connected to another by a staircaise that connects numbers $k=2 j+1$ and $3 k+1$. This is shown as a red arrow $\overrightarrow{\langle k, 3 k+1\rangle}$.


Fig. 4. Hotel Collatz

Definition 13 (Hotel Collatz) The graph $H C=\langle V, E\rangle$ is defined as follows
$V=N \quad$ i.e. the set of vertices is the set of standard, reachable, natural numbers

$$
E=\left\{\overrightarrow{\langle k, p\rangle}: \exists_{p} k=p+p\right\} \cup\left\{\overrightarrow{\langle k, 3 k+1\rangle}: \exists_{p} k=p+p+1\right\}
$$

are edges of the graph


#### Abstract

Note. Don't forget, our drawing is only a small fragment of the infinite HC structure. The picture shows a small part of red arrows. We drew only those red arrows that fit entirely on a page.


Conjecture 14 The hotel Collatz is an infinite, connected, acyclic graph, i.e. it is a tree. Number 1 is the root of the tree.

Making use of the definition 6 one can formulate the following
Conjecture 15 The set $\bar{W} \stackrel{d f}{=} \bigcup_{x \in N} W_{x}$ is a partition of the set $N$ of nodes of Hotel Collatz.

## 4 On finite and infinite computations of Collatz algorithm

Question Can some computation contain both reachable and unreachable elements?

No. The subset of reachable elements is closed with respect of division by 2 and multiplication by 3 . The same observation applies to the set of unreachable elements. We know, cf. subsection 6.1 that computations of nonreachable elements are infinite.

### 4.1 Finite computations

Let $\mathfrak{M}=\langle M ; 0,1,+,=\rangle$ be any algebraic structure that is a model of elementary theory of addition of natural numbers, c.f. subsection 6.2 .

Denotation. Let $\theta(x, y)$ be a formula. The expression $(\mu x) \theta(x, y)$ denotes the least element $x(y)$ such that the value of the formula is truth.

EXAMPLE. $(\mu x)(x+x>y)$.
The following lemma gathers the facts established earlier.
Lemma 16 Let $n$ be an arbitrary element of the structure $\mathfrak{M}$. The following conditions are equivalent
(i) The sequence $n_{0}=n$ and $n_{i+1}= \begin{cases}n_{i} \div 2 & \text { when } n_{i} \bmod 2=0 \\ 3 n_{i}+1 & \text { when } n_{i} \bmod 2=1\end{cases}$ determined by
the recurrence $\sqrt{\text { rec1 contains an element } n_{j}=1}$
(ii) The computation of the algorithm $C l$ is finite.
(iii) The sequence $m_{0}=\frac{n}{2^{k_{0}}}$ and $m_{i+1}=\frac{3 m_{i}+1}{2^{k_{i}}}$ determined by the recurrence (rec2) stabilizes, i.e. there exist l such that $m_{k}=1$ for all $k>l$
(iv) The computation of the algorithm Gr is finite.
(v) The computation of the algorithm Gr1 is finite and the subsequent values of the variables $M_{i}$ and $K_{i}$ satisfy the recurrence (rec2).
(vi) The computation of the algorithm Gr2 is finite and the subsequent values of the variables $m_{i}$ and $k_{i}$ satisfy the recurrence (rec2). The formula $n \cdot 3^{x}+y=m_{i} \cdot 2^{z}$ holds after each iteration of while instruction, i.e. it is the invariant of the program $\Delta_{2}$. The final valuation of variables $x, y, z$ and $n$ satisfies the equation $n \cdot 3^{x}+y=2^{z}$.
(vii) The computation of the algorithm Gr3 is finite.

The subsequent values of the variables $m_{i}$ and $k_{i}$ satisfy the recurrence (rec2).
The subsequent values of the variables $X_{i}, Y_{i}, Z_{i}$ form a monotone, increasing sequence of triples.
The formula $n \cdot 3^{X_{i}}+Y_{i}=m_{i} \cdot 2^{Z_{i}}$ is satisfied after each $i$-th iteration of the program $G r 3$, i.e. the value of the following exression $\left\{\Gamma_{3} ; \Delta_{3}^{i}\right\}\left(X_{i}+Z_{i}\right)$ is the total number of operations excuted. The value of the variable $Y_{i}$ encodes the history of the computation till the $i$-th iteration of $\Delta_{3}$

Suppose that for a given element $n$ the computationof algorithm $G r 2$ is finite.

Let $\bar{x}=(\mu x)\left(n \cdot 3^{x}+\left[\sum_{j=0}^{x-1}\left(3^{x-1-j} \cdot 2^{\sum_{l=0}^{j} k_{l}}\right)\right]=2^{\sum_{j=0}^{x} k_{j}}\right)$. Put $\bar{y}=$ $\sum_{j=0}^{\bar{x}-1}\left(3^{\bar{x}-1-j} \cdot 2^{\sum_{l=0}^{j} k_{l}}\right)$ and $\bar{z}=\sum_{j=0}^{\bar{x}} k_{j}$.
We present the algorithm $I C^{\prime}$, which is a slightly modified version of the algorithm $I C$ devised in [MS21].

$$
I C^{\prime}:\left\{\begin{array}{l}
\text { var } \mathrm{x}, \mathrm{y}, \mathrm{z}, k: \text { integer, Err : Boolean; }  \tag{IC'}\\
\text { Err }:=\text { false; } \\
\text { while } \mathrm{x}+\mathrm{y}+\mathrm{z} \neq 0 \text { do } \\
\operatorname{Tr}: \begin{array}{l}
\text { if }\left(\text { odd }(\mathrm{y}) \wedge\left((\mathrm{x}=0) \vee\left(\mathrm{y}<3^{\mathrm{x}-1}\right)\right)\right) \\
\text { then Err }:=\text { true } ; \text { exit } \\
\mathrm{f} ; \\
\mathrm{x}:=\mathrm{x}-1 ; \mathrm{y}:=\mathrm{y}-3^{\mathrm{x}} ; k:=\operatorname{expo}(\mathrm{y}, 2) ; \\
\mathrm{y}:=\frac{\mathrm{y}}{2^{k}} ; \mathrm{z}:=\mathrm{z}-k ;
\end{array} \\
\text { od }
\end{array}\right\}
$$

We observe the following fact
Lemma 17 For every element $n$

$$
(n=b) \wedge\{G r 2\}\left(\left((x=\bar{x} \wedge y=\bar{y} \wedge z=\bar{z}) \wedge\left(b \cdot 3^{\bar{x}}+\bar{y}=2^{\bar{z}}\right)\right) \Rightarrow\left\{I C^{\prime}\right\}(x=y=z=0)\right)
$$

and

$$
\begin{aligned}
& \left.(x=\bar{x} \wedge y=\bar{y} \wedge z=\bar{z}) \wedge\left(b \cdot 3^{\bar{x}}+\bar{y}=2^{\bar{z}}\right)\right) \wedge \\
& \left(\left\{I C^{\prime}\right\}(x=y=z=0) \Longrightarrow(n=b) \Longrightarrow\{G r 2\}(x=\bar{x} \wedge y=\bar{y} \wedge z=\bar{z})\right)
\end{aligned}
$$

The contents of this lemma are best explained by the commutativity of the diagram below.


Proof. The proof makes use of two facts:

1) $\quad \operatorname{even}(n) \equiv \operatorname{even}\left(\sum_{j=0}^{x-1}\left(3^{x-1-j} \cdot 2^{\sum_{l=0}^{j} k_{l}}\right)\right)$
2) $\sum_{j=0}^{x-1}\left(3^{x-1-j} \cdot 2^{\sum_{l=0}^{j} k_{l}}\right)=2^{k_{0}} \cdot\left(3^{x-1}+2^{k_{1}} \cdot\left(3^{x-2}+2^{k_{2}} \cdot\left(\cdots+2^{k_{x}} \cdot 3^{0}\right)\right)\right)$

One can prove this lemma by induction w.r.t. number of encountered odd numbers.
The thesis of the lemma is very intuitive. Look at the Collatz hotel Fig. 4. The lemma states that for every room number $n$ the two conditions are equivalent (1) there is a path from room number $n$ to the exit, which is located near room number 1, (2) there is a path from entry to the hotel near room number 1 to the room number $n$. It is clear that such a path must be complete, no jumps are allowed.

Lemma 18 For every element $n$ the following conditions are equivalent
(i) computation of Collatz algorithm Cl is finite,
(ii) there exists the LEAST element $x$ such that the following equality holds

$$
\begin{equation*}
n \cdot 3^{x}+\left(\sum_{j=0}^{x-1} 3^{x-1-j} \cdot 2^{\sum_{l=0}^{j} k_{l}}\right)=2^{\sum_{j=0}^{x} k_{j}} . \tag{Mx}
\end{equation*}
$$

where the sequence $\left\{k_{i}\right\}$ is determined by the element $n$ in accordance to the recurrence rec2.).
Proof. The implication $(i) \Rightarrow(i i)$ follows from lemma 16(vii). Consider the inverse implication $(i i) \Rightarrow(i)$. If (ii) holds, then the computation of program $G r_{3}$ reaches 1 after $x$-th iteration of internal instruction $\Delta_{3}$. The value of $m_{x}$ is then 1 . The computation performs $x$ nultiplications and $z=\sum_{j=0}^{x} k_{j}$ divisions.

The value of $y=\left(\sum_{j=0}^{x-1}\left(3^{x-1-j} \cdot 2^{\sum_{l=0}^{j} k_{l}}\right)\right)$ codes the history of the computation.
Which means: $x_{0}$ is the number of multiplication by $3, z=\sum_{j=0}^{x} k_{j}$ is the total number of divisions by 2 and for every $0 \leq j \leq x-1$ the number $k_{j}$ is the number of divisions by 2 excuted in between the $j$-th and $j+1$-th execution of multiplication by 3 .
The algorithm $C l$ executes $x+z$ iterations.
Remark 19 Let $n$ be a reachable natural number. The least triple $\langle x, y, z\rangle$ such that $n \cdot 3^{x}+y=2^{z}$ is greater than $\left\langle 0,2^{[\log n\rceil+1}-\right.$ $n,\lceil\log n\rceil+1\rangle$.

The lemma 18 gives the halting formula i.e. a satisfactory and necessary condition for the computation of the Collatz program to be finite.
We shall summarize the considerations on finite computations in the following commutative diagram.


Fig. 5. Case of finite computation illustrated
Upper row, (with red arrows) represents computation of $G r 1$,
elements $k_{i}$ and $m_{i}$ are calculated in accordance with the recurrence (rec2)
rows 1 and 2 show computation of $G r 3$, the subsequent triples are $X_{i+1}=i+1, Y_{i+1}=3 Y_{i}+2_{i}^{Z}, Z_{i+1}=Z_{i}+k_{i}$
third row (blue arrows) shows computation of algorithm $I C$ on triples, $\bar{Y}_{x}=Y_{x}$ and $\bar{Z}_{x}=Z_{x}$ and for $i=x, \ldots, 1$ we have $\bar{Z}_{i-1}=\bar{Z}_{i}-k_{i}$ and $\bar{Y}_{i-1}=\left(\bar{Y}_{i} / 2^{k_{i}}\right)-3^{i-1}$

### 4.2 Infinite computations

Do infinite computations exist?
There are two answers yes and no.
Yes Imagine your computer is (maliciously) handled by a hacker. It can be done by preparing its hardware or software (e.g. someone modifies the class Int in Java). To hide the damage from the user, the hacker may come with a correct proof that all axioms of natural numbers (e.g. of Presburger's system) are valid. Yet, an execution of the Collatz algorithm for some $n$, will not necessarily terminate. See subsections 4.4 and 6.1.
No If argument of Collatz procedure is a standard (i.e. reachable) natural number then the computation is finite.
We shall use the properties of strata, see definition 6, and remark 7. A look on figures 2 and 4 may help.

Lemma 20 If $n \neq 0$ is a standard, reachable natural number then the Collatz computation starting with $n$ is finite.

Proof. A) (There is no cycle.)
Suppose that for a certain element $n$ the Collatz computation contains a cycle $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{q}=b_{1}\right)$. Consider the subsequence $\vec{a}=\left(a_{1}, \ldots, a_{k}\right)$ of $\vec{b}$ that results by throwing off all even numbers $b_{i}$. For every $1 \leq i<k$ we have $a_{i+1}=\frac{3 a_{i}+1}{2^{2 x p o}\left(3 a_{i}+1,2\right)}$. From the definition 6 of strata we have: $1^{\circ}$ every number $n \in N$ belongs to certain set $W_{j}$ and $2^{\circ}$ if $a_{i} \in W_{j}$ then $a_{i+1} \in W_{j-1} .3^{\circ}$ The strata of

different indices are disjoint $x \neq y \Longrightarrow W_{x} \cap W_{y}=\emptyset$. Therefore for every number $n \in N$ its Collatz computation is cycle-free.
B) (There is no unboud infinite computation.)

Let $\widehat{W}_{j} \stackrel{d f}{=} \bigcup_{i=0}^{j} W_{i}$ be the union of consecutive strata $W_{i}$, where $1 \leq$ $i \leq j$.

Let $M g(j) \stackrel{d f}{=}(\mu x)\left\{x+1 \notin \widehat{W}_{j}\right\}$ i.e. $x$ is the biggest number in the initial segment of the set $\widehat{W}_{j}$ that contains all numbers $0, \ldots, x$. It means that

$$
\forall_{m \leq M g(j)} m \in \widehat{W}_{j}
$$

Consider the sequence $\left\{\widehat{W}_{j}\right\}_{j \in N a t}$ of sets $\widehat{W}_{j}$. The sequence of numbers $M g(j)$ is monotone, non-decreasing.

$$
\forall_{j} M g(j) \leq M g(j+1)
$$

Example. The table below shows a couple of values of the function $M g_{j}$

| j | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\min \left(W_{j}\right)$ | 1 | 5 | 3 | 17 | 11 | 7 | 9 | 61 | $?$ | $?$ |
| $M g(j)$ | 2 | 2 | 6 | 6 | 6 | 8 | 14 | 14 | 14 | 14 |

Obviously, for every natural number $n$ there is number $j$ such that $n<M g(j)$, hence $n \in \widehat{W}_{j}$. This proves that for every natural number $n$ its Collatz computation is finite.

We can state the same fact in another way, if there is unbound infinite computation for a number $n$ then for every natural number $j$ the inequality $n>M g(j)$ holds.
This happens only if $n$ is a non-reachable element of the structure $\mathfrak{M}$ that is a non-standard model of Presburger theory of addition of natural numbers, c.f. the subsection 4.4.

### 4.3 Collatz theorem

Till now we proved that Collatz conjecture is valid in the structure $\mathfrak{N}$ of standard (reachable) natural numbers.

Lemma 21 Let $n$ be any standard element od the structure $\mathfrak{N}$. The computation of Collatz algorithm $C l$ that begins with $n$ is finite.

Proof. The proof follows immediately from the lemmas 18 and 20 .

Corollary 22 Conjectures 3 , 14 and 15 formulated above are valid statements.

Now, making use of the completeness theorem of calculus of programs we argue that the terminatiom formula of the Collatz algorithm possedes a proof in the algorithmic theory of natural numbers $\mathcal{A T} \mathcal{N}$.
Let $\Theta_{C L}$ be the following formula of $\mathcal{A T} \mathcal{N}$

$$
\underbrace{\{n:=1\} \bigcap\{n:=n+1\}}_{\forall_{n \in N, n \geq 1}} \bigcup\left\{\begin{array}{c}
\text { if } n \neq 1 \text { then } \\
\text { if } \operatorname{odd}(n) \text { then } \\
n:=3 * n+1 \\
\text { else } \\
n:=n \div 2 \\
\text { fi } \\
\text { fi }
\end{array}\right\}(n=1) \quad\left(\Theta_{C L}\right)
$$

The formula expresses the termination property of Collatz algorithm. The lemma 21 states that the formula $\Theta_{C L}$ is valid in the standard model $\mathfrak{N}$.

Theorem 23 The formula $\Theta_{C L}$ is a theorem of the theory $\mathcal{A T \mathcal { N }}$.
Proof. Recall that the $\mathcal{A T} \mathcal{N}$ theory is categorical. It means that every model of this theory is isomorphic to the standard model $\mathfrak{N}$. The sentence $\Theta_{C L}$ is valid in $\mathfrak{N}$, i.e. in every model of $\mathcal{A} \mathcal{T} \mathcal{N}$. By the completeness property of the calculus of programs, the theory contains the proof of the sentence $\Theta_{C L}$.

### 4.4 A counterexample

We argue, that the formulation of the Collatz problem requires more precision. For there are several algebraic structures that can be viewed as structure of natural numbers of addition. Some of them admit infinite computations of Collatz algorithm.
We recall less known fact: arithmetic (i.e. first-order theory of natural numbers) has standard (Archimedean) model $\mathfrak{N}$ as well as
another non-Archimedean model $\mathfrak{M}$. The latter structure allows for the existence of infinitely great elements.
Goedel's incompleteness theorem shows that there is no elementary theory $T$ of natural numbers, such that every model is isomorphic to the standard model.
Two things are missing from the commonly accepted texts: 1) What do we mean by proof? 2) what properties of natural numbers can be used in the proof? We recall an algebraic structure $\mathfrak{M}$ that models Grz71] all axioms of elementary theory of addition of natural numbers, yet it admits unreachable elements [Tar34]. It means that the model contains element $\varepsilon$, such that the computation of Collatz algorithm that starts with $\varepsilon$ is infinite.
Example of a finite execution

Example of an infinite execution

As you can guess, the data structure contains pairs $\langle k, w\rangle$ where $k$ is an integer and $w$ is a non-negative, rational number. The addition operation is defined componentwise. A pair $\langle k, w\rangle$ divided by 2 returns $\langle k \div 2, w \div 2\rangle$.
The reader may prefer to think of complex numbers instead of pairs, e.g. $\left(2+\frac{9}{128} i\right)$ may replace the pair $\left\langle 2, \frac{9}{128}\right\rangle$.
The following observation seems to be of importance:.

Remark 24 There exists an infinite computation cof Collatz algorithm in the structure $\mathfrak{M}$, such that the computation $\mathbf{c}$ does not contain a cycle, and the sequence of pairs is not diverging into still growing pairs. The latter means, that there exist two numbers $l_{1} \in \mathcal{Z}$ and $l_{2} \in \mathcal{Q}$, such that for every step $\langle k, v\rangle$ of computation $\mathbf{c}$, the inequalities hold $k<l_{1} \wedge v<l_{2}$.

More details can be found in subsection 6.1.

[^2]
## 5 Final remarks

The contribution presented here leaves some open questions: first of all the cost of the algorithm $C l$ remains to be estimated. The lower bound is obviously $O(x+z)$. A tight upper bound remains to be found .
Another goal, that will take more time, is to write a complete syntactical (i.e. free of any semantical considerations, like studies of computation ) proof of Collatz theorem. We expect that the proof will pass the checking by a proof-checker proper for calculus of programs $\mathcal{A L} \mathbb{4}^{4}$. The subsections 6.5 and 6.6 contribute to this work.

### 5.1 Historical remarks

Pàl Erdês said on Collatz conjecture: "Mathematics may not be ready for such problems."
We disagree. In our opinion a consortium of Alfred Tarski, Kurt Goedel and Stephen C. Kleene was able to solve the Collatz conjecture in 1937.

- Mojżesz Presburger has proved the completeness and decidability of arithmetic of addition of natural numbers in 1929.
- In the same year Stanisław Jaśkowski found a non-standard model of Presburger theory (see a note of A. Tarski of 1934).
- Kurt Gödel (1931) published his theorem on incompleteness of Peano's theory. His result is of logic, not an arithmetic fact.
- Thoralf Skolem (in 1934) wrote a paper on the non-characterization of the series of numbers by means of a finite or countably infinite number of statements with exclusively individual variables [Sko34]
Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich

[^3]oder abzählbar unendlich vieler Aussagen mit ausschließlich Zahlenvariablen, Fundamenta Mathematicae, ,23,1, 150-161, http: //matwbn.icm.edu.pl/ksiazki/fm/fm23/fm23115.pdf

- Stephen C. Kleene has shown (in 1936) that any recurrence that defines a computable function can be replaced by the operation of effective minimum (nowadays one can say every recursive function in the integers, is programmable by means of while instruction).
- Summing up, it seems that P. Erdés overlooked the computability theory, his colleagues - professors Rozsa Peter and Laszlo Kalmar (specialists in the theory of recursive functions) were able to point it out to him.

Andrzej Mostowski had a hope that many arithmetic theorems independent of the Peano axioms should be found. Collatz theorem is an example. The theorem on termination of Euclid's algorithm is another example of a theorem which is valid and unprovable in Peano theory. The law of Archimedes is yet another example. Note, both theorems need to be stated as algorithmic formulas, there is no first-order formula that expresess the termination property of Euclid's algorithm or law of Archimedes.

## Acknowlegments

## 6 Suplements

For the reader's convenience, in this section we have included some definitions, some useful theorems, and samples of proofs in algorithmic natural number theory.

### 6.1 A structure with counterexamples

Here we present some facts that are less known to the IT community.
These facts may seem strange. The reader may doubt the importance of those facts. Yet, it is worth considering, non-standard data structures do exist, and this fact has ramifications. Strange as they seem, still it is worthwhile to be aware of their existence.
Now, we will expose the algebraic structure $\mathfrak{M}$, which is a model of the theory $A r$, i.e. all axioms of theory $A r$ are true in the structure $\mathfrak{M}$. First we will describe this structure as mathematicians do, then we will write a class (i.e. a program module) implementing this structure.

Mathematical description of the structure
$\mathfrak{M}$ is an algebraic structure

$$
\begin{equation*}
\mathfrak{M}=\langle M ; \underline{\mathbf{0}}, \underline{\mathbf{1}}, \oplus ;=\rangle \tag{NonStandard}
\end{equation*}
$$

such that $M$ is a set of complex numbers $k+\imath w$, i.e. of pairs $\langle k, w\rangle$, where element $k \in \mathbb{Z}$ is an integer, and element $w \in \mathbb{Q}^{+}$is a rational, non-negative number $w \geq 0$ and the following requirements are satisfied:
(i) for each element $k+\imath w$ if $w=0$ then $k \geq 0$,
(ii) $\underline{\mathbf{0}} \stackrel{d f}{=}\langle 0+\imath 0\rangle$,
(iii) $\underline{\mathbf{1}} \stackrel{d f}{=}\langle 1 .+\imath 0\rangle$,
(iv) the operation $\oplus$ of addition is determined as usual

$$
(k+\imath w) \oplus\left(k^{\prime}+\imath w^{\prime}\right) \stackrel{d f}{=}\left(k+k^{\prime}\right)+\imath\left(w+w^{\prime}\right) .
$$

$(v)$ the predicate $=$ denotes as usual identity relation.
Lemma 25 The algebraic structure $\mathfrak{M}$ is a model of first-order arithmetic of addition of natural numbers $\mathcal{T}$, cf. next subsection 6.2

The reader may check that every axiom of the $\mathcal{T}$ theory (see definition $32, \mathrm{p}, 33$, is a sentence true in the structure $\mathfrak{M}$.
The substructure $\mathfrak{N} \subset \mathfrak{M}$ composed of only those elements for which $w=0$ is also a model of the theory $\mathcal{T}$.
It is easy to remark that elements of the form $\langle k, 0\rangle$ may be identified with natural numbers $k, k \in N$. Have a look at table 1

The elements of the structure $\mathfrak{N}$ are called reachable, for they enjoy the following algorithmic property

$$
\forall_{n \in N}\{y:=\mathbf{0} ; \text { while } y \neq n \text { do } y:=y+\mathbf{1} \mathbf{o d}\}(y=n)
$$

The structure $\mathfrak{M}$ is not a model of the $\mathcal{A} \mathcal{T} \mathcal{N}$, algorithmic theory of natural numbers, cf . subsection 6.4. Elements of the structure $\langle k, w\rangle$. such as $w \neq \mathbf{0}$ are unreachable. i.e. for each element $x_{0}=$ $\langle k, w\rangle$ such that $w \neq 0$ the following condition holds

$$
\neg\left\{y:=\mathbf{0} ; \text { while } y \neq x_{0} \text { do } y:=y+\mathbf{1} \text { od }\right\}\left(y=x_{0}\right)
$$

The subset $\mathfrak{N} \subset \mathfrak{M}$ composed of only those elements for which $w=0$ is a model of the theory $\mathcal{A T \mathcal { N }}$ c.f. subsection 6.4. The elements of the structure $\mathfrak{N}$ are called reachable. A very important theorem of the foundations of mathematics is

Fact 1 The structures $\mathfrak{N}$ and $\mathfrak{M}$ are not isomorphic. See [Grz71], p. 256.

As we will see in a moment, this fact is also important for IT specialists.

An attempt to visualize structure $\mathfrak{M}$ is presented in the form of table 1. The universe of the structure $\mathfrak{M}$ decomposes onto two disjoint subsets (one green and one red). Every element of the form $\langle k, 0\rangle$ (in this case $k>0$ ) represents the natural number $k$. Such elements are called reachable ones. Note,

Definition 26 An element $n$ is a standard natural number (i.e. is
reachable ) iff the program of adding ones to initial zero terminates

$$
n \in N \stackrel{\text { 所 }}{\Leftrightarrow}\{q:=0 ; \text { while } q \neq n \text { do } q:=q+1 \text { od }\}(q=n)
$$

or, equivalently

$$
n \in N \stackrel{d f}{\Leftrightarrow}\{q:=0\} \bigcup\{\text { if } n \neq q \text { then } q:=q+\mathbf{1} \mathbf{f i}\}(q=n)
$$

Table 1
Model $\mathfrak{M}$ of Presburger arithmetic consists of complex numbers $a+\imath b$ where $b \in Q^{+}$and $a \in Z$, additional condition: $b=0 \Rightarrow a \geq 0$. Definition of order $n>m \stackrel{d f}{\equiv} \exists_{u \neq 0} m+u=n$. Invention of S. Jaśkowski (1929).


Note that the subset that consists of all non-reachable elements is well separated from the subset of reachable elements. Namely, every reachable natural number is less that any unreachable one. Moreover, there is no least element in the set of unreachable elements. I.e. the principle of minimum does not hold in the structure $\mathfrak{M}$.
Moreover, for every element $n$ its computation contains either only standard, reachable numbers or is composed of only unreachable elements. This remark will be of use in our proof.

Remark 27 For every element $n$ the whole Collatz computation is either in green or in reed quadrant of the table 1 .

Elements of the structure $\mathfrak{M}$ are ordered as usual

$$
\forall_{x, y} x<y \stackrel{\text { df }}{=} \exists_{z \neq \mathbf{0}} x+z=y .
$$

Therefore, each reachable element is smaller than every unreachable element.
The order defined in this way is the lexical order. (Given two elements $p$ and $q$, the element lying higher is bigger, if both are of the same height then the element lying on the right is bigger.)
The order type is $\omega+\left(\omega^{*}+\omega\right) \cdot \eta$
Remark 28 The subset of unreachable elements (red ones on the table 1) does not obey the principle of minimum.

## Definition in programming language

Perhaps you have already noticed that the $\mathfrak{M}$ is a computable structure. The following is a class that implements the structure $\mathfrak{M}$. The implementation uses the integer type, we do not introduce rational numbers explicitly.

```
unit StrukturaM: class;
    unit Elm: class(k,li,mia: integer);
    begin
        if mia=0 then raise Error fi;
        if li* mia <0 then raise Error fi;
        if li=0 and k<0 then raise Error fi;
    end Elm;
    add: function(x,y:Elm): Elm;
    begin
        result := new Elm(x.k+y.k, x.li*y.mia+x.mia*y.li, x.mia*y.mia )
    end add;
    unit one: function:Elm; begin result:= new Elm(1,0,2) end one;
    unit zero : function:Elm; begin result:= new Elm(0,0,2) end zero;
    unit eq: function(x,y:Elm): Boolean;
    begin
        result := (x.k=y.k) and (x.li*y.mia=x.mia*y.li )
    end eq;
end StrukturaM
```

The following lemma expresses the correctness of the implementa-
tion with respect to the axioms of Presburger arithmetic $\mathcal{A P}$ (c.f. subsection 6.2) treated as a specification of a class (i.e. a module of program).

Lemma 29 The structure $\mathfrak{E}=\langle E$, add, zero, one, eq〉 composed of the set $E=\{o$ object : o inElm $\}$ of objects of class Elm with the add operation is a model of the $\mathcal{A P}$ theory,

$$
\mathfrak{E} \models \mathcal{A P}
$$

Infinite Collatz algorithm computation
How to execute the Collatz algorithm in StructuraM? It's easy.

```
pref StrukturaM block
    var n: Elm;
    unit odd: function(x:Elm): Boolean; ... result:=(x.k mod 2)=1 ... end odd;
    unit div2: function(x:Elm): Elm; ...
    unit 3xp1: function(n: Elm): Elm; ...result:=add(n,add(n,add(n,one))); ... end 3xp1;
begin
    n:= new Elm(8,1,2);
            | while not eq(n,one) do 
    end block;
```

Below we present the computation of Collatz algorithm for $n=$ $\left\langle 8, \frac{1}{2}\right\rangle$.

$$
\left\langle 8, \frac{1}{2}\right\rangle,\left\langle 4, \frac{1}{4}\right\rangle,\left\langle\left(\frac{1}{8},,\left\langle 1, \frac{1}{16}\right\rangle,\left\langle 4, \frac{3}{16}\right),\left\langle 2, \frac{3}{32}\right\rangle,\left\langle\left(1, \frac{3}{64}\right),\left\langle 4, \frac{9}{64}\right\rangle,\left\langle 2, \frac{9}{128}\right\rangle, \cdots\right.\right.\right.
$$

Note, the computation of algorithm $G r$ for the same argument, looks simpler

$$
\left\langle 8, \frac{1}{2}\right\rangle,\left\langle 4, \frac{1}{4}\right\rangle,\left\langle 2, \frac{1}{8}\right\rangle,\left\langle 1, \frac{1}{16}\right\rangle,\left\langle 1, \frac{3}{64}\right\rangle,\left\langle 1, \frac{9}{256}\right\rangle, \cdots
$$

None of the elements of the above sequence is a standard natural number. Each of them is unreachable. It is worth looking at an example of another calculation. Will something change when we assign n a different object? e.g. $\mathrm{n}:=$ new $\operatorname{Elm}(19,2,10)$ ?

```
\langle19, \frac{10}{2}\rangle,\langle58,\frac{30}{2}\rangle,\langle29,\frac{30}{4}\rangle,\langle88,\frac{90}{4}\rangle,\langle44,\frac{90}{8}\rangle,\langle22,\frac{90}{16}\rangle,\langle11,\frac{90}{32}\rangle,\langle34,\frac{270}{32}\rangle,\langle17,\frac{270}{64}\rangle,
\langle52, \frac{810}{64}\rangle,\langle26, \frac{405}{64}\rangle,\langle13,\frac{405}{128}\rangle,\langle40,\frac{1215}{128}\rangle,\langle20,\frac{1215}{256}\rangle,\langle10,\frac{1215}{256}\rangle,\langle5,\frac{1215}{512}\rangle,\langle16,\frac{3645}{512}\rangle,\langle8,\frac{3645}{1024}\rangle,
\langle4, \frac{3645}{2048}\rangle,\langle2,\frac{3645}{4096}\rangle,\langle1,\frac{3645}{8192}\rangle,\langle4,\frac{3*3645}{8192}\rangle,\langle2,\frac{3645*3}{2*8192}\rangle,\langle1,\frac{3*3645}{4*8192}\rangle,\langle4,\frac{9*3645}{4*8192}\rangle,\cdots
```

And one more computation.

```
<19,0\rangle, \langle58,0\rangle,\langle29,0\rangle,\langle88,0\rangle,\langle44,0\rangle,\langle22,0\rangle, \langle11,0\rangle,\langle34,0\rangle,\langle17,0\rangle,\langle52,0\rangle,\langle26,0\rangle,
\langle13,0\rangle,\langle40, 0\rangle, \langle20, 0\rangle, \langle10, 0\rangle, \langle5, 0\rangle, \langle16, 0\rangle, \langle8, 0\rangle, \langle4, 0\rangle, \langle2, 0\rangle, \langle1,0\rangle.
```

Corollary 30 The structure $\mathfrak{M}$, which we have described in two different ways, is the model of the $\mathcal{A P}$ theory with the non-obvious presence of unreachable elements in it.

Corollary 31 The halting property of the Collatz algorithm cannot be proved from the axioms of the $\mathcal{T}$ theory, nor from the axioms of $\mathcal{A P}$ theory.

### 6.2 Presburger arithmetic

Presburger arithmetic is another name of elementary theory of natural numbers with addition.
We shall consider the following theory , cf. [Pre29],[Grz71] p. 239 and following ones.

Definition 32 Theory $\mathcal{T}=\langle\mathcal{L}, \mathcal{C}, A x\rangle$ is the system of three elements:
$\mathcal{L}$ is a language of first-order. The alphabet of this language consist of: the set $V$ of variables, symbols of operations: $0, S,+$, symbol of equality relation $=$, symbols of logical functors and quantifiers, auxiliary symbols as brackets ..
The set of well formed expressions is the union of te set $T$ of terms and the set of formulas $F$.
The set $T$ is the least set of expressions that contains the set $V$ and constants 0 and 1 and closed with respect to the rules: if two expressions $\tau_{1}$ and $\tau_{2}$ are terms, then the expression $\left(\tau_{1}+\tau_{2}\right)$ is a term too.
The set $F$ of formulas is the least set of expressions that contains the equalities (i.e. the expressions of the form $\left(\tau_{1}=\tau_{2}\right)$ ) and closed with respect to the following formation rules: if ex-
pressions $\alpha$ and $\beta$ are formulas, then the aexpression of the form

$$
(\alpha \vee \beta),(\alpha \wedge \beta),(\alpha \Longrightarrow \beta), \neg \alpha
$$

are also formulas, moreover, the expressions of the form

$$
\forall_{x} \alpha, \exists_{x} \alpha
$$

where $x$ is a variable and $\alpha$ is a formula, are formulas too.
$\mathcal{C}$ is the operation of consquence determined by axioms of firstorder logic and the inference rules of the logic,
$A x$ is the set of formulas listed below.

$$
\begin{align*}
& \forall_{x} x+1 \neq 0  \tag{a}\\
& \forall_{x} \forall_{y} x+1=y+1 \Longrightarrow x=y  \tag{b}\\
& \forall_{x} x+0=x  \tag{c}\\
& \forall_{x, y}(y+1)+x=(y+x)+1  \tag{d}\\
& \Phi(0) \wedge \forall_{x}[\Phi(x) \Longrightarrow \Phi(x+1)] \Longrightarrow \forall_{x} \Phi(x) \tag{I}
\end{align*}
$$

The expression $\Phi(x)$ may be replaced by any formula. The result is an axiom of theory This is the induction scheme.
We augment the set of axioms adding four axioms that define a coiple of useful notions.

$$
\begin{align*}
& \operatorname{even}(x) \stackrel{d f}{=} \exists_{y} x=y+y  \tag{e}\\
& \operatorname{odd}(x) \stackrel{d f}{=} \exists_{y} x=y+y+1  \tag{o}\\
& x \operatorname{div} 2=y \equiv(x=y+y \vee x=y+y+1)  \tag{D2}\\
& 3 x \stackrel{d f}{=} x+x+x \tag{3x}
\end{align*}
$$

The theory $\mathcal{T}^{\prime}$ obtained in this way is a conservative extension of theory $\mathcal{T}$.

Below we present another theory $\mathcal{A P}$ c.f. [Pre29], we shall use two facts: 1) theory $\mathcal{A P}$ is complete and hence is decidable, 2) both theories are elementarily equivalent.

Definition 33 Theory $\mathcal{A P}=\langle\mathcal{L}, \mathcal{C}, A x P\rangle$ is a system of three elements :
$\mathcal{L}$ is a language of first-order. The alphabet of this language contains the set $V$ of variables, symbols of functors : $0,+$, symbol of equality predicate $=$.
The set of well formed-expressions is the union of set of terms $T$ and set of formulas $F$. The set of terms $T$ is the least set of expressions that contains the set of variables $V$ and the expression 0 and closed with respect to the following two rules: 1) if two expressions $\tau_{1}$ and $\tau_{2}$ are terms, then the expression $\left(\tau_{1}+\tau_{2}\right)$ is also a term, 2) if the expression $\tau$ is a term, then the expression $S(\tau)$ is also a term.
$\mathcal{C}$ is the consequence operation determined by the axioms of predicate calculus and inference rules of first-order logic
AxP The set of axioms of the $\mathcal{A P}$ theory is listed below.

$$
\begin{align*}
& \forall_{x} x+1 \neq 0  \tag{A}\\
& \forall_{x} x \neq 0 \Longrightarrow \exists_{y} x=y+1 \\
& \forall_{x, y} x+y=y+x \\
& \forall_{x, y, z} x+(y+z)=(x+y)+z \\
& \forall_{x, y, z} x+z=y+z \Longrightarrow x=y \\
& \forall_{x} x+0=x \\
& \forall_{x, z} \exists_{y}(x=y+z \vee z=y+x) \\
& \forall_{x} \exists_{y}(x=y+y \vee x=y+y+1) \\
& \forall_{x} \exists_{y}(x=y+y+y \vee x=y+y+y+1 \vee x=y+y+y+1+1) \tag{H3}
\end{align*}
$$

$$
\forall_{x} \exists_{y}\left(\begin{array}{c}
x=\underbrace{y+y+\cdots+y}_{k} \vee \\
x=\underbrace{y+y+\cdots+y}_{k}+1 \vee \\
x=\underbrace{y+y+\cdots+y}_{k}+\underbrace{1+1}_{2} \vee  \tag{Hk}\\
\cdots \\
x=\underbrace{y+y+\cdots+y}_{k}+\underbrace{1+1+\cdots+1}_{k-2} \vee \\
x=\underbrace{y+y+\cdots+y}_{k}+\underbrace{1+1+\cdots+1}_{k-1}
\end{array}\right)
$$

The axioms H2-Hk ... may be given a shorter form. Let us introduce numerals, ie. the constants representing term of the form

$$
\begin{aligned}
& \underline{\mathcal{Z}} \stackrel{d f}{=} 1+1 \\
& \underline{3} \underline{=} \stackrel{d f}{=} 1+1+1
\end{aligned}
$$

$\underline{\boldsymbol{k}} \stackrel{d f}{=} \underbrace{1+1+\ldots 1}_{k \text { times }}$

Now, the axioms take form

$$
\begin{align*}
& \forall_{x} x \bmod \underline{\mathcal{Q}}=\underline{\boldsymbol{0}} \vee x \bmod \underline{\mathcal{Q}}=\underline{\mathbf{1}}  \tag{H2’}\\
& \forall_{x} x \bmod \underline{\mathfrak{3}}=\underline{\boldsymbol{0}} \vee x \bmod \underline{\boldsymbol{3}}=\underline{\mathbf{1}} \vee x \bmod \underline{\mathfrak{3}}=\underline{\mathcal{Q}}  \tag{H3'}\\
& \cdots  \tag{Hk’}\\
& \forall_{x} \bigvee_{j=0}^{k-1} x \bmod \underline{\boldsymbol{k}}=\underline{\boldsymbol{j}}
\end{align*}
$$

Let us recall a couple of useful theorems
F1. Theory $\mathcal{T}$ is elementarily equivalent to the theory $\mathcal{A P}$. Pre29] [Sta84]
F2. Theory $\mathcal{A P}$ is decidable. Pre29.
F3. The computational complexity of theory $\mathcal{A P}$, is double exponential $O\left(2^{2^{n}}\right)$ this result belongs to Fisher and Rabin, see [MF74.

F4. Theories $\mathcal{T}$ and $\mathcal{A P}$ have non-standard model, see section 6.1, p. 27.

Now, we shall prove a couple of useful theorems of theory $\mathcal{T}$.
First, we shall show that the sentence $\forall_{n} \exists_{x, y, z} n \cdot 3^{x}+y=2^{z}$ is a theorem of the theory $\mathcal{T}$ of addition. Operations of multiplication and power are inaccessible in the theory $\mathcal{T}$. However, we do not need them.
We enrich the theory $\mathcal{T}$ adding two functions $P 2(\cdot)$ and $P 3(\cdot \cdot \cdot)$. defined in this way

Definition 34 Two functions are defined P2 (of oneargument) and P3 (of two-arguments).

$$
\begin{array}{l|l}
P 2(0) \stackrel{d f}{=} 1 \\
P 2(x+1) \stackrel{d f}{=} P 2(x)+P 2(x) & P 3(y, 0) \stackrel{d f}{=} y \\
P 3(y, x+1) \stackrel{d f}{=} P 3(y, x)+P 3(y, x)+P 3(y, x)
\end{array}
$$

Lemma 35 The definitions given above are correct, i.e. the following sentences aretheorems of the theory with two definitions

$$
\begin{gathered}
\mathcal{T} \vdash \forall_{x} \exists_{y} P 2(x)=y \text { and } \\
\mathcal{T} \vdash \forall_{x, y, z} P 2(x)=y \wedge P 2(x)=z \Longrightarrow y=z
\end{gathered}
$$

Similarly, the sentences $\forall_{y, x} \exists_{z} P 3(y, x)=z$ and $\forall_{y, x, z, u} P 3(y, x)=$ $z \wedge P 3(y, x)=u \Longrightarrow z=u$ are theorems of theory $\mathcal{T}$.

An easy proof goes by induction with respect to the value of variable $x$.

In the proof of the lemma 36, below, we shall use the definition of the order relation

$$
a<b \stackrel{d f}{=} \exists_{c \neq 0} a+c=b
$$

Making use of the definition of function $P 2$ and $P 3$ we shall write the formula $P 3(n, x)+y=P 2(z)$ as it exppresses the same content as expression $n \cdot 3^{x}+y=2^{z}$.

Lemma 36 The following sentence is a theorem of the theory $\mathcal{T}$ enriched by the definitions of P2 and P3 functions.

$$
\forall_{n} \exists_{x, y, z} P 3(n, x)+y=P 2(z)
$$

Proof. We begin proving by induction that $\mathcal{T} \vdash \forall_{n} n<2^{n}$. It is easy to see that $\mathcal{T} \vdash 0<P 2(0)$. We shall prove that $\mathcal{T} \vdash \forall_{n}(n<$ $P 2(n) \Longrightarrow(n+1<P 2(n+1))$. Inequality $n+1<P 2(n+1)$ follows from the two following inequalities $\mathcal{T} \vdash n<P 2(n)$ and $\mathcal{T} \vdash 1<P 2(n)$. Hence the formula $n+1<P 2(n)+P 2(n))$ is a theorem of theory $\mathcal{T}$. By definition $P 2(n)+P 2(n)=P 2(n+1)$.
In the similar manner, we can prove the formula $\mathcal{T} \vdash \forall_{n} \forall_{x} P 3(n, x)<$ $P 2(n+x+x)$
As a consequence we have $\mathcal{T} \vdash \forall_{n} \exists_{x, y, z} P 3(n, x)+y=P 2(z)$.
Lemma 37 Let $\mathfrak{M}$ be any model of Presburger arithmetic. If there exists a triple $\langle x, y, z\rangle$ of reachable elements such that it satisfies the equation $P 3(n, x)+y=P 2(z)$ i.e. $n \cdot 3^{x}+y=2^{z}$ then the element $n$ is reachable.

Proof. If the following formulas are valid in the structure $\mathfrak{M}$ $\{q:=0 ;$ while $q \neq x$ do $q:=q+1$ od $\}(x=q)$, $\{q:=0 ;$ while $q \neq y$ do $q:=q+1$ od $\}(y=q)$, $\{q:=0$; while $q \neq z$ do $q:=q+1$ od $\}(z=q)$ and the following equation is valid too $P 3(n, x)+y=P 2(z)$ then it is easy to verify that the formula $\{t:=0$; while $n \neq t$ do $t:=$ $t+1 \mathbf{o d}\}(t=n)$ is valid too.
Nr Reason
$1 \quad \mathrm{a} 1=\mathrm{P} 2(\mathrm{z})$ is reachable
$2 \mathrm{y}+\mathrm{a} 2=\mathrm{a} 1, \mathrm{a} 2$ is reachable and $\mathrm{a} 2=2^{z}-\mathrm{y}$
$3 \mathrm{a} 3=\mathrm{P} 3(1, \mathrm{x})$ is reachable, $\mathrm{a} 3=3^{x}$
$4\left\{\begin{array}{l}q:=1 ; a 5:=a 3 ; \\ \text { while } a 5 \neq a 2 \text { do } \\ q:=q+1 ; \\ a 5:=a 5+a 3 \\ \text { od }\end{array}\right\}(q * a 3=a 2)$ hence $\mathrm{q}=\mathrm{n}$

### 6.3 An introduction to calculus of programs $\mathcal{A L}$

For the convenience of the reader we cite the axioms and inference rules of calculus of programs i.e. algorithmic $\operatorname{logic} \mathcal{A L}$.
Note. Every axiom of algorihmic logic is a tautology.
Every inference rule of $\mathcal{A L}$ is sound. [MS87]

## Axioms

axioms of propositional calculus

```
\(A x_{1}((\alpha \Rightarrow \beta) \Rightarrow((\beta \Rightarrow \delta) \Rightarrow(\alpha \Rightarrow \delta)))\)
\(A x_{2}(\alpha \Rightarrow(\alpha \vee \beta))\)
\(A x_{3}(\beta \Rightarrow(\alpha \vee \beta))\)
\(A x_{4}((\alpha \Rightarrow \delta) \Rightarrow((\beta \Rightarrow \delta) \Rightarrow((\alpha \vee \beta) \Rightarrow \delta)))\)
```

$$
\begin{aligned}
& A x_{5} \quad((\alpha \wedge \beta) \Rightarrow \alpha) \\
& A x_{6} \quad((\alpha \wedge \beta) \Rightarrow \beta) \\
& A x_{7}((\delta \Rightarrow \alpha) \Rightarrow((\delta \Rightarrow \beta) \Rightarrow(\delta \Rightarrow(\alpha \wedge \beta)))) \\
& A x_{8} \quad((\alpha \Rightarrow(\beta \Rightarrow \delta)) \Leftrightarrow((\alpha \wedge \beta) \Rightarrow \delta)) \\
& A x_{9} \quad((\alpha \wedge \neg \alpha) \Rightarrow \beta) \\
& A x_{10} \quad((\alpha \Rightarrow(\alpha \wedge \neg \alpha)) \Rightarrow \neg \alpha) \\
& A x_{11}(\alpha \vee \neg \alpha) \\
& \text { axioms of predicate calculus } \\
& \left.A x_{12}((\forall x) \alpha(x) \Rightarrow \alpha(x / \tau))\right) \\
& \text { where term } \tau \text { is of the same type as the variable } \mathrm{x} \\
& A x_{13}(\forall x) \alpha(x) \Leftrightarrow \neg(\exists x) \neg \alpha(x) \\
& \text { axioms of calculus of programs } \\
& A x_{14} K((\exists x) \alpha(x)) \Leftrightarrow(\exists y)(K \alpha(x / y)) \quad \text { for } y \notin V(K) \\
& A x_{15} K(\alpha \vee \beta) \Leftrightarrow((K \alpha) \vee(K \beta)) \\
& A x_{16} K(\alpha \wedge \beta) \Leftrightarrow((K \alpha) \wedge(K \beta)) \\
& A x_{17} K(\neg \alpha) \Rightarrow \neg(K \alpha) \\
& A x_{18}((x:=\tau) \gamma \Leftrightarrow(\gamma(x / \tau) \wedge(x:=\tau) \operatorname{true})) \wedge\left(\left(q:=\gamma^{\prime}\right) \gamma \Leftrightarrow \gamma\left(q / \gamma^{\prime}\right)\right) \\
& A x_{19} \text { begin } K ; M \text { end } \alpha \Leftrightarrow K(M \alpha) \\
& A x_{20} \text { if } \gamma \text { then } K \text { else } M \text { fi } \alpha \Leftrightarrow((\neg \gamma \wedge M \alpha) \vee(\gamma \wedge K \alpha)) \\
& A x_{21} \text { while } \gamma \text { do } K \text { od } \alpha \Leftrightarrow((\neg \gamma \wedge \alpha) \vee(\gamma \wedge K(\text { while } \gamma \text { do } K \operatorname{od}(\neg \gamma \wedge \alpha)))) \\
& A x_{22} \bigcap K \alpha \Leftrightarrow(\alpha \wedge(K \bigcap K \alpha)) \\
& A x_{23} \bigcup K \alpha \equiv(\alpha \vee(K \bigcup K \alpha))
\end{aligned}
$$

## Inference rules

propositional calculus
$R_{1} \quad \frac{\alpha,(\alpha \Rightarrow \beta)}{\beta} \quad$ (also known as modus ponens)
predicate calculus

$$
\begin{array}{ll}
R_{6} & \frac{(\alpha(x) \Rightarrow \beta)}{((\exists x) \alpha(x) \Rightarrow \beta)} \\
R_{7} & \frac{(\beta \Rightarrow \alpha(x))}{(\beta \Rightarrow(\forall x) \alpha(x))}
\end{array}
$$

calculus of programs $A L$
$R_{2} \quad \frac{(\alpha \Rightarrow \beta)}{(K \alpha \Rightarrow K \beta)}$
$R_{3} \quad \frac{\left\{s(\text { if } \gamma \text { then } K \text { fi })^{i}(\neg \gamma \wedge \alpha) \Rightarrow \beta\right\}_{i \in N}}{(s(\text { while } \gamma \text { do } K \text { od } \alpha) \Rightarrow \beta)}$
$R_{4} \quad \frac{\left\{\left(K^{i} \alpha \Rightarrow \beta\right)\right\}_{i \in N}}{(\bigcup K \alpha \Rightarrow \beta)}$
$R_{5} \quad \frac{\left\{\left(\alpha \Rightarrow K^{i} \beta\right)\right\}_{i \in N}}{(\alpha \Rightarrow \bigcap K \beta)}$
In rules $R_{6}$ and $R_{7}$, it is assumed that $x$ is a variable which is not free in $\beta$, i.e. $x \notin F V(\beta)$. The rules are known as the rule for introducing an existential quantifier into the antecedent of an implication and the rule for introducing a universal quantifier into the successor of an implication. The rules $R_{4}$ and $R_{5}$ are algorithmic counterparts of rules $R_{6}$ and $R_{7}$. They are of a different character, however, since their sets of premises are infinite. The rule $R_{3}$ for introducing a while into the antecedent of an implication of a similar nature. These three rules are called $\omega$-rules. The rule $R_{1}$ is known as modus ponens, or the cut-rule. In all the above schemes of axioms and inference rules, $\alpha, \beta, \delta$ are arbitrary formulas, $\gamma$ and $\gamma^{\prime}$ are arbitrary open formulas, $\tau$ is an arbitrary term, $s$ is a finite sequence of assignment instructions, and $K$ and $M$ are arbitrary programs.

Theorem 38 (theorem on completeness of the calculus $\mathcal{A L}$ ) Let $\mathcal{T}=\langle\mathcal{L}, \mathcal{C}, \mathcal{A} x\rangle$ be a consistent algorithmic theory, let $\alpha \in \mathcal{L}$ be a formula. The following conditions are equivalent
(i) Formula $\alpha$ is a theorem of the theory $T, \alpha \in \mathcal{C}(\mathcal{A} x)$,
(ii) Formula $\alpha$ is valid in every model of the theory $T, \mathcal{A} x \models \alpha$.

The proof may be found in MS87.
6.4 An introduction to algorithmic theory of natural numbers $\mathcal{A T \mathcal { N }}$

The language of algorithmic theory of natural numbers $\mathcal{A T \mathcal { N }}$ is very simple. Its alphabet contains one constant 0 zero, one one$\operatorname{argument}$ functor $s$ and predicate $=$ of equality. We shall write $x+1$ instead of $s(x)$. Axioms of $\mathcal{A T \mathcal { N }}$ were presented in the book MS87]
$\left.A_{1}\right) \forall x\{q:=0 ;$ while $q \neq x$ do $q:=s(q)$ od $\}(q=x)$
$\left.A_{2}\right) \forall x s(x) \neq 0$
$\left.A_{3}\right) \forall x \forall y s(x)=s(y) \Longrightarrow x=y$
We can add another two-argument functor + and its definition
$\left.A_{4}\right) \forall x \forall y\left\{\begin{array}{l}q:=0 ; w:=x ; \\ \text { while } q \neq y \text { do } \\ q:=s(q) ; w:=s(w) \\ \text { textbfod }\end{array}\right\}(x+y=w)$
The termination property of the program in $A_{4}$ is a theorem of $\mathcal{A} \mathcal{N}$ theory as well as the formulas $x+0=x$ and $x+s(y)=$ $s(x+y)$.

A sample (8-12) of Theorems of $\mathcal{A T} \mathcal{N}$

$$
\begin{align*}
& \mathcal{A T N} \vdash \exists_{x} \alpha(x) \Leftrightarrow\{x:=0\} \bigcup\{x:=x+1\} \alpha(x)  \tag{8}\\
& \mathcal{A T N} \vdash \forall_{x} \alpha(x) \Leftrightarrow\{x:=0\} \bigcap\{x:=x+1\} \alpha(x) \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{A T \mathcal { N }} \vdash 0<x<y \Longrightarrow\{a:=x ; \text { while } a<y \text { do } a:=a+x \text { od }\}(a \geq y) \tag{10}
\end{equation*}
$$

Scheme of induction

$$
\begin{equation*}
\mathcal{A T \mathcal { N }} \vdash\left(\alpha(x / 0) \wedge \forall_{x}(\alpha(x) \Rightarrow \alpha(x / s(x)))\right) \Longrightarrow \forall_{x} \alpha(x) \tag{11}
\end{equation*}
$$

Correctness of Euclid's algorithm

$$
\mathcal{A T \mathcal { N }} \vdash\binom{n_{0}>0 \wedge}{m_{0}>0} \Longrightarrow\left\{\begin{array}{l}
n:=n_{0} ; m:=m_{0} ;  \tag{12}\\
\text { while } n \neq m \text { do } \\
\text { if } n>m \text { then } n:=n \perp m \\
\text { else } m:=m \_n \\
\text { fi } \\
\text { od }
\end{array}\right\}\left(n=\operatorname{gcd}\left(n_{0}, m_{0}\right)\right)
$$

The theory $\mathcal{A} \mathcal{T} \mathcal{N}$ enjoys an important property of categoricity.

## Theorem 39 ( meta-theorem on categoricity of $\mathcal{A T} \mathcal{N}$ ) Every

 model $\mathfrak{A}$ of the algorithmic theory of natural numbers is isomorphic to the structure $\mathfrak{N}$, c.f. subsection 6.1.
### 6.5 Proof of lemma 4

Let $P$ and $P^{\prime}$ be two programs. Let $\alpha$ be any formula. The semantic property programs $P$ and $P^{\prime}$ are equivalent with respect to the postcondition $\alpha$ is expressed by the formula of the form $\left(\{P\} \alpha \Leftrightarrow\left\{P^{\prime}\right\} \alpha\right)$. We shall use the following tautology of calculus of programs $\mathcal{A L}$.

$$
\vdash(\overbrace{\left\{\begin{array}{l}
\text { while } \gamma \text { do }  \tag{13}\\
\text { if } \delta \text { then } K \text { else } M \mathbf{f i} \\
\text { od; }
\end{array}\right\}}^{P:} \alpha \Leftrightarrow \overbrace{\left\{\begin{array}{l}
\text { while } \gamma \text { do } \\
\text { while } \gamma \wedge \delta \text { do } K \text { od; } \\
\text { while } \gamma \wedge \neg \delta \text { do } M \text { od } \\
\text { od }
\end{array}\right\} \alpha}^{P^{\prime}:})
$$

We apply the axioms Ax20 and Ax21

$$
\vdash\left(\left\{\begin{array}{l}
\text { while } \gamma \text { do }  \tag{14}\\
\text { if } \delta \text { then } K \text { else } M \text { fi } \\
\text { od; }
\end{array}\right\} \alpha \Leftrightarrow\left\{\begin{array}{l}
\text { if } \gamma \text { then } \\
\text { while } \gamma \wedge \delta \text { do } K \text { od; } \\
\text { while } \gamma \wedge \neg \delta \text { do } M \text { od ; } \\
\text { while } \gamma \text { do } \\
\text { while } \gamma \wedge \delta \text { do } K \text { od; } \\
\text { while } \gamma \wedge \neg \delta \text { do } M \text { od } \\
\text { od } \\
\text { fi }
\end{array}\right\} \alpha\right.
$$

We can omit the instruction if (why?). We swap internal instructions while inside the instruction while.

$$
\vdash\left(\left\{\begin{array}{c}
\text { while } \gamma \text { do }  \tag{15}\\
\text { if } \delta \text { then } K \text { else } M \text { fi } \\
\text { od; }
\end{array}\right\} \alpha \Leftrightarrow\left\{\begin{array}{l}
\text { while } \gamma \wedge \delta \text { do } K \text { od } ; \\
\text { while } \gamma \wedge \neg \delta \text { do } M \text { od } \\
\text { while } \gamma \text { do } \\
\text { while } \gamma \wedge \neg \delta \text { do } M \text { od; } \\
\text { while } \gamma \wedge \delta \text { do } K \text { od } \\
\text { od }
\end{array}\right\} \alpha\right)
$$

We can safely skip the second instruction while.

$$
\vdash\left(\left\{\begin{array}{c}
\text { while } \gamma \text { do }  \tag{16}\\
\text { if } \delta \text { then } K \text { else } M \text { fi } \\
\text { od; }
\end{array}\right\} \alpha \Leftrightarrow\left\{\begin{array}{c}
\text { while } \gamma \wedge \delta \text { do } K \text { od } ; \\
\text { while } \gamma \text { do } \\
\text { while } \gamma \wedge \neg \delta \text { do } M \text { od; } \\
\text { while } \gamma \wedge \delta \text { do } K \text { od } \\
\text { od }
\end{array}\right\} \alpha\right\}
$$

Now, we put $(\gamma \stackrel{d f}{=} n \neq 1),(\delta \stackrel{d f}{=} \operatorname{even}(n)),(K \stackrel{d f}{=}\{n:=n \div 2\})$ and $(M \stackrel{d f}{=}\{n:=3 n+1\})$. We make use of two theorems $(\operatorname{even}(n) \Longrightarrow n \neq 1)$ and $(M \delta)$ of theory $\mathcal{A P}$ c.f. subsection 6.2

$$
\mathcal{T} \vdash\left(\left\{\begin{array}{l}
\begin{array}{l}
\text { while } n \neq 1 \text { do } \\
\begin{array}{l}
\text { if } \text { even }(n) \\
\text { then } n:=n \div 2 \\
\text { else } n:=3 n+1 \\
\text { fi }
\end{array} \\
\text { od } ;
\end{array}
\end{array}\right\}(n=1) \Leftrightarrow\left\{\begin{array}{l}
\begin{array}{l}
\text { while even }(n) \text { do } n:=n \div 2 \text { od } ; \\
\text { while } n \neq 1 \text { do }
\end{array}  \tag{17}\\
\begin{array}{l}
n:=3 n+1 ; \\
\text { while even }(n) \text { do } n:=n \div 2 \text { od }
\end{array} \\
\text { od }
\end{array}\right\}(n=1) .\right.
$$

### 6.6 Proof of invariant of algorithm Gr3

We are going to prove the following implication $\sqrt{19}$ is a theorem of algorithmic theory of natural numbers $\mathcal{A} \mathcal{T} \mathcal{N}$.

$$
\begin{equation*}
\mathcal{A T \mathcal { N }} \vdash\left(\varphi \Longrightarrow\left\{\Delta_{3}\right\} \varphi\right) \tag{18}
\end{equation*}
$$

We apply the axiom of assignment instruction $A x_{18}$. Note, we applied also axiom $A x_{19}$ of composed instruction. Namely, in the implication 19 we replace the its successor $\left\{\Delta_{3}\right\} \varphi$ by the formula $\left\{\Delta_{3}^{(1)}\right\} \varphi^{(1)}$.

$$
\begin{align*}
& \Longrightarrow \overbrace{\left(\begin{array}{c}
a u x:=3 * m_{i}+1 ; \\
k_{i+1}:=\exp (a u x, 2) ; \\
m_{i+1}:=a u x / 2^{k_{i+1}} ; \\
Y_{i+1}:=3 Y_{i}+2^{Z_{i}} ; \\
Z_{i+1}:=Z_{i}+k_{i+1} ; \\
X_{i}:=i ; ;
\end{array}\right\}}^{\Delta_{3}^{(1)}} \overbrace{\left(\begin{array}{l}
n \cdot 3^{(i+1)}+Y_{(i+1)}=m_{(i+1)} \cdot 2^{Z_{(i+1)} \wedge} \\
\varphi_{(i+1)}=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
\varphi_{(i+1)}=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\forall \\
0<l \leq(i+1) \\
\forall \\
\left.m_{l}=m_{l-1} / 2^{k_{l}} \wedge k_{l}=\exp \left(m_{l}, 2\right)\right)
\end{array}\right.}  \tag{20}\\
& \varphi \Longrightarrow\left\{\begin{array}{c}
a u x:=3 * m_{i}+1 ; \\
k_{i+1}:=\exp (a u x, 2) ; \\
m_{i+1}:=a u x / 2^{k_{i+1}} ; \\
Y_{i+1}:=3 Y_{i}+2^{Z_{i}} ; \\
\hline Z_{i+1}:=Z_{i}+k_{i+1} ;
\end{array}\right\}\left(\begin{array}{l}
n \cdot 3^{(i+1)}+Y_{(i+1)}=m_{(i+1)} \cdot 2^{Z_{(i+1)}} \wedge \\
Z_{(i+1)}=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
Y_{(i+1)}=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\underset{\substack{ \\
\forall \leq(i+1)}}{ }\left(m_{l}=m_{l-1} / 2^{k_{l}} \wedge k_{l}=\exp \left(m_{l}, 2\right)\right) \wedge
\end{array}\right)  \tag{21}\\
& \varphi \Longrightarrow\left\{\begin{array}{l}
a u x:=3 * m_{i}+1 ; \\
k_{i+1}:=\exp (a u x, 2) ; \\
m_{i+1}:=a u x / 2^{k_{i+1}} ; \\
Y_{i+1}:=3 Y_{i}+2^{Z_{i}} ;
\end{array}\right\}\left(\begin{array}{l}
n \cdot 3^{(i+1)}+Y_{(i+1)}=m_{(i+1)} \cdot 2^{\left(Z_{i}+k_{i+1}\right)} \wedge \\
\left(Z_{i}+k_{i+1}\right)=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
Y_{(i+1)}=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\underset{0<l \leq(i+1)}{\forall}\left(m_{l}=m_{l-1} / 2^{k_{l}} \wedge k_{l}=\exp \left(m_{l}, 2\right)\right)
\end{array}\right)  \tag{22}\\
& \varphi \Longrightarrow\left\{\begin{array}{c}
a u x:=3 * m_{i}+1 ; \\
\frac{k_{i+1}:=\exp (a u x, 2) ;}{m_{i+1}:=a u x / 2^{k_{i+1}} ;}
\end{array}\right\}\left(\begin{array}{c}
n \cdot 3^{(i+1)}+\left(3 Y_{i}+2^{Z_{i}}\right)=m_{(i+1)} \cdot 2^{\left(Z_{i}+k_{i+1}\right)} \wedge \\
\left(Z_{i}+k_{i+1}\right)=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
\left(3 Y_{i}+2^{Z_{i}}\right)=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\underset{0<l \leq(i+1)}{\forall}\left(m_{l}=m_{l-1} / 2^{k_{l}} \wedge k_{l}=\exp \left(m_{l}, 2\right)\right)
\end{array}\right)  \tag{23}\\
& \varphi \Longrightarrow\left\{\frac{a u x:=3 * m_{i}+1 ;}{k_{i+1}:=\exp (a u x, 2) ;}\right\}\left\{\begin{array}{l}
n \cdot 3^{(i+1)}+\left(3 Y_{i}+2^{Z_{i}}\right)=\left(a u x / 2^{k_{i+1}}\right) \cdot 2^{\left(Z_{i}+k_{i+1}\right)} \wedge \\
\left(Z_{i}+k_{i+1}\right)=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
\left(3 Y_{i}+2^{Z_{i}}\right)=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\forall \quad\left(m_{l}=m_{l-1} / 2^{k_{l}} \wedge k_{l}=\exp \left(m_{l}, 2\right)\right) \\
0<l \leq(i+1)
\end{array}\right) \tag{24}
\end{align*}
$$

$$
\varphi \Longrightarrow\left\{a u x:=3 * m_{i}+1 ;\right\}\left(\begin{array}{l}
n \cdot 3^{(i+1)}+\left(3 Y_{i}+2^{Z_{i}}\right)=\left(a u x / 2^{(\exp (a u x, 2)))} \cdot 2^{\left(Z_{i}+(\exp (a u x, 2))\right)} \wedge\right. \\
\left(Z_{i}+(\exp (a u x, 2))\right)=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
\left(3 Y_{i}+2^{Z_{i}}\right)=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\underset{\substack{\text { (i+1) }}}{\forall}\left(m_{l}=m_{l-1} / 2^{k_{l}} \wedge k_{l}=\exp \left(m_{l}, 2\right)\right)
\end{array}\right)
$$

$$
\varphi \Longrightarrow\left\}\left(\begin{array}{l}
\begin{array}{l}
n \cdot 3^{(i+1)}+\left(3 Y_{i}+2^{Z_{i}}\right)=\left(\left(3 * m_{i}+1\right) / 2^{\left.\left(\exp \left(\left(3 * m_{i}+1\right), 2\right)\right)\right)} \cdot 2^{\left(Z_{i}+\left(\operatorname{exp((3*m_{i}+1),2)))} \wedge\right.\right.}\right. \\
\left(Z_{i}+\left(\exp \left(\left(3 * m_{i}+1\right), 2\right)\right)\right)=\sum_{j=0}^{(i+1)} k_{j} \wedge X_{i+1}=(i+1) \wedge \\
\left(3 Y_{i}+2^{Z_{i}}\right)=\sum_{j=0}^{i}\left(3^{(i+1)-1-j} \cdot 2^{Z_{j}}\right) \wedge \\
m_{0}=n \wedge k_{0}=\exp \left(m_{0}, 2\right) \wedge \\
\forall<l \leq(i+1) \\
0<l
\end{array} \tag{26}
\end{array}\right)\right.
$$

The implications $\sqrt{19}-\sqrt{26}$ are mutually equivalent.
One can easily verify that the last implication $(\varphi \Longrightarrow \psi)$ is a theorem of Presburger arithmetic $\mathcal{T}$ and hence it is a theorem of $\mathcal{A T} \mathcal{N}$ theory.
Therefore the first implication $\left(\varphi \Longrightarrow\left\{\Delta_{3}\right\} \varphi\right)$ is a theorem of algorithmic theory of natural numbers $\mathcal{A T} \mathcal{N}$.
q.e.d.

Remark 40 Note, the process of creation a proof like this can be automatized.
The verification of the above proof can be automatized too.

## References

[Grz71] Andrzej Grzegorczyk. Zarys Arytmetyki Teoretycznej. PWN, Warszawa, 1971.
[Lag10] Jeffrey C. Lagarias, editor. The Ultimate Challenge: The $3 \mathrm{x}+1$ Problem. American Mathematical Society, Providence R.I., 2010.
[MF74] M.J. Fisher and M.O. Rabin . Super-exponential complexity of Presburger arithmetic. In Proceedings of AMS Symposia on Complexity of Real Computational Processes, volume VIII, 1974.
[MS87] Grażyna Mirkowska and Andrzej Salwicki. Algorithmic Logic. http:// lem12.uksw.edu.pl/wiki/Algorithmic_Logic, 1987. [Online; accessed 7-August-2017].
[MS21] Grażyna Mirkowska and Andrzej Salwicki. On Collatz theorem. http: //lem12.uksw.edu.pl/images/2/27/On-Collatz-thm-11-10-21.pdf
[Online: accessed 17 December 2021], 2021.
[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt . pages 92-101,395, 1929.
[Sko34] Thoralf Skolem. Über die nicht-charakterisierbarkeit der zahlenreihe mittels endlich oder abzählbar unendlich vieler aussagen mit ausschließlich zahlenvariablen. Fundamenta Mathematicae, 23:150-161, 1934.
[Sta84] Ryan Stansifer. Presburger's Article on Integer Arithmetic: Remarks and Translation. Technical Report TR84-639, 1984, Cornell University http:// cs.fit.edu/ ${ }^{\text {ryan/papers/presburger.pdf. [Online; accessed 7-August- }}$ 2021].
[Tar34] Alfred Tarski. Bemerkung der Redaktion. Fundamenta Mathematicae, 23:161, 1934.


[^0]:    ${ }^{1}$ Let $f(n, 0) \stackrel{d f}{=} n$, and $f(n, i+1) \stackrel{d f}{=}\left\{\begin{array}{ll}f(n, i) / 2 & \text { if } f(n, i) \text { is even } \\ 3 \cdot f(n, i)+1 & \text { if } f(n, i) \text { is odd }\end{array}\right.$. Now, conjecture reads $\forall_{n} \exists_{i} f(n, i)=1$.

[^1]:    ${ }^{2}$ Note, the function expo returns the largest exponent of 2 in the prime factorization of number $x$.
    $\operatorname{expo}(x, 2) \stackrel{d f}{=}\{l:=0 ; y:=x ;$ while even $(y)$ do $l:=l+1 ; y:=y / 2$ od $\}($ result $=l)$ i.e. $l=\operatorname{expo}(x, 2)$. We introduce the notation expo instead exp for our friends programmers who interpret the notation exp as exponentiation.

[^2]:    3 A. Tarski Tar34] confirms that S. Jaśkowski observed (in 1929) that the subset of complex numbers $M \stackrel{d f}{=}\{a+b i \in \mathbb{C}:(a \in \mathbb{Z} \wedge b \in \mathbb{Q} \wedge(b \geq 0 \wedge(b=0 \Longrightarrow a \geq 0))\}$ satisfies all axioms of Presburger arithmetic.

[^3]:    ${ }^{4}$ such proof-checker does not exists yet and it is to be built

