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Chapter 1

Introduction

The paper presents the proofs of algorithmic formulas. These formulas, as 
a part of the language of algorithmic logic, make it possible to express:

e the properties of programs e.g. correctness,
•  the definitions of semantics of language of programming,
•  the data structures e.g. the structures of trees, stacks, etc.

Only the proof of formula expressing the correctness of the program in 
relation to the proper specification can assure the user of error-free application 
of the program.

However, some advanced tools and programming languages the correctness 
of programs is not always easy to verify. Therefore, in this paper we use the 
method of proving called abduction. In consequence it is possible to obtain the 
value of function by means of the proof. This technique was first mentioned by 
Herbrand in his definition of recursive function.

This paper consists of two parts:

•  research on algorithmic structural completeness of algorithmic logic,
•  description of the retrieval system RS providing comprehensive tools in 

automated theorem proving theorems of algorithmic theories i.e. theories 
based on algorithmic logic,
description of the RETRPROV system which enables us to prove theorems 
of algorithmic theories by using the decomposition rules.

In the first part of our paper (cf. Chapter 3) we present a possibility of 
introducing the notion of program-substitution as a special mapping from the 
set of all formulas of AL into the same set.
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Let J f  be the set of non-negative integers. In AL we have some kind of 
substitution i.e. an assignment instruction s of the form:

IXAi»-» a i/ai> aJ x J

for n, m e / ,  where x v ...,xn (respectively au ...,aw denote pairwise different 
individual (respectively propositional) variables, are classical terms,

are classical open formulas and for example x j x l means the standard 
assignment instruction x 1 zl .

Unfortunately this form of substitution s in the formula sp(xLl...,x j 
transforms the formula only into the formula p(rl5 t„) but
not for example into the formula of the form a a /? where a denotes the 
conjunction.

Our substitution called program-substitution has not this restriction so it is 
more general.

Various attempts have been done to introduce the substitution rule in 
any logical systems by A. Church [18], H. Hermes [42], D. Hilbert [43] 
and W. A. Pogorzelski and T. Prucnal [71] but our key idea slightly differs 
from the methods developed up to now because contrary to the previous 
substitution rules it does preserve the properties of programs.

In Chapters 2, 3, 4 we define the notions of the consequence operation, 
the admissible, finitary and derivable rules which enable us to introduce the 
notion of algorithmic structural completeness and to prove that the consequen
ce operation of algorithmic logic strengthened by the substitution rule is 
algorithmically structurally complete i.e. that every structural finitary and 
admissible rule is derivable in this consequence operation. This result gives us 
the useful class of rules.

The notion of structural completeness of a logical system was intro
duced by W. A. Pogorzelski [70] and thoroughly studied in propositional 
logics as well as in the systems with quantifiers by A. Biela [4], A. Biela 
and W. Dziobiak [6], M. Dummet [25], G. Mine [57], W. A. Pogorzelski 
and T. Prucnal [71], J. Porte [72], T. Prucnal [76], A. I. Tsitkin [98] and 
P. Wojtylak [104].

In the first part of this paper we shall prove that the consequence operation 
CR of algorithmic logic strengthened by the substitution rule is algorithmically 
structurally complete though it is not complete.

Here we explain the notion of algorithmic structural completeness of a logic 
of programs which plays an important role in this paper.

In our paper the definition of the consequence operation CR̂  of algorith
mic logic strengthened by the substitution rule will be based on the set of 
axioms Ax and on the set of rules R  of algorithmic logic. Thus Rt = Pu{r,}.
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The purpose of this work is to show a point of view upon the notions of 
program-substitution and admissibility of rules which are the tools for proving 
properties of programs in algorithmic logic and in the so-called extended 
algorithmic logic with quantifiers and with non-deterministic programs, We 
shall prove that these logics are closed under each program-substitution i.e. 
P(Cr,(0)) c  Cr (0) for every program-substitution p.

As we mentioned above the consequence operation CR of algorithmic 
logic is not complete, so it is not true that each admissible rule of C* is 
derivable in Therefore we looked for a weaker kind of the notion* of 
completeness. We tried strengthening the notion of the substitution rule r. to 
get the following property: each structural, Unitary and admissible rule in CR 
is derivable in it.

This property called algorithmical structural completeness means that 
every consequence operation which has this property is intuitively quasi- 
complete i.e. it is complete because of structural, finitary and admissible rules. 
Since AL is algorithmically structurally complete thus we can use every 
structural and admissible rule in CR while proving theorems of AL which 
simplifies the proof.

Chapter 2 begins with the definition of the language of AL. There we 
develop a formal model theory of AL. This Chapter contains a formal 
system for AL and the consequence operation of this system. In Chapter 3 we 
define the set of the program-substitutions and we proof that AL is dosed 
under program-substitution. Moreover Chapter 3 contains a proof that any 
program-substitution preserves the logical connectives. In Chapter 4 we proved 
the algorithmic structural completeness of the consequence operation of 
algorithmic logic strengthened by the substitution rule as well as its incom
pleteness. This chapter contains some remarks about program-substitution in 
AL with generalized terms and with quantifiers and with non-deterministic 
programs.

The second part of this paper Le. Chapter 5 and Chapter 6 presents 
a retrieval system (RS-algorithm) investigated by A. Biela [5] and a decom
position system described by A. Biela and J. Borowczyk [7] in which the 
properties of programs are expressed.

Further in this paper we shall describe a formal system which enables us to 
prove theorems from the following theories: propositional calculus, logic of 
quantifiers and the first-order theories. However, the theories of algorithmic 
logic including theorems containing programs are the most important ones. 
Its main feature relies on generating an additional set of assumptions needed to 
prove a considered formula. Thus we are able to consider expressions which 
can become theorems by adding the special set of assumptions (axioms) to  the 
standard set of axioms. RS-algorithm is looking for a special set of axioms to 
prove the considered formula.
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We shall try to show some methods and procedures investigated by A. Biela
[5] for constructing formal proofs of theorems of algorithmic logic containing 
programs.

Our methods concern proving by means of programming. They are an 
essential extension of methods used by P. Gburzynski [28], [29]. The 
considered retrieval system is able to solve or to prove:

1. the properties of programs and terms formulated in the language of 
arithmetic,

2. the correctness of some programs with STOP property,
3. the functional equations with the recursive functions defined by pro

grams. This system solves them in a dynamic way by looking for 
a special set of axioms during the execution of algorithm,

4. the relations defined by programs and recursive functions,
5. the equivalence of programs.
Therefore we can answer whether some relations hold and we are able to 

compare programs and get an answer, whether the execution of different 
programs gives the same result. At the end of this section we present some 
experimental results.

Though the solution to considered problems are very ineffective, the 
options and methods used by us are satisfactory in practice (see Table 1 of 
experimental results).

Our proposal has in view:
1. to provide the tools for didactics, which enable us to demonstrate on the 

monitor the proofs of theorems of the caicuius of quantifiers, algorithmic 
logic, algorithmic theories, propositional calculus, geometry, set theory, 
theory of lattice, boolean algebra...,

2. to enable us to undertake a trial of proving hypotheses,
3. to secure the specific results for example the independence of axioms,
4. to verify the correctness of definitions,
5. to verify some hypothesis.
The retrieval system can be used for giving an expert appraisement becau

se it works in a broad area and can solve different problems, so it is an expert 
system.

We believe, that it is reasonable to use in our considerations some 
formalism of the language of algorithmic logic described by L. Banachowski
[1], G. Mirkowska [58], [59], G. Mirkowska and A. Saiwicki [64], A. Salwicki
[87] and H. Rasiowa [82]. The language of algorithmic logic contains all 
classical formulas and generalized formulas describing properties of algorithms 
which can be interpreted in our considerations in a model of arithmetic or in 
a model of integers.
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The properties of algorithms from the point of view of recursion theory and 
degree of undecidability of algorithmic properties were settled by W. Danko 
[20], [21] and A. Kreczmar [48].

The main idea depends on handling the expressions of the forms Kr- 
generalized term and iCa-generalized formula where K  is a program, t is 
a generalized term or a classical term and a is a classical or a generalized 
formula. These expressions enable us to describe functions or relations 
defined by programs and recursive functions. For example the factorial n! 
can be defined in algorithmic logic by a generalized term of the form K{z 
where:

K i : if n = 0 then z \— 1 else z: =  n*f(n — 1);,

for /(n) =  K^z, while the order relation between natural numbers can be 
expressed in algorithmic logic by generalized formula of the form K za, where

K 2: if x =  y  then a: = FALSE else 
begin u:=  0;

while 1 ((u =  y) v (u =  x)) 
do u : = u +  1;

if u = x then a :— TRUE else a F A L S E ;
end;

Readers accustomed to formalism of Hoare should observe certain differen
ce in semantics. We can show this difference by giving a typicai example. For 
example the expression Kx — u can be sensibly considered even when u does 
not occur in z.

Now we explain a technique which by means of a proof enables us to get 
information about the value of function. The considered function will be 
defined by a program. The pioneer of this method (called ABDUCTION) 
mentioned in the definition of recursive functions was J. J. Herbrand.

Let us consider the definition of factorial f(n) = K Lz. If we consider the 
expression /(3) =  u availing itself of the definition of function f  given by the 
program K v then the equality u =  6 is the result of our system. This obtained 
equality may be interpreted as a question whether/(3) = u is a theorem under 
the assumption u =  6. Our system will find the equality u — 6 and it will use 
it to prove the equality/{3) =  u. On the one hand the number 6 in the equality 
u =  6, may be interpreted as a result of calculation of K yz, on the other hand 
the equality u = 6 may be interpreted as a special axiom in the proof of the 
equality /(3) =  u.

In our considerations only the second interpretation is suitable. To show 
the difference between the proof of u — /(3) and the calculation of K zz, which

11
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is used for changing /(3) by the result of this calculation, we consider the 
program defining the addition:

K 2: if y =  0 then z: — x else z : =  k(x,y — 1) + 1; where 
k(x,y) -  K 2z.

If we want to prove the equality k(x, 1) = u, the retrieval system needs the 
equality u — x +  1 during the proof. Obviously, the calculation of every 
program realizing the addition function in the set of integers gives us as the 
result the number and not the expression of the form x + I.

In the same way our system gives us the answer whether some relation 
holds or not. Let us consider the relation p(x,y) =  K 2a. If we want to get the 
answer whether p(l,2) holds or not, our system will attempt to prove the 
expression of the form p(x, y) =  b. During the proof it gets the answer that 
b =  TRUE.

We shall give the main idea of this algorithm. If we want to prove a classical 
formula without functions and relations defined by programs then our 
algorithm gives us the proof in a standard way. It uses the rules to decompose 
sequents i.e. the expressions of the form X  jj- Y, where X and Tare two sequents 
of generalized formulas. If the constructed diagram of the considered classical 
formula is finite and all leaves are axioms then we get the proof of this formula. 
But when we want to prove an expression containing a function or relation 
defined by program then to explain this algorithm we take for example the 
formula (p(tl ,...,tn) = Mt. Thus M i can be treated as the definition of the 
function (pity,...,tn). Our algorithm starts with the sequent of the form: 

— u- Next we change the function by its definition Mi, so we get 
the sequent of the form |(- M t =  u. After that we move the program M  outside 
the equality and we get jj- M{t =  u). Next we use the rules to decompose the 
program M  and we do it up to the moment, when we get the sequent composed 
only of the classical formulas from At. If such obtained sequent has on the right 
side of the symbol |j- only one classical formula of the form r — u (where, 
intuitively saying z is the result of the execution of the program M  on the 
term t) then we extend the set of axioms by adding the set of special axioms Le. 
sequents containing u — x on the right side of the symbol jj—. Such an 
operation enables us to get the proof of the classical formula ||— tn) =  u
by our system.

We explained the idea of the execution of the considered system and 
we showed how during the proof we ought to choose the special set of 
axioms.

Now we explain the activity and the usage of the retrieval system. The idea 
of working of this system avails itself of conception of resolution and Gentzen’s
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method. To realize our conception of looking for the axioms we introduce 
many options. Moreover the decomposition of the program while a do K  
requires a special treatment.
Let us consider the following definitions:

/(n) =  K yz 
p(x,y) = K za, 
k(x,y) = K zz,
g(x) — K xz, where is of the form begin i: = i +  3; z: = x  end, 
h(x,y) = K 5z, where K 5 is of the form if x — 0 then z:= 2 else

z:= h (x~  1, /z(x, y)).

By the above definitions our system will try to prove the following 
properties:

/(1) = u, p(l,2) =  b, k(x, 1) -  ul5 g{rf) = u2, h(l,2) =

The environment of our system consists of two sets DEF and DAT. In DEF 
we write the definitions which are needed during the proof of considered 
expression. In DAT we put the formula which our system will try to prove. 
Using the above mentioned classical formulas we shail give the graphic 
illustration of execution of our system:

ENVIRONMENT

DEF DAT

y) = K3z k (x ,l)  = ui

ENVIRONMENT

DEF DAT

p(x,y) s  K ,a p(l, 2) ss b

ENVIRONMENT

DEF DAT

II”5' f[i) = u

After using the definition the retrieval system will try to prove the following expressions:

I I I
n := l(fC )2 - u )  x := l(y := 2 (iC 2a s h ) )  y : =  l(JC3z -  Uj)

I I I
Further execution of the retrieval system:

I 1 I
Paragraph 5.3 Paragraph 5.4 Paragraph 5.4

Example 7 Example 10(/u) Example 10(«i)

I i I
Our system finds the additional premises which enable us to prove the above properties:

u = l b -  TRUE u, =  x + 1

Fig. 1
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ENVIRONMENT

DEF DAT

g{x) =  K xz g{nA) =  u2

ENVIRONMENT

DEF DAT

h(x,y) = K sz *(1,2) =  «3

After using the definition the retrieval system will try to prove the following expressions:

I I
x: — n‘i{Kdz = u 2) x \ — l(y: = 2(Ksz — u3))

Further execution of the retrieval system:

I I
Paragraph 5.4 Paragraph 5.4

Example 10(i) Example 10(ii)

I I
Our system finds the additional premises which enable us to prove the above properties:

Fig. 2
u3 = 2

We have to mention that by the retrieval system we can verify the 
correctness of programs. To explain it let us consider the program defining the 
factorial i.e. f{n) = K xz (instead of we can consider another program 
defining the factorial). If we want to get the answer whether K t is well written
i.e. whether the program K y really defines the factorial (for every natural 
number n), we need to prove the expression of the form:

/(O) =  1 a V* ( —<x =  0) -*•/(*) =  x *f(x -  1))

because only the factorial fulfils this recursive condition. So a program defining 
a recursive function can be verified in such a manner.

The graphic illustration of the proof of correctness of program defining the 
factorial is as follows:

ENVIRONMENT

DEF DAT

m  =  k , z y(0) =  1 A Vx(—>(x =  0) -+J[x) = x * J[x~  1))

After using the definition the retrieval system will try to prove the following expression:

n:— 0 (ATxz) = 1 AVr(->(x = 0)->(n:= x{Ktz) = x*{n: = (x -  l)tKjZ))))

The retrieval system will prove the above generalized formula. 

Fig. 3

14



The above considered example as well as the others were tested and we 
present the time of execution (see paragraph 5.6, Table 1).

The above presented examples show that the constructed algorithm 
computes even such generalized formulas for which the standard computation 
is helpless since it cannot compile the program defining the function h(x,y). 
However the retrieval system will be able to get the result.

In this paper we shall provide the major structures of the implementation. 
The generalized terms, formulas and programs are represented by the object 
TNODE consisting of four fields. Two fields are for the name of individual 
or propositional variable, logical constant, generalized quantifier, iteration 
quantifier, logical connectives and program connectives. The next two fields are 
the pointers of the same type as the considered object. The sequent is 
represented by the object consisting of two fields of the type TNODE and one 
field being a pointer to the object of the type of SEQUENT. These objects 
enable us to program the algorithm of retrieval system (RS-algorithm).

When we consider the correctness of the program defining the factorial we 
can see that our system is able not only to prove the equalities of the form 
(p(tu ..., i„) = u or to verify the relations, but also it can prove the generalized 
formula from algorithmic logic. As an example we can prove the expression of 
the form:

x > 2 ->  if{x) =  {x*(x -  1)*/(x -  2))).

All these possibilities are expressed in the language of algorithmic logic 
where the expressions <p(ix, (i.e. recursive functions) can be defined by 
generalized terms of the form Kz. Moreover we can prove or verify by 
RS-aigorithm the expressions from many theories. For example we shall 
formulate some of them:

1. If x is a finite set and y  c  x then the power of the set y is less than the 
power of the set x, for every set x and y (it is a theorem of set theory),

2. If T(x,y,z,v) is a trapezium then the angles zyv and zvy are equal (it is 
a theorem of geometry),

3. (P(x) -» VxQ(x)) =  Vy(P(x) -» Q{y)) (it is a theorem of the calculus of 
quantifiers),

4. - ‘(3xP(x) v 3 y<2(y)) v3.(P{z) vg(r)) (it is not a theorem of the calculus 
of quantifiers),

5. (p -*• (q -> s)) -* {{p -» q) -» (p -* s)) (it is a theorem of propositional 
logic),

6. { X u  Y ) \Z  =  (X \Z ) u ( T \Z )  (it is a theorem of boolean algebra),
7. Vr((Vyx u ] /  =  )f-»x =  0) a  (Vyx n  y =  y -* x =  1)) (it is a theorem of 

lattice).
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We shall construct an expert system which will be able to solve problems in 
a similar way to the human brain. The procedures and functions may occur in 
the considered theorems while the program is being executed.

In the last section we shall study the decomposition of programs by using 
the model and we shall describe two rules which play an essential role in our 
considerations. In this section we shall formulate the RETRPROV-algorithm 
which enable us to prove theorems as well as to find a special set of axioms for 
expressions containing procedures and functions defined by programs. Some 
Gentzen method was considered by G. Mirkowska [61] and by A. Kolany in 
his manuscript. We shall not use the Gentzen’s method but by a special kind of 
decomposition we shall get the result in an evidently shorter and speedier way 
than by using RS-algorithm. We shall present a few examples of using 
RETRPROV-algorithm for proving properties of programs. RETRPROV- 
-algorithm enables us to determine whether a relation defined by program 
holds. Moreover it can be applied to Hoare’s method for proving partial 
correctness of programs. If M  is a program, a is a generalized formula, 
and /? is an output generalized formula then the problem of partial correctness 
of program M can be reduced to the question of whether the formula 
(oc a M  TRUE) -* Mp) is true.

Chapter 7 contains the concluding remarks and the summary of the 
author’s contribution to automatic proving system.

Historical remarks

The starting-point of our considerations was an idea connected with functions 
defined by programs which was mentioned by A. Salwicki [89].

Today there exist many systems formalizing the mathematical semantics of 
programming languages. In the presented paper we consider a logical system in 
which the properties of programs are expressed. This logical system called 
algorithmic logic AL was initiated by A. Salwicki [88] in 1970. It includes 
expressions called programs and generalized formulas describing properties of 
programs. Programs are expressions built by means of substitutions as primitive 
programs being interpreted as assignment statements' and by means of 
operations of composition, branching and iteration. These correspond to basic 
operations in programs written in high level languages such as FORTRAN, 
ALGOL or PASCAL. In that way an algebra of programs was obtained. 
This was not the aim in itself but an auxiliary step in the development of 
theory.

At first the axiomatizability of algorithmic logic was established by 
L. Banachowski [1], W. Danko [21] and G. Mirkowska [58], [59], [60], [62], 
next the questions of effectivity problems of AL were studied by B. Chlebus
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[17] and A. Kreczmar [48], [49]. Moreover many-valued algorithmic logic 
were considered by E. Perkowska [68] and H. Rasiowa [80]. Applications of 
algorithmic logic to procedures have been discussed by S. Radziszewski [77], 
H. Rasiowa [82] and others. Some logical systems enable us to examine 
non-deterministic algorithms. They are related to the dynamic logic formulated 
by V. Pratt [73] and investigated in several papers by D. Harel and V. Pratt
[39] and K. Segerberg [90] as well as by G. Mirkowska [60], [61] in 
algorithmic logic with non-deterministic programs.

H. Thiele [96] and E. Engeler [27] were that first who were looking for 
formalized logical systems dealing with programs and their properties.

The history of automated deduction described in the literature is very 
extensive. Nowadays there are two methods often applied in automated 
theorem proving i.e. resolution which was studied by J. Robinson [83] and
C. Green [33] and G. Gentzen’s method [30].

Robinson used resolution for the first-order logic and showed its practical 
use. In fact, it is correct to say that all details connected with resolution were 
known before J. Robinson [83]. Resolution as a propositional rule was defined 
as a function and studied by A. Blake [9],

Next it became weii-known as Quine’s consensus rule [79] of the form:

IKk p H
IN

which in turn is just a variant of Gentzen’s cut rule [30]

x \ \ -Y ,r iPtz \ \ - w
x , z \ \ - x w

and is the generalized version of the modus ponens. Gentzen’s method is 
competitive to all methods using resolution as a main rule (see M. Davis [23]).

B. Dunham and J. North [26] used the consensus rule in a version of 
W. V. Quine as a recognition-type rule for theorem proving. Unification, 
however, was first discovered by J. J. Her brand [41] and used by D. Prawitz
[74].

Robinson’s achievements consisted in putting all these results together into 
a uniform and elegant calculus [84].

The linear refinement of resolution was introduced independently by
D. W. Loveland ([52], [51]) and by D. Luckham [54].

Detailed comparisons of different proof procedures in the linear strategy 
were carried out by G. V. Davydov [24], D. W. Loveland [53], W. Bibel [3], 
W. ChaQg and L. Lee [16] and by D. W. Loveland [50].
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The first implementation of a proof procedure for the first-order logic was 
done by D. Prawitz, H. Prawitz and N. Voghera in 1958/59 [75] and the first 
implementations of mathematical theorem proofs were done in the midfifties. 
For instance, in 1954 M. Davis [23] implemented Presburger’s decision 
procedure for the arithmetic addition.

In 1956 A. Newell, J. Show and H. Simon [65] constructed a program 
called the logic theorist for proving theorems in propositional logic in a way 
which simulated the human problem solver.

In the world literature we can fmd a review of various proving systems e.g. 
R. S. Boyer and J. S. Moore [12] present one of them, which verifies the 
properties of recursive functions. This system employs the reduction and 
induction. Some lemmas in Boyer and Moore’s interactive proving system are 
specified to be proved before their using in the main theorem.

Several heuristics make the proving theorems more general. This is an 
incomplete system. The heuristics enhance its effectiveness. This system verifies 
programs and theorems of mathematics and metamathematics (A. Bundy [14]), 
as well as Wilson’s theorem (D. Rusmoff [86]).

JL. M. Hines’s system of proving theorems [45], [44] transforms several 
simple conclusions into more general ones which simplifies concluding due to 
elimination of auxiliary results.

In consequence the usage of these rules is bounded which, however, does 
not detract from the value of the results or accelerates the proving process.

The next proving system constructed by S. A. Miller and L. K. Schubert 
[56] recognizes natural language. It is a hybrid system namely a resolution 
proving system equipped with the specialized concluding modules concent
rating on the fixed data structure which accelerates concluding. In this system 
there are modules calculating in the arithmetic theory and the set theory. This 
module was described by J. Haan and L. K. Schubert [38], The theorems 
which are proved by this system are formulated in the language of the 
first-order predicate calculus.

H. S. Jonsohn, R. Landwehr, G. Writson [46], [47] present an interactive 
proving system based on J. A. Robinson’s solution [85]. This system accepts 
expressions of lambda calculus. This system applies semantic approach in 
generating proofs by contradiction.

The next system constructed by S. Greenbaum [34], [35] uses various 
variants of the resolution method. Complex data structures make it possible to 
avoid redundancy which results from storing a lot of copies of the same objects 
and to accelerate the search of required information from a data base.

M. E. Shekel’s system [94], [93], [92], [91] is based on the resolution 
method represented by graph. The formulas including the equality symbol are 
simplified by means of a reduction system. One element of this system is 
a prologlike proving system.
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M. Gordon, A. Milner and C. Wadsworth [32] and M. J. C. Gordon [31] 
tested LCF program which verifies the properties of calculable functions 
defined in the language of the first-order predicate calculus and lambda 
calculus. The strategies of theorem proving were formulated by L. Cardeili in 
user-friendly programming language ML [15]. This system was applied in 
testing several standard mathematical theorems. It was also tested by 
L. Paulson [67],

E. L. Lusk, W. W. McCune and R. A. Overbeek [55] constructed programs 
which enable the user to apply many functions from different proving systems. 
These programs are convenient to use. The elements of this system are grouped 
into five levels.
•  In the first level there are several implementations of primitive types 

nonexistent in Pascal.
•  In the second level the type “object” was implemented. On the elements of 

the type “object” we can use the unification and the substitution rule. In this 
level there are mechanisms allowing to represent and to use logical formulas 
and then substitution. Moreover each object can have some attributes.

•  On the third level we can use functions allowing to conclude by resolution 
and to absorb clausules.

•  On the fourth level it is possible to do a configuration of the whole proving 
systems. The systems on this level are represented by independent processes.

•  On the fifth level the modules are able to manage the processes from the 
fourth level. The tools in this system are general enough to construct the 
proving theorem system in lambda calculus, the system of natural deduction, 
Gentzen's system and the system based on the resolution rule.
K. M. G. Raph [78], K. Blasius, N. Eisinger, J. Siekmann, G. Smolka, 

A. Herold, C. Walter [10], A. Bundy [14] and H. J. Olbach [66] constructed 
the system in Kaiserslautern and Karlsruhe which belongs to the greatest 
projects of this type. This system assumes that proving theorems requires 
extensive, specific knowledge which is used to formulate theorems. It consists 
of two levels:
•  The aim of the first level is to gather information (axioms, definitions etc.) 

which is specific for the considered problem and to decide about the way of 
proving. Moreover this level chooses the proper strategy and makes the 
suitable modules active.

•  The second level is based on the structure of graph in which each edge is 
a potential step in concluding in the set of clausules e.g. the edge of the graph 
means using resolution or factorization. Concluding is possible because of 
special modules. One of them transforms formulas into clausules. Later they 
are grouped to form the edges of the graph. Then the graph is reduced by 
absorption of clausules. Next module includes the unification algorithm for 
the formulas with identity. Another module chooses various strategies of
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proving theorems. Next module contains adopting procedures of division 
and simplification of the diagram of the graph. By means of this module it is 
possible to discover the loops caused by frequent usage of the same lemma. 
The clausules derived from the considered theorem have priority. Useless 
edges of the graph resulted from tautologies are reduced. Using this module 
we often lose completeness of this strategy of proving. All these modules 
improve effectiveness of this system.
Next system constructed by T. C. Wang [99] is based on resolution. 

Additionally in each constructed clausule there is.information about “history” 
of clausules. It makes possible to limit the form of the generated proofs. This 
method finds some special cases of absorption.

In this system there exists a semantical approach to proving theorems. The 
system will consider only these clausules which are accepted in the model. In 
[99] we can find examples of proved theorems.

The proving theorem system constructed by S. Wolfram and Ch. Cole and 
described by A. Bundy in [14] is an interactive system which facilitates 
manipulation of mathematical expressions. This system can perform the 
following operations:

1. Decomposition of mathematical expressions,
2. Operations on polynomials,
3. Solution of linear and not linear equations of several variables,
4. Differentation and integration of the wide class of expressions,
5. Operations on matrices,
6. Operations on finite and infinite series (limitation, addition, multipli

cation).
This system enables the user access to various mathematical environment:

•  numerical calculations,
•  graphic representation of mathematical expressions,
•  advanced programming language,
•  interactive communication.

W. Bledsone and M. Tyson [11] constructed Gentzen’s interactive system 
for proving theorems of the first-order predicate calculus. The key idea of the 
system is based on dividing the problem into many subproblems. It is possible 
to use mathematical induction. The user can influence the process of searching 
the proof and indicate the optional rule of conclusion. This system was 
described by A. Bundy in [14].

Some aspects on automatic theorem proving were described by A.' Biela 
and M. Wojtylak in [8].

A. Trybulec [97] developed the well-known MIZAR proof-checking system 
based on the resolution method.

11th International Conference, TPHOLs’98, Canberra, Australia, Septem
ber 27—October 1 was dedicated to current aspects of theorem proving in
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higher order logics and formal verification and program analysis. Besides the 
HOL system, the theorem provers Coq, Isabelle, Lambda, Lego, Nuprl and 
PVS were discussed and published in Proceedings [36],

J. Harrison in [40] combines traditional lines of research in theorem 
proving and shows the usefulness of real numbers in verification.

This analysis of literature on automatic theorem proving points out that 
there are many interesting systems.

Our considerations strongly vary from the above-mentioned studies, since 
our logic contains a built-in notion of program and because these con
siderations enable us to prove theorems which include programs. Our 
constructed system enables us to find assumptions which are necessary for the 
proof of expressions which are not theorems. Then this system looks for the 
special assumptions during the execution of program and tries to finish the 
proof. After finishing the proof this system shows us all the adopted 
assumptions. Using this system the partial correctness and equivalence of 
programs can be determined.



PART I

Chapter 2

Basic definitions

2.1 The language of AL

To construct a language of algorithmic logic we have to distinguish a set of 
signs called the alphabet and to give some syntax rules of creating syntactically 
admissible expressions in the language.

The alphabet L of algorithmic logic AL consists of the union of disjoint and 
at most denumerable sets:

1. V the infinite set of individual variables,
2. V0 the infinite set of propositional variables, we assume that the set 

V0 u  V  is linearly ordered by a certain ordering relation,
3. J f  the set of non-negative integers and N  = jV \ { 0},
4. [JmeN Pm, where Pm is the set of m-argument predicates,
5. where denotes the set of m-argument function symbols,
6. {TRUE, FALSE} the set of logical constants,
7. { —>, a , v , —>} the set of logical connectives: -> (negation), a (conjunc

tion), v (disjunction) and -» (implication),
8. {V } the set of general quantifier /3 means --V ->/,
9. {(J, P|} the set of existential iteration quantifier and the universal 

iteration quantifier respectively,
10. {begin - ; - end, if - then - else - , while - do -} the set of program 

connectives called composition, branching and iteration respectively,
11. {(,),/,[,]} the set of auxiliary signs. □

The standard definitions of the sets T0, F0, S0, S F of classical terms, 
classical open formulas, substitutions as assignment Instructions, programs, 
and generalized formulas sometimes called formulas may be found in L. Bana-
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chowski [1], G. Mirkowska and A. Salwicki [64] and A. Biela [5]. We recall 
these definitions.

By the set T0 all classical terms we shall understand the least set of 
expressions closed under the following two formation rules:

tl. If x eV  then x e T ot
t2. If for some m e l"  and T1,...,rme r o are classical terms then

(p{rl t ...,xm)eT0.Q

By the set F0 of all classical open formulas we shall understand the least set 
of expressions closed under the formation rules:

fl. V0u{TRUE, FALSE} c  F0,
f2. li  p e P m for some m e N  and r l ,...,rmeT0 then p (t15.-.,tJ gF0, 
f3. If a, f isF 0 then ->(a), (a a /?), (avj5), (a -*/J)eF0. □

The set (denote it by At and call atomic formulas) is created by usage of fl, f2 
formation rules only. By an elementary formula we shall understand any 
classical open formula of the form p(r-x, Let E be the set of all elementary 
formulas.

The set Sa of assignment instructions is the set of all expressions of 
the form:

(a) [XiAi x j r n> ....a ja J  for n, m e N,
where x u ...7x„ (respectively av ...,a j are pairwise different individual 
(respectively propositional) variables, xls ...,zn are classical terms and 
av are classical open formulas. □

The set S of programs is the least set containing all elements of S0 closed 
under the formation rule:

si. If a g F0 and K, M e S then begin K ; M end, if a then K  else M, while a do K
eS. □

Sometimes the programs begin K; M  end, if a then K  else M, while a do K  
will be denoted by [K  M], jvi[a K  M], *[aK] respectively. Let us denote 

...]]] by for m > 2

The set Tof all generalized terms is the least set containing T0 closed under 
the following formation rules of construction:

1. If T i a r e  generalized terms then (p{r1,...fT:n)eT t
2. If K e S  and re  T  then K reT . □
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The set F of generalized formulas is the least set satisfying the following 
conditions:

1. F0 c  F,
2. If a ,fieF  then -» (a), (a a fi), (a v /?), (a -> F,
3. If K g S and cteF  then Kcc, {JKa, f^K aeF , where (J and p] denote the 

existential and universal iterational quantifiers respectively. □

The set F v of generalized formulas with quantifiers is the least set satisfying 
the following conditions:

ql. F0 c  Fv>
q2. If a, f  e Fv then -  (a), (a a f), (a v £), (a -> ¡1) e Fv,
q3. If K e S  and a e f ¥ then Ktx, [JKoc, p iC a e F v, where (J and p| denote the 

existential and universal iterational quantifiers respectively, 
q4. If a gFv and x eV  then 3xa, Vxa e F v. □

By the language of AL we shall mean the system SF =  <L, T0, F0, S0, 
S, F > and by the language with generalized terms we shall mean the system 
.Sf'' =  <L, TOJ F0> Sa> S, T, F '> , where F' additionally is dosed under the 
following formation rule:

(i) If are generalized terms then p(Tj,,...,i:n)eF ', where p is an
n-argument predicate symbol. □

By the language of the extended algorithmic logic of the first order, with 
classical quantifiers introduced by L. Banachowski [1] we shall mean the 
system SF" = <L, T0, FD, Sa, S ,F V>. □

We shall denote by &(£) the set of all individual and propositional variables 
of the expression (. Let 0 denotes the empty set and P(X) denotes the set of ail 
subset of the set X.

If se S  is of the form (a) then the expression obtained from the expression C 
by simultaneously replacing all occurrences of the variables x if a^e (xl 5 x n, 
a a m] by the expressions a.j for 1 <  i < n, I < j <  m will be denoted by s(.

2.2 Realization of an algorithmic language

Let U be a non-empty set and let S80 = <5,,, u , o , j—►, — , / \  , \J 0> be a two- 
element boolean algebra with the unit element \ /  and the zero-element f \  and 
B0 — { / \  , \ /  }, where — is a complementation and u , n , i-+ are binary 
operations on Ba such that x  n  y is the infimum, x  u  y is the supremum and 
x i—> y =  — x u  y. Let Un — JJ x . x XJ be a Cartesian product of the set U.

n— times
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By a valuation v in the set U and the algebra &0 we shall understand any 
mapping of the set of individual variables and propositional variables into U or 
¿^respectively. The set of all valuations will be denoted by W. □

By a realization (see L. Banachowski [1], G. Mirkowska and A. Saiwicki 
[64], A. Biela [5]) of the language L£' in a non-empty set U and in the boolean 
algebra ¿$0 we shall understand any mapping 02 assigning to each functor <p, 
a function (p#‘.U n ->U  and to each predicate p, a function pgt:Un — B0. Any 
realization 02 induces mappings : Wu {LOOP} U u  {LOOP} for t g T̂ 
s* : W u {LOOP} -> W u {LOOP} for se S ot am:Wv{LOOP} B0 for a e F ’ and 
mappings K# c= W u {LOOP} x W u {LOOP} for KeS. LOOP differs from any 
other element of AL and intuitively means that the value of a program in 
a realization and a valuation is not defined. We give the precise definitions of 
these functions.

Let v e W  then

(i) iva (u) = y(w), x^LO O P ) =  LOOP and p^LOOP) — f \  for every in
dividual and propositional variable w and for every individual variable x  
and for every propositional variable p,

f  (P#(xL3l(V)> ■■->zn3t(v)) if xi3t(v) are defined
(¡i) <P(T = < for every 1 < i < n

lLO O P in the opposite case

f  Pa(Ti»(ü))- ,TnSi(y)) if xux(v) are defined
(iü) p(rl5...,Tn)^(ü) = i for every 1 < i < n

O
<

 
__

j in the opposite case

(iv) ^(u) =  v' and s^LOOP) =  LOOP for every assignment instruction s of 
the form (a), where

f  v{z) for z $ {xi f xn, aL, a j  
v'(z) =  < xiSt(v) if z =  for some 1 < i < n 

[_ ocjgi(v) if z = aj for some 1 < j  < m

Obviously [ ] a (u) =  v,

(v) TRU Ea{v) = F A L S E R ) = A 0>
(vi) (-a ^ )(u )  =  -a*(w ),

(a a flgiv) -  cta{v) n  pm{v),
(a v 0)*(o) =  a* (w) u  fia{v\
(a -> P)jv) = aa (y) »-► /!*(»), for every classical open formulas a, e F0,

(vii) If a e F 0 and K, M eS  then
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IK M lsiv) =

y .[aiCAi] gf(v)

M&iKgiv)) if Kg(v) and M ^K ^v ))  are defined 
LOOP in the opposite case

=  i  M a(v)
LOOP

if aa (y) = \J o and K a(v) is defined 
if ct^v) — / \ o and M a(v) is defined 
in the opposite case

where i is the natural number such that 
; ( ^ ‘a)3f(y) = f \ 0, K.gf(v) is defined and

(Ktyaiv) -  \ / o for every j  < i 
LOOP if such i does not exist

(viii) ff Ke S and z e T  then

(Kz)M(v) -

(ix) If a s ? '  and Ke S then

(zgiKgiiv)) if is defined
[LOOP otherwise

{a^K^iv)) if Kgf{v) is defined 
/ \ o otherwise

((J.Ka)a (z>) =  sup{(Kia)ijf(y):ie./f'',‘}>

(fi *«)*(*) =

where K°ct =  a and K l+la — K (K la) for every a, p s F .
(x) The equalities from (vi) for every a, {1 e F'.

If we consider the language F£" then we omit the point (viii) and we 
change F' into Fv and we add a new point:

(xi) If oce Fv and x eV then (3xa)*(u) = sup { a a n d  (Vxa)^(y) =  inf 
{agf(vj):jeU}, where Uj(x) = j  and Vj{z) =  v(z) for any v e W and □

To illustrate the meaning of the generalized formula of the form Ka  for 
a e V0 let us consider the language of arithmetic system in the set of nonnegative 
integers using s as successor function, 0 as the number zero and = as the 
identity relation. For the sequel considerations we shall use alpha a =  ft 
instead of (a -»/?) a (/? -> a). It is easy to see that for K  of the form:

-v-[(x =  y)[a/FALSE][ [u/0]; [*H (u  -  y) v (u -  x))[u/s(u)]]; 
j^ [ ( u =  x )[fl/r  RU  £ ] [a /F  ALSjE ]]]]]
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the relation < less than is definable by using the generalized formula Ka in the 
following way: x  < y = Ka. In other words we can say that in the language 
with the separate symbol < the above mentioned formula may be an axiom 
for the relation less than in the arithmetic system. We illustrate the generalized 
formulas of the form (JX a and f)Kct:

[x/0] U  O /x  + 1] (x = y), [x /I] f t  [xfx  +  1] - ( jc =  0).

We shall say that a generalized formula a eF ' is valid in the model 
J (  ~  <U, @0,& > ¡J{\= <xl iff a^(u) =  \ J o for every v e W. □

We shall say that v is the valuation in a model if it is the valuation in the 
set U and the algebra 3S0 of this model. □

A mapping C defined on the set of all subsets of formulas is a consequence 
operation if for every sets X, Y of formulas the following conditions hold:

1. X  a  C(X),
2. C(C(X)) c  C(X),
3. C(X) c  C{Y) whenever X  e  Y n

We define the semantic consequence operation in the language S£'.

A generalized formula a e f  is said to be a semantic consequence operation of 
the set X  c  F' (in symbols aeC ^C I)) iff for every model < U, &0, 0t~> the 
following condition holds: if every generalized formula f ie X  is valid in the 
model <U, &„,&>, then a is valid in the same model. □

A generalized formula a e F  is called a tautology iff aeC^(0). □

Obviously for the other languages the definitions are analogous. G. Mir- 
kowska [58] proved that the semantic consequence operation is not finitistic 
so there exist a generalized formula a e F  and X  c= F' such a e  (X) but 
a ̂  (XJ for any finite subset X 0 cz X . Therefore any axiomatization of (0) 
needs at least one rule with an infinite set of premises.

By a rule we mean the set of sequents of the form <X, a> , where X  is a set 
of formulas called premises and a is a formula called conclusion. □

For any subset D of the set of programs we say that the rule r is 
D-admissible rule of the consequence operation C iff for every sequent 
< X ,a >  er  and for every K<=D:

if K X  cz C(0) then KaeC{%
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If D is the set of all primitive programs (i.e. assignment instructions) then 
instead of saying that the rule r is D-admissible we say that the rule r is an 
admissible rule. □

A rule r is said to be a derivable rule of the consequence operation C iff for 
every sequent < X ,a >  e r  we get a eC{X). □

We shall say that a generalized formula a. is an element of the set $  iff there 
exists a classical formula /? (i.e. the formula without programs) such that 
a and ft are eqivalent.

A rule r is finitary iff for every sequent <X,cc> e r  the set X  is finite and 

V/e say that a conseauence operation C is complete iff C(a) — F for every
a $ c m . n

2 3  A deductive system for AL

For a, fi, A e F, 3 e FOJ se  S0 and K, M e S we define the notion of an axiom o f 
algorithmic logic which will be understood as any generalized formula of one 
of the following forms:

A1 ( a ^ / ? ) - » ( ( ^ A ) - ( a ^ A ) )
A2 a -» (a v /?)
A3 /? -» (a v P)
A4 (« -  X) -  ((j5 -  X) -  ((a v -> X))
A5 (a a ft) -» ft 
A6 (a a ft) -* a
A7 (a —> /?) —>■ ((a —► A) —> (a —>• (j5 a 2)))
A8 (a —* {ft —* A)) —*• ((i% a ¿6) —*■ A)
A9 ((a a ft) —► A) —* (a —)► {ft ~* 'O)

A10 (a a ->a) ft 
A ll (a —»(a a - ia)) -«a
A12 a v ->a 
A13 7Rl/£ a^FALSjE 
A14 s<5 =  i<5”
A15 X (av ffl = (JCa v ICjS)
A16 K {a a $  =  (Ka a 2C0)
A17 X - a  -  ->Ka
A18 K TRUE -> (~>Ka -* K  -a )
A19 K (a -> P )^  (Kec ft)
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A20 K TRU E ((Ka -  Kp) -> K(a -» p))
A21 M  U  Ka = [Ma v M  0  K{Ka))
A22 M p| Ka = (Ma a M  f] K(K<x))
A23 [K M]a = K(Ma)
A24 ^ [¿ K M jo i = ((<5 a Xa) v (-■<5 a Ma))
A25 *[<5iT|a = (J _̂ [<5 K [ ] ] ( - m5 a a)
A26 []a  = a

Let /4jc denotes the set of all axioms and let R  be the set of rules of in
ference:

a, a —>• /? a,K TRU E
r° ’ P ri : " Ka

{ X ^ M K V - .ie jV }  {M fra -*  X:iexT}
T z' X - ^ M f ^ K a  Tz '' M \J  Kct X

Since two rules have infinite sets of premises, so we define the consequence 
operation by using ordinal numbers.

Definition 1. Let y, p be any ordinal numbers less than the smallest 
uncountable ordinal number Q. The consequence operation of algorithmic logic is 
defined for X  c  F as follows:

(1) C°R(X) = Ax u  X,
(2) Ck+1(*) =  CJi(X) w [<xeF:<Z,a> er  for some r e R  and Z  <= Cj^(X)},
(3) C^(.Y) — M {Cr(X) : p. < y}, when is a limit ordinal.
(4) CR(X) =  U  [C'R(X) : y < Q ) .  □

The following theorem was proved by G. Mirkowska [58].

Theorem 1. (X) =  CR{X) for every X  c  F. □

We shall write X  [- a instead of a e CR(X) and |- a when X  is empty. Any 
two generalized formulas a and p are equivalent iff |~ a s  p.

Let and 89 =  < B ,gi t ...,gn> be two similar algebras,
i.e. algebras of the same type. A mapping h : A -> B such that 
h[ffiav ..., a*)) =  Hak))> f°r all i < n and aA, ..., a* e A is called a homo
morphism.

A homomorphism h is an endomorphism if 89 — sd. Any propositional 
language can be treated as a special algebra #  =  < C ,F lJ...iFn>, where 
Fj (1 < i < n) denotes the operator of forming ^-propositions. Such alge
braic treatment of propositional connectives appeared to be very useful.



The rule r 1( as it can be easily seen, reminds of the substitution rule, 
but really it is not the substitution rule, since a substitution rule ought 
to be defined as a function i.e. an endomorphism defined on set of atomic 
formulas with values in the set of all formulas. Unfortunately we can see that 
this rule transforms any formula p(zl,...,xn) only into the formula of the form 
p ( r \ , t'„) but not for example into the conjunction of two formulas. Our aim, 
however, is to get, maybe under certain restrictions, a standard definition of the 
rule of substitution.



Chapter 3

The substitution rule

3.1 The notion of (e, ^-function and K g  program

In this chapter we shall introduce the notion of program-substitution in AL 
and we shall prove that it is in accordance with the basic intuitional notion of 
the standard substitution.

In this paragraph we shall try to separate from all endomorphisms such of 
them that preserve the main properties of programs.

Let e : A t -> F0 be a mapping such that e(7RUE) = TRUE  and 
e(FAI^S E) ~  FALS E. Let he : F0-*F o be an extension of e fulfilling the 
following conditions:

1. he(a) = e(a) for a e At,
2. Ae( - 0 )  =  - A m
3. he(fi •  A) =  he{fi) •  Ae(A) for A e F0 and •  e { a , v , -*}.

It is easily seen that he : Fa -* F0 is an endomorphism and that it is the only 
extension of e : A t -*■ Fa fulfilling (1), (2), and (3).

From all endomorphisms he defined on F0 we shall try separating the ones, 
whose special extensions p to the set F, which will be called the program- 
substitution, satisfy the following meta-condition:

(b) p(CRm  <= C M

The condition (b) guarantees that the set of all algorithmic theses of AL will 
be closed under these functions. Now we present two examples showing the 
difficulties which we will have to overcome.
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Example 1. Observe that it is impossible to define p : F —» F  for the generalized formula of the 
form Ka by the equality p(Ka) =  JT(/j(a)), simultaneously maintaining the properties of homomor
phism. To visualize this, assume that e{p(x)) = p(x) a p{y) and let x, y, z denote different individual 
variables. As an immediate consequence we get

p([y/z] PM) =  [y/z](p(x) A p(y)) and pifylz] P(xj) =  p(x) a p(y)

since p[p(x)) -  h({p{x)) =  e{p{x)). According to the axiom A14 and (b) we get
|-(p(x) a p{y)) = (p(x) a p{z)) which is impossible. ■

Example 2. It can be easily seen that an endomorphism hc on F0 cannot be extended to the function 
p : F  -*■ F  if p satisfies the condition p(Ka) — K'p(oc) where Ka. is the generalized formula and K ' is 
a program.

For this purpose let

e(a) — a a FALSE  for a e V0.

Then

p([a/(a -> a)] a) =  [a/« -*■ a]'(a a FALSE) 

and

p([a/(a -> a)] a) = p(a) -> p{a).

Hence, by (b) and A14 it follows that |- FALSE =  TRUE, which is false. M

At first we shall introduce a few definitions to illustrate the aim we set at the 
beginning of the point (b).

D efinition 2. For the further considerations we shall use the symbol g, 
sometimes witk indices, for any one-one mapping of the set F u  F0 into F u F 0 
such that g(V) c: V and g(V0) c  V0. We denote by G the set of all o f these 
mappings. Any such mappings can be extended to the function g' defined on 
T0 u  F0 by putting:

1. g’(z) =  g(z) for every z e F u F , ,
2. g'(TRUE) =  TRUE and g'(FALSE) =  FALSE,
3. -,*„)) =  for any ( p e \ ,  n e N  and for any

T1> —j ^
4. g'((p) = <p f° r any <p e
5. for any p(xv t„)g E, neN,
6. g'{a •  P) =  g'{a) •  g'(§) for •  e { a , v , ->} and g'(->u) = ->g,(ct). □

If s is of the form (a) and / i s  a mapping from T0 into T0 and from F0 into F0 
such that f[V) c: V, J[V0) c  V0 and if /  is one-one on V kjV0 then by f(s) we 
denote the assignment instruction obtained from s by exchanging all expres

3 Algorithmic... 33



sions of the form x it a}, ctj for /(x f), /(t(), ¡(aj), f[<Xj), where 1 < i < n and 
1 < j < m  respectively. Obviously if s =  [] , then f(s) = [].

We can notice that the function g' allows us to change the variables inside 
any classical term and any classical formula. Now we consider an example to 
explain the connection between the mapping g' defined on Ta u  Fa and 
a certain endomorphism.

Example 3. Let g eG  be a mapping such that g{Vv V„) <z [V v  V'J,)\S(a) for some a e F „  and let 
e : Al -* F„ be defined in the following wayr

e(a) =  g[a) a a,
e{TRUE) = TRUE  and e[FALSE) =  FALSE, 
e{p [xy, .... r j )  =  p{g'{x 1). ...,g'(xn)) a a

for every a eV B, peP„, n e N  and x1,...,x„eTQ.
Since g'(sx) = g'(s)g'(r) for every r e 7̂ , and every s e S a and moreover =  a, we get

By A14 we get 

Thus

e ( s p { x r j )  =  e(p(W-u

=  p(0'(3«D,-,0/(s^)) a a =  p{g'{s)g'{xi } , .... a g'(sja

=  aTsHo(o'(T,).....o 'f t j)  a a) =  g’( s ) e { p ( x t j ) .

¡-ff'(s)eCp(-r1, ..,T j) =  g'(s)e(p{x1, ...,xn)).

|-e (^ (T 1(- ,T j)  =  g’{s)e{p(xi ,...1xB)). ■

Examples 1 and 2 show that the definition of program-substitution on the 
axiom AX4 ought to be very sophisticated. Example 3 shows a way how 
to do it. Moreover Example 1 shows that if $(e(a))\$(a) ^  0 then we have 
difficulties with fulfilling the axiom A14 and we overcome them here by using 
the function g\  which enables us to separate variables and which fulfills the 
equality

e(sp(Ti7..., t„)) =  gl(s)e(p(ri ,

For further considerations we assume that g e G  and g' is the extension 
of g from Definition 2.

Definition 3. Let geG.

e e £ g iff (1) e: A t ^  F0,
(2) g(TRUE) = TR UE and ejFALSE) = FALSE ,
(3) e(sp(x1 7 Tjf) = g'{s)e(p(q , ..., rn))

for any elementary formula p{xl ,...yxf). □
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It is easy to observe that for such a mapping that e e g g, e : At -» F0 there 
exists an endomorphism he :Fa ~* F0.

L em m a 1. For every g e G  and for every e e £ g we get

(i) g(V0)r,9(e(E)) = <j>,
(ii) g(V\S(a)) n  9(he(«)) =  0 for every a e F 0, such that 9(a) n  V0 -  0. □

Proof, (i) Assume to the contrary that there exist a e V0 and p(xv r j  £ E such 
that gf(fl)£S(e(p(T1,...,TH))). By virtue of Definition 3 we get

e([a/fc]p(Ti,...,T„jj =  9 '(W ])e(p (x i>...,x„)) for beV a and a #  b.

Hence

e(p(xL> TJ) =  [?(a)/g(h)]c(p(tl5...5T j.

Since g(a) =£ <?(6) then

g(a)&  ({_g(a)/g(b)]e(p(r1 > x„))).

Thus g(a) ^9(e(p(zu t„))) which is impossible.
(ii) Let yeV \S (a). If ae{TR U E , FALSE} then 5(e(a)) =  0. 

If a is of the form p(xv  ~,Trt) for p(rp x ^ e F  then

l y f al pb  i , - » 0  =  p ( T i , r j .  

For from Definition 2 we get j(y) ^  5 (2 ) and

g(y) 49 (fjg(y)/g(z)2 e(p(xl y tJ)).

Hence and from Definition 3 (3) we get ¿?(y) £9(e(p(xl t t n))).
Let us assume inductively that (ii) holds for every subformula of a. If a is 

of the form or ->f$ for some # £ { a , v , -»} then by the inductive 
hypothesis we get g(y) $9(he(fl)) u 9  (he(Xf) in the first case or g(y) £9(he(fi)) in 
the second case. Since he is an endomorphism, g(y)f9(he(a)). ■

It is easy to see that for every g from Definition 2 there exists a function 
e : At - +F0 such that e e ^ r  Obviously if e(TRUE) — 'IRUE, e(FALSE) = 
=  FALSE and e(p(xly...yt„)) =  p(g'(xA) , g ' ( t j )  then e e £ g for a given g from 
Definition 2. However, it is not true that for every function e: A t -> F0 there 
exists a function g from Definition 2 such that ee& g.
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We would like to explain the underlying idea of the definition of 
a program-substitution p : F -> F. Look at Example 2 and consider a generali
zed formula a =  [a/a -» a] a =  [a/a —*■ a] a. From (b) and A14 the generalized 
formula p(a) should be a theorem of AL, but Example 2 shows that it depends 
on the value of p([a/a a] a).

The above considerations allow us to define the program-substitution 
p : F -» F  by putting the restriction p(F0 = he for some mapping g e G  and 
some Now we have to decide how to define p(a) for a e F \ F 0.

By using a mapping g eG  and e e £ g we put

P{v) =  ig(a)fe(a)] (lg(fl)/g(a) -*■ 9(a)] g(a) =  [g{a) g(a))).

By (b) we should get \- p(cc). By A14 we get

h l9(a)/g(a) -> ^(a)] 0(a) =  (g{a) -* 0(a))).

Since the rule r of the scheme — for any oceF and s e S n is a derivable
SOL

rule in the consequence operation of AL, we get

(“ lg(a)/e(a)] ([g(a)/g(a) -> 0 (a)] g{a) = (g(a) -> 0 (a))).

Thus f- p(a).
Look at p(a) once more. Wc introduce and explain some abbreviations 

which will be defined later. Obviously 5(a) =  {a}, so we put s* =  [g(a)/e(a)] 
and we changed K  = [a/a -> a] for K eg = [g{a)fg{a) -> g(a)]. Later we shall see 
that in general if an elementary formula occurs in a program K  then K eg really 
depends on a function e e £ g, and any propositional variable a e  Va will be 
changed by g(a). Therefore p{a) =  ^ (K egg(a) = {g(a)-+ g(a))).

Now let us consider the generalized formula

ß = la/p'(x), y/z] p(x) =  [a/p'(x\ y/z] p(x) 

for different individual variables x, y, eV. Let g eG  and e e g g. We put 

Piß) =  ig(a)fe(a)] (e(p(x)) = Lg{a)/e(p'(x)), g(y)/g(z)] e(p(x))\

By Lemma 1

\_g{a)/e{p'{x)), g(y)!g(z)2 e(p(x)) = e(p(x)). 

Hence and by r l3 A14 we get \- p(ß).
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Look at p{ß) once more. Since S(ß) n V 0 = {a}, we put sp =  [g(u)/e(a)] and 
we change

K  = la/p'{x\y/£] for K% = lg{a)le{p'{x)),g{y)lg{zf]

and

p{x) for e(p(x)).

Thus

Pifl) = sf (e[p(x)) =

These examples show us that for any generalized formula cceF \F a the 
notion p{ß) needs the following expressions: the assignment instruction sß and 
the program K.% for every K e F .  But Kg may be defined by using the function 
which transforms xeV , aeV 0, p{xi 7 tJ e E into g{x), g{a), e{p{xu ...,xrf) 
respectively.

D efin ition  4. Let g eG  and e e § q. The function u:A t->  F0 is (e, g)-function iff 
u{a) =  g{a) for a eV 0 and u(a) — e(a) for a e  A t \  V0. □

If u is (e, ¿¿¡-function then there exists an endomorphism hu defined on F0.

D efin ition  5. For any program K e S  and any function g eG  and e e £ g i f  u is 
(e, g)-function then we define K eg as follows:

1- I f  K =  [] , then K eg =  [] ,
2. I f  K  is of the form (a) i.e. K is an assignment instruction then 

K t = lg(xl)/g'{Tl) ,- ,g (xn)/g,(‘t„)1 g(a1)/hu{cti ),...,,g(aj/hu(am)'],
3. I f  K  is of the form [MW], _vl[^ M N] or *[<5 M], then Kg equals

_x_[hu{5) M gNeg] or M*] respectively. □

D efin ition  6. Let H be an endomorphism on F such that the restriction 
H/F0 = h'1 for some geG , e e S g and (e, gyfunction u. Moreover we assume that 
for every a e F  and K e S  the function H satisfies the following conditions:

H(Ka) =  K egH{o), H(U Ka) = JJ K egH(a), H (f | Ka) -  f)  K'gH(x). □

3.2 Program-substitution

In this paragraph we shall introduce the notion of program-substitution. This 
definition needs the above defined endomorphism H and a special assignment 
instruction s“ for every aeF . Now we define the notion of s“.
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For every generalized formula a eF  such that 5(a) n  V0 = {al3..., am] and 
for a couple of functions f  f  such that f : T 0u  F0 -> T0u  F0, f  restricted to V0 
is a one-one mapping from Va into VQ, f : F0 -* F0, we introduce the following 
abbreviation:

If 5(a) n  V0 =  0 then we put =  [ ]. Further we shall say that i f  is 
designated by < / , / '> .

D efin ition  7. Let g e G ,e e £ g and p :F  F. We shall say that a mapping p is 
defined by using g and e iff for (e, g)-function u and an endomorphism H defined 
on F such that H/F0 =  hu the following properties hold:
(1) H fulfils all conditions from Definition 6,

p(a) =
he(a) for x e  Fg 
s“H(a) for x e F \ F 0

where if is designated by the couple <g, e>. U

D efinition  8 . Let p :F  —► F. We shall say that a mapping p is a program- 
substitution (p g Sb) ifffor some g e G  and e e £ g,p  is defined by using g and e. □

Let us observe that the last condition (3) in Definition 3 is essential in 
such a meaning that if we define the notion of program-substitution changing 
only the definition of the set g g for g e G  by missing in Definition 3 the point (3) 
then we can show that for some gGG, and e from S g without the point (3), 
there exists a program-substitution for which the property (b) does not 
hold. Let x, y, z, denote some different individual variables and g e G  
such that g(y) ^  x. Then for e :A t-f-F 0 such that e(TRUE) =  TRUE, 
e(FALSE) — FALSE  and e{p(x)) =  p'(x, g(yj) we can show that for an axiom 
a of the form

[y/z]p(x) =  [y/z] p{x) 

the following property holds:

e[(y/z]p(x)) 5* fl'([y/z])e(p(x))

and that the generalized formula p(a) is not a thesis. Hence (3) from Defi
nition 3 and (b) are false.

3 8



L em m a 2 . I f  geG , ee  S g, s e S0 and u is (e, g)-function then for any a eF a and 
f e F  we get

(i) s‘ /iu(a) =  h"(sa),

(ii) /  /iu(a) = hc(a), for VB n  9(a) c= 9(/?), where sp is designated by the couple 
<g, e>. □

Proof, (i) Let s e S 0 be of the form (a). If aeV0 and a e  { a a m} then a —a; 
for some i e { l , ..., m}. Thus segha{a) =

S ( O M a J ]  ?(ai) = ^ (« j)=  hu(sa).

Since g is a one-one function, we get g{a) <£ {ff(xj,..., g(aL),..., g(aJ}  for 
a^{al5 am). Hence s|/iu(a) =  g(a) =  hu(sa). Obviously if a is of the form 
TRUE or FALSE  then (i) holds.

Assume that a is of the form p(t v ..., t„) and p(T1,...JTn)eE . First we shall 
prove that sgg = g'{s)g for every g e 9 (e(p(Tt, t„))).

Tr% f-Vip ca se  *t t i  I n ( -r  \ n ( y- 1 n ( n  t n (n  'll \ut> or*1 — n — n '(i;\n  T f

g — g(xj) for some ; e  n} then =  p '^ )  =  p'fa)*?- Let us observe that 
?j =  p(a.) for some zefi,...,?«} does not hold for in the opposite case using 
the assumption we get ge&(e(p(xl7..., t„))) n  Va. Hence and by Lemma 1 
g£g{V0) which is impossible.

Since s%g =  g'{s)g for every g e 9-{e{p(T1, ...,zn))), we get

sege(p{xv t„)) =  g'(s)e{p(zv tJ) 

Note that ee<f , so by Definition 3 we conclude that

4 e(P(Ti.... tJ) =  e(sp(xl f r j )  = u(sp(tl 3 t„)).

Consequently sghu(a) = hu(sa).
If the theorem holds for fi,X eF 0 then from the property of endomorphism 

it also holds for a e {/? a X, p v  X, P -*■ X, ->/?}.
(ii) Obviously for a.£ {TRUE, FALSE} the theorem holds. If a eV 0 then 

by assumption a e S(/?). As a result / / i “(a) =  spg{a) =■ e(a). Now suppose 
that a is of the form p (t13 t„) for some p{xi t ..., t j e £ .  By Definition 4
we get

^ /iu(p(Ti,...,xJ) =  s/Je(p(T1,...,xfl)).
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Let

^  =  \.9{bl)!e{bi),...,g{b^e{b,)].

By Lemma 1 (i) we conclude that {g(bL) ,g {b ,)}  n  ^{e{p{zv ...» t0))) =  p. 
Therefore s/ie(p(TJ[)...1Tj) =  e{p{xu ..,,z^). Hence sph“(a) =  he{a). Since 
hu: Fa -> F0 is an endomorphism, by inductive hypothesis for X, 5 e Fa we 
get the equality s^/i“(a) =  he(a) for a e  {A a <5, X v <5, X 5, --A} such that

Now we present an example to explain the effect of program-substitutions.

Example 4. Let a e  V0, x, y  e V and x  ^  y. It can be easily seen that for the program-substitution 
p eS b  defined by using g e G  and ee& } and for the generalized formula a =  a a [x/y]p(x) we get

p(a) = s“/f(or) =  [g(a)/e(a)]{H(a) a  t f  ([x/y] p(x)))

=  f 9 {a)/e{a)~]{hu{a) a [x/y] °tf(p(x)))

=  [?(«)/<«)] 0(«) a [g(x)/g(y)] e(p(x)).

By A14 we get

H fsW /s(y)] e[p(x)) = ig{x)/g{y)'] e(p(x)).

Since hu{p(x)) = e(p(x)), Lemma 2 (i) allows us to conclude that 

[0(x)/s(y)] e(p{x)) =  e{p(y)).

Hence

b CfiM/ilO)] eO(x)) =  e(p(x)).

Therefore we conclude that

b 5(a) a [ff(x)/p(y)] e{p{x)) = [g{a) a e(p(y))).

X = 8
Since for any 8, X eF  and K  e S the rule r' of the scheme ------------ is a derivable rule

KX =  K8
of the consequence operation of AL, we get

b  [p(fl)/e(a)] 07(a) a  tg{x)/g{y)] e{p{x))) =  [fl(a)/e(fl)] (g{a) a  e(p(y))).

By A14 we get

b \_g{a)le{a)1 (g{a) a e(p(y))) = (e(c) a [g(a)/e(a)] e(p(y)).

Since h“(a) =  g(a) and hu{p(x)) =  e(p(x)), we get [p(a)/e(a)] e(p(y)) =  e(p(y)) by Lemma 2 (ii). 
By the above considerations we get b P(a) — (e(a) a e(p(y))). Moreover by A14 b « =  (a a p(y)). 
Therefore we can say intuitively that p transforms a, p[y) into e(a); e(p(y)) respectively. ■
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We can find in Chapter 4 in Theorem 9 other examples of program- 
substitution.

We shall prove that any program-substitution p e Sb is in accordance 
with our intuition. Now we consider the condition (b).

T heorem  2. Algorithmic logic is closed under program-substitutions. □

Proof. Let geG , e e £ g and let the mapping p eSb  be defined by using g and e. 
Moreover let u be (e, ^-function and let H : F —>F be an endomorphism 
such that the restriction H/F = hu and

It suffices to prove by induction on the iength of the formula a that the 
following inclusion holds:

At first we assume that y — 0. If a e Ax n  F0 then he(oc) e Ax. Since 
pjF0 — he, [- p(u). In the case a e Ax \  Fa we get p(a) =  saH(a). Since |- saTRUE, 
it suffices to prove that f- H (a) using rv  It can be easily seen that for a 
being one of the axioms of the form A1-A13 or A15-A26 we get \- H(a) 
because if  is a homomorphism. Let a =  sb =  s5 for some classical open 
formula 5 e F 0. By Lemma 2 (i) and by applying A14 we get

We assume inductively that p(C£(P)) cz CR(fl) for every ordinal number 
fi such that p <  y.

In the first case suppose that y — p0 -1- 1 for some ordinal number /ia and 
let a. e p(C&(0)). Hence and by Definition 1 we get aep(Cfr(ß)) and then by 
the inductive hypothesis (-p(tx), or there exist X  cz Cfc(ß), ß e F  and r e R  such 
that <X, ß>  e r  and a =  p(ß). Since H(Ax) cz CR(ß) and H(X)> e /  for
every r 'e R  and for every <Y, X> e r ,  we get H(CR(fi)) cz CR($). Thus we get 
H(X) cz C M

Moreover <H{X), H{ß)> er, so {- H(ß). Applying the rule rx we conclude 
that \-sßH{ß) for sß designated by < g,e> . Therefore if ß $ F 0, then (- p(ß) 
and simultaneously J- a, or if ß e F0, then a. =  hc(ß) and by A14 \- s^H[ß), which 
by Lemma 2 (ii) gives }- tx.

sFH{a) for a e F \ F 0.
he(a) for ueF ,Ct

p(C^(0)) c= CR(fi) for any ordinal number y < 0..

1-s*hu(<5)= fcu(s5), so h H(a).
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In the second case for y being a limit ordinal number and by the inductive 
hypothesis we get U {p (Q (P ))^  < y} <= C M -  

Hence p(CW)) c  C M  ■

3.3 Basic properties of program-substitution

The aim of this chapter is to prove that any program-substitution maintains 
the properties of an endomorphism without being an endomorphism.

D efinition  9. Let us consider the set X  of pairs < a 1, a2> , where a.v  a 2 e F and 
where a1 is equal to a 2 or < a 1, a 2> is one of the following forms:

(1 ) < ssJla, ss1a>  for aeV 0,
(2 ) <sslp{xL,f.fzn), ssrfiTy,..., x„)> for p(r1,...,T„)e£,
(3) < sa ,s-'a > ,
(4) <sa, s(a v f> ,
(5) <sf, s(a v f)> ,
(6 ) <sa, s(a a /?)> , 
rn  <sR sin a /?w
(8 ) < sa, s(a ->■ /J) > ,
(9) <sp,s(a - > $ > ,

(1 0 ) < s(fC(Ma)), s([iC M] a) > ,
(11) <s(a a Kji), s^L[a.KM']fi)>,
(1 2 ) <s(->a a Mfi), sjv i[alC M ]^)>J
(13) <s^!_[ocli [ ] ] ‘(iS a - 1 a), s(*[a ICJ >  for every i e J i ,
(14) <s{Kioc),s\JKa> for every i z J f ,
(15) < s(K‘a), s P| Ka > for every i e J f ,

where K, M  e S  are programs, a, f i e f  and where s is either a sequence o f 
assignment instructions st ... s# Ice N or an empty sequence. □

We introduce (cf. G. Mirkowska [59]) the binary relation < in F for any a, 
0 e F :a < /? iff there exist ai y aneF  such that at — a, an =  /? and for every 
ie  (1, ...,n — 1} the pair < a f;,a i+i>  is an element of X.

Let us notice that the binary relation < is an ordering on F such that any 
non-empty subset Z c: F contains a minimal element.

Now we shall prove that the logical value of the formula a does not depend 
on the propositional variables which do not belong to the set of propositional 
variables of the formula a.

L em m a 3. For any generalized formulas a, fieF  and any g eG, e e £ g, 
(e, g)-function u and for an endomorphism H :F  -» F fulfilling the conditions
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from Definition 6, the following property holds: if 3(a) n  Va a  3(f), then 
h spH{oc) ~  saH(a) where sp and sa are designated by <g,e>. □

Proof. The proof is by induction on the relation < from Definition 9.
Case 1. If a is a minimal element of thejelation < then a e F a. Hence by 

Lemma 2 (ii) we get s^hu{cc) =  he(a) and d*hu(a) =  he(a). Obviously the restric
tion H/F =  hu. Hence and by A14 the induction basis is proved.

Case 2. Let a eF  and suppose that the thesis holds for every generalized 
formula a' eF  such that a' < a. Moreover assume that 3(a) n  V0 <= 3(f).

Case 2.1. If a eF 0 then Lemma 2 (ii) ends the proof of this case.
Case 2.2. If a is of the form si ... sm5 for some <5 e F0 then we use the 

abbreviation 2 =  ...stn_ i smb. Since tf(Cn(P)) e  0^(0), we get h s^ # (a) = 
^# (2 ) and J- saH(x) = s“H(2) according to the scheme A14 and by rl and r' 
from Example 4. Since 2 < a, 3(2) n  Va a  3(a) n  3(f), we get by the inductive 
assumption f  s*H(2) =  sxH(X) and j- spH(X) = sxH(X). As an immediate con
sequence we get \- spH(a) =  ^¿/(a).

Case 2.3. Let a be of the form sI ... sm KM~\A, a t =  Sj ... sm (-><5 a M2) 
and a2 — Sj ...sm((5 a KX). We can observe that a x <  a, a 2 < a,3(ax) n  V„ cr 
3(a) n  3(f). Therefore using the inductive argument we get \- saH(al) = 
salH(ax) and (- = s<ziH(ai). In an analogous way we infer that
|- saH(a2) =  s“2H(a2) and spH(a2) =  sâ H(a2). Hence, by A24 and r 1 we get 

spH(a) s  fH {az v at) which by A24 proves the thesis for this case.
Case 2.4. If a is of the form sx ...sm [ i t  M ]2 then we use the abbreviation 

a A = S i... smK M ),L Similarly by the inductive hypothesis, A23 and rx we 
obtain the thesis for this case.

Case 2.5. Let us assume that a is of the form sx... sm KX. We denote 

2 f = Si...smK ’2  for any i e J f .

Obviously 3(2/) n V 0 c  3(f) n  3(a). Observe that Xx < a for every i e J i.  
Consequently, by assumption f  / i f  (2,-) = sXtH(Xi) and (- s“H(2t-) =  sXlH(Xf for 
every i e J f .  Since (- f]K 6  ^  K l5 for any ¿ e i 7, ie  J f  and every ICeS, 
we get }- s“ii(a) -» saH(2I) and \- spH(a) -> spH(Xf for every i e J i  using r l and 
r' from Example 4. Hence and by A23 for every ie  /  it follows:

b ?im- [si

and
h 5 ^ ( a ) ^ [ s « [ s 1 . ..s J* ]W H (2 ) .

Using r 2 and A23 we conclude that j- spH(a) =  sAH(a).
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Case 2.6. If a is of the form sA... sm (J KA then by analogous considerations 
the thesis holds for this case, since f- K'ö -*■ 1J K5 for any 5 e F, i e J f  and 
every K  e S.

Case 2.7. Let a be of the form sl ...sm * [<5 K]A. We use the abbreviations 
<5f =  sx ... sm (jv_[i5K []]'(-■£ a 2) for every i e J/'. Since 5(5,) n  V0 <=. 3(a) n  3(/J) 
and <5f < a for every i e j V, we get by the inductive hypothesis j- fH {5 ^  ~  
s^H{b^ and |- H  (3 ¡) =  for every i e j V.

Hence and by A23 we get

h -  [*■[>, . . J j a  ( ^ ( ¿ X [  ] ] g ‘H ( - i  A X) 

and moreover

h s“H (S ,) [ s ' [ s , ... s  J 3  M S  K [  J ] ; m  Ö A X).

Clearly |- sl ...smM tß' -* sl ...sm\JM ß' for any ß’e F, M e S  and i e / .  
Hence, by Ä25 and A23 it follows that

J- sßH(ö-) -> saH(a) and f- s“ii(<5;) -» sßH(<x) for every i e Jf_

Transforming for every i e J f  the antecedents in the above two theses 
according to the schema A23 and using the rule r 3 and A25 we get

sßH{a) -  saH{a) and \- fH (a) -* sßH(a),

which ends the proof for this case.
Case 2.8. If a is of the form

Si - s m(2 a <5), ... sm (2 v <5), Sj ...sm(2 -» <5), ...sm(-n2)

then by the inductive hypothesis, the thesis of the above lemma holds. ■

Applying Lemma 3 we get the basic properties of program-substitution.

T heorem  3. For every program-substitution p eS b  and for. all generalized 
formulas a, ß:

(i) f- p(a -* ß) = (p(a) -* P(ß)\
(ii) |- p(a a ß) =  (p(oc) a p(0 )),
(iii) f- p(a V ß) = (p(a) v p(/l)),
(iv) f-p(-.a) =  ^p(a)- □
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Proof. We shall prove only the point (i) since the proofs of the other points are 
analogous. Let us assume that p e Sb is defined by using some g e G and e e £ g. 
Moreover let

( ) = i he  ̂ for a e F °
^ for <xeF\F0

where sa is designated by a couple <g,e>  and H fulfills the conditions from 
Definition 6 . If a, ß t F 0 then (i) holds, since e is an endomorphism on F0.

Now suppose that a ^F 0 and ß$  F0. Thus p(a ^  ß) = sa" ß(H(a) H{ß)).
Since (- sa-'pTRUE, we get

p(a -*ß) = a) -> ^ ßH(ß)) by A19 and A20.

Hence and by Lemma 3 we conclude that (- p(a -* ß) == (saH(a) sßH(ß)), 
which ends the proof for this case.

Now we consider the case a £ F 0 and ß e F 0. Then p(a) =  saH(<x) and 
p(a -* ß) = sa~'ßH (a ß)= -> By A19 and A20 we get
j- s ^ ß{H{a)^H(ß)) = ( ^ ßH (c i)~ > ^ßH{ß)). By Lemma 3 |- s ^ t f  (a) s  
saH(ct) and sa~*ßH(ß) ~  sßH(ß). Hence we conclude that \- p(a -> ß) =

; $F01 p(a) =  saH(ct). Moreover by Lemma 2 (ii) we get(s*H(x) sßH(ß)). Sine 
sßH(ß) = he(ß) = p(ß). By A14 j- sßH(ß) = sßH(ß) so sâ ß(H(oi) 
(p(a) -> p(ß)). The case ß £F0 and cce F0 is analogous. ■

H{ß)) =

C oro llary  1. As an immediate consequence of Theorem 3 and Theorem 2 we 
conclude that for any generalized formulas a, ß e F and for every program- 
substitution p :F F, if a = ß then |- p(a) =  p(ß). □

The next two subsections introduce the notion of program-substitution in 
algorithmic logic with generalized terms, quantifiers and with non-determinis- 
tic programs. We can omit them while reading the paper for the first time. 
Therefore these two subsections will be printed in italics.

3.4 Program-substitution in AJO with generalized terms

In this chapter we shall to repeat the main results which were proved in earlier 
paragraphs for the case o f generalized formulas. To illustrate the intuitive meaning 
of the generalized terms of the form K x for K g S and x e V  let us consider the 
language of integers with s as succesor and 0, = as well-known symbols.
We consider the generalized formula of the form x L + x 2 + x3 =  Ky where K  
is of the form

[0/0, i/1] *[i < 3 Hy/y + xj [i/s(0]]]]-
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Obviously in the intuitive meaning the term Ky may be understood as 
a definition of the sum o f three elements, where x t means a term o f the form (p{x, i) 
for some <p e Oz, xyie V ys€  C>1, 0 , 1 , 3  e This example shows that the notion of 
generalized terms is natural. In the introduced language we shall give two 
examples of generalized terms.

E x am p le  5 .

1. [x/x + (y- z)](z -  (x-_y))
2 . *[x < y [x/x + 1 ] ]  (x + y) +  y_[x = y [u/x -  1 ] [z/2 ]]  ((x + u) -  z). □

By t(x1/t2) for tAi xz, x e  T' we denote the expression obtained from x 
by simultaneously replacing all occurrences of the generalized term xx in x 
by x2.

For further considerations we need the notion of the length of programs, 
generalized terms and generalized formulas.

D efin ition  1 0 . The length len of the expression will be defined as follows:

(i) len{tf) =  1 for any g e V u Va u  SQ u  0 O u  {TRUE, FALSE}.
(ii) I f  <p is an n-argument function symbol or p is an n-argument predicate 

symbol and tx, xn are generalized terms then len((p(xv ..., xn)) = 
l e n ( p ( x t„)) = len(xj +  ... +  len{x„) +  1 .

(iii) I f  the generalized formula rj is o f the form: a a /?, a v  or a - » / ?  then 
len(>]) = len{a) + lenlfi) + 1 , if rj =  -> a then len{r\) = len(a) -|- 1 , if r\ =  \fxa 
then len(t]) =  len(a) +  1 .

(iv) I f  the expression is of the form Krj where rj is a generalized term or 
a generalized formula then ien(Kr}) — len{K) + len{rj).

(v) I f  rj{J Ka or >1 =  0  Ka then len{ti) =  len(K) +  len{a) +  1.
(vi) I f  K, M are programs and a is a classical open formula then: 

len({_KM~\) = len(K) +  len(M) +  1,
len(±L[a K  M]) =  len(a) +  len(K) + len(M) + 1,
M * [a  K] = len(a) +  len{K) + 1 . □

Moreover we define the set of all sub terms of the term x for any x e T .  

D efin ition  11. The function q : T  -> P{T) is defined as follows:

(i) c(t) =  {t} for tg K
(ii) = q(x1)\j...K jq{xl)u{(p{xL,...,xnj} for any n e N  and

Ti , , T „ e r ,
(iii) g(Kx) = q(x) u  {Kx} for K e S and x e T .  □
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Now we introduce the operation x defined on T' kj F  which enables us to 
reduce any generalized term of the form (pix^ ...7xn)e  T '\T 0 where ( p e ^ n> 

ne T ' and any generalized formula o f the form p(xi7 ...,xn), where p e P n, 
n eN , xl7...7 t ne T  to the form K x ... Km(p(t'u x'„) or K l ... K mp(x\, x'n) respec
tively where K l7...,Kme S  and x \ , t„ g Ta. Therefore the operation x changes 
generalized terms (generalized formulas)  of the form (p{xl 7 (p (tXj tJ) 
by transporting all programs inside xi7...,xn to the left side of the expres
sion (p or p.

D efinition 12. For every generalized term and every generalized formula the 
operation x is defined as follows:

(1 ) for g e T ou F 0.
(2) x(Kx) =  Kx(r) for K b S and xe  T .
(3) I f  x e F \ T 0 is of the form (p(xl ,...,xfJ where <p€<£>*, k e N , xi ,...,xke T \  

5(t) =  {xl 5 ...,xn, a1,...,am} and i is the smallest of the numbers j  < k such 
that X jfT 0 and Kx' is an element o f the set {Mx" € T : Mx" e  c(t;) and there 
is no element g ^(t;) such that len(Mx") < len(M1t) and Mx" ^  M fi]  
and moreover if Kx' is the earliest element of the set T , ordered linearly by 
a certain ordering relation, then we put

z(t) =  l s ~ l sK ]x iw lti......*!-!> xfK x '/sx 'l Xi+1>...,xk)),

where s = [x J y Lt..., xjy„, a jb x, a j b j  and y lt ...,yn7 bl t bm denote the 
first, different individual and propositional variables not belonging to 
{xv ...,xn, al7..., am} in the linearly ordered set V(j Vg. The assignment 
instruction s~x is inverse to s.

(4) I f  a e F '\F 0 is o f the form p{xi 7 x f  then

Z(«) =  [s_ x(pfri> •••>Ti - 1» Tj(JKx#/ 5?), ri+1 ,..,x*))

where p eP k,k e  N, xv xfc e T ,  i9(x) =  { x * , x„, av amj and s, i, Kx' are 
defined analogously as in (3).

(5) Ifo teF ' a n d K e S  then z(Kcc) =  Kx(a), x ({ JKci) = U ^ a )  and. x(C\Kai) =
( W * ) -

(6) * (a* 0 ) =  XW ^XW ) and *(-«) =  ~'Xipc) for any a J e F  and » e { A ,  
v , -»}. D

Using this function x we add a new axiom to the set o f axioms Ax 
A27 p(xL>...,x„) = xipiy

and we denote this new extended set of axioms by Ar
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We add in D efinition 6 the new condition o f  the form ;

(c) H(p{Tl f t j )  =  ifCc(p(Ti, .... T„)))

for every p{xu ...,xn)E  F '\F 0 where p<=P„, n e N  and xl f t„e  T'.
Moreover we have to change in Definition 7the notion o f program-substi

tution p:F ' F' as follows:

(d)
fhe(a) for <xeF0 
( s ^ H ia )  for a e F  c  Fn.

This new set of program-substitutions will be denoted by Sb
Now we present an example to explain the effects of program-substitution 

from Sbx.

Example 6. Let z, u denote the first, different individual variables oi the set V \  {x, y} 
where a e  1̂  and x #  y. It can be easily seen that for and for p e  Sb„ such that p is defined 
as in (d) we get

p{a a p([x/y] x)) =  a  p([x/y]x))
=  [g(g)/e(fl)](g(a) a  /fCe(p([x/y]:x)))) _________
=  [g(a)/e(a)] (g(a) a  H ( [ [ z / x ,  u/y] [x/z, y/u] [x/y]] p ([x/z, y/u]x)))
-  [ff(a)/e(c)](5(a) a  [[ff(z)/if(x),s(u)/?0];] [g(z)/3 (u)]]e(p(z)).

By Lemma 1 (i) and by applying A14, A23 we conclude that the generalized formula 

ig{a)le{a)1 (g{a) a  [[g(z)Mx), g{u)!g(y)] [g(z)/3 (u)]]e(p(z))) 

is equivalent to the formula of the form

e(a) a  ig{z)/g(x), g(u)/s(y)] {\.9 {z)lg{u)\ e{p{z))).

Since e e i p then two classical open formulas

e[a) a  [g{z)/g{x), g{u)fg(y)'] {[g{z)/g[u)] e{p{z))) and e(c) a e(p(y))

are equivalent.
So we can say intuitively that p transforms a; p[y) into e(a); e(p(y)) respectively. ■

One can observe that if we change the symbols s*, sp, Sb in the proof of 
Theorem 2 for sx{a\  sz^ \  Sbz respectively and if we extend the meaning of the 
symbol H  by (c) and the meaning of the notion of program-substitution p by (d) 
then we get

T heorem  4. Algorithmic logic with generalized terms is closed under program- 
substitution from Sbx. □
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(16) Tn)), sp(zl ,...,Tn)> e X  for s being a sequence of assignment
instructions sy ...sk, k e N ,  peP„, n e N , xL,...,xne T ' and for 
p ( t i , xn) e F '\  F0.

Therefore we obtain the relation < defined on the set of generalized formulas 
of the language with generalized terms. These new definitions enable us to 
formulate some version of Lemma 3.

L em m a 4. For any generalized formulas a, ß e  F  and any geG , e e £ g, 
(e, g)-function u and an endomorphism H :F' -> F' such that H/F0 =  hv, if 
Hx(a)) n  K  c  Hß)> then h sßH(a) = sz(ot)H(a) =  sx(a)H(a), where sß and sz(a) are 
designated by <g,e> . □

By applying Lemma 4 we can prove the theorem analogous to the Theorem 3:

For every program-substitution p e Sb and for all generalized formulas a,
ßeF ':

(i) p(a -*ß) = (p(a) -► p(ß))7
(ii) h  p{a a  ß) = (p(u) a  p{ß)\
(iii) (- p(a v ß) =  ip (a) v p(ß)),
0 V) h P( « ) - - ? ( « ) • □

3.5 Program-substitution in the language j£?" and «5fQ

The above considerations can be generalized for the language of the extended 
algorithmic logic of the first order with classical quantifiers i f"  (L Banachowski 
i l l ) and for the language o f algorithmic logic with non-deterministic programs 
(G. Mirkowska [60], [61]).

To get the set of axioms o f i f"  we add some new forms of axioms to the set o f 
axioms Ax:

Q27 s(3xa) = 3ys([x/y]a) for y #9(sa),
Q28 [ x/t] qc -*■ 3xa where a e F v, x e V  and x e T a,
Q29 Vxa s  - ,3x(->a).

We admit r0, r3 as the rules of inference and two rules of the scheme:

a -► ß [x/y] a -» ß
U  1 Ka -> K f  Ts ' 3aa -> 7 ~ ’

where a, ß e F v, K e S , x, y e V  and y££(a a ß).

In  the sequel we extend D efin ition  9 assum ing  th a t
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Let CE be the consequence operation of the extended algorithmic logic with 
quantifiers based on the set of rules {rp, r3, r4, r5} and defined by Definition 1. 
Any formula of the set CE{P) will be called a thesis of algorithmic logic with 
quantifiers and a e CE{% will be denoted by \= a. □

Now we shall introduce the language of algorithmic logic with non- 
deterministic programs. There are many reasons, that motivate and justify studies 
of algorithmic properties of non-deterministic programs, cf. D. Harel and V Pratt 
[39], G. Mirkowska [60], [ 6 i] , S. Radziszowski [77], We have auxiliary 
symbols: u, □ , O- Non-deterministic programs are constructed with the new 
program connective u  ( non-deterministic choice) and are denoted by [iC1 u  K z]. 
The programs without the symbol u  will be called deterministic. In this language 
the set o f programs will be denoted by Sa . We have new generalized formulas 
in the language of non-deterministic programs jS?a . To the formation rules 
describing the set Fy we add new formation rules and we change the symbol of the 
set of generalized formulas and denote it by Fa :

(1) I f  a e F a and K e S n is a deterministic program then Ka e F0 ,
(2 ) i /a e jF 0  and K is a non-deterministic program then DXa, 0 ^ a> □  U  K a,

□  fiifcz, O U Ka> O f t K a e F - .

By a configuration in the realization 1% we shall mean any ordered pair 
<v, K t ; where v e W  is a valuation and K l,...,Kne S a. □

Let be the least binary relation in the set of all configurations such that 
the following conditions hold:

(1) I f s  is of the form (a) then <  v, s; rest >  -* # <  o', rest> where v' is a valuation 
such that v'{X;) = xigt for 1 < i < n and v'(z) = v(z) for z e (V \ j  P̂ ) \  
{xl 3 xn},

(2) < u ,[iC u M ]; rest > -*■*< v,K; rest>,
(3) < vffK  u M ];  rest > ->a <v,M ; rest>,
(4) <v,sL[otKM)] rest >->a <v,K; rest> iff aa(v) =  \Jo,
(5 ) < v, s l [_clKM^\ rest >-+a < v,M ; rest> iff aa(v) =  f \ o,
(6 ) <v,[KM']; rest > -+gt<v,K,M\ rest>,
(7 ) <u,*[aiC]; rest rest> iff aa (v) =  / \ o,
(8 ) <y,*[aK]; rest > - * a < v ,K ;  *[aK]; rest> iff aa(v) — \Jo. □

Let i c  /  and for any n, m e / ,  the following condition holds: i f  n < m  
and m e  I, then n e l .

The sequence (c)ieI o f configurations is called a computation of the program 
K e Sn in the realization & and at the valuation v iff for any i, j e  I : if 
;  =  i +  1 then cf -+a Cj and c0 =  < v,K > . □
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I f  the sequence (ct)ieI is finite, i.e. if it is a sequence clt ...,cn and cn =  <v\ p>, 
then the valuation v' is called the result of the computation of the program K  in 
the realization at the valuation ue W. □

The set of all results of the computation of the program K e  SD in the 
realization 3$ at the valuation v e W  will be denoted by K^v). So if K e  Sa is 
a deterministic program, then K ^v )  is at most a one-element set.

Let K ' e Sa be a deterministic program and K  e SD. We put

(□^a)^(i;) =  V 0 tff oil computations of K  in the realization & and at the 
valuation v e W  are finite and for all veW , if v '£ K ^v) then ol̂ (v') — \ /
(OKa)gf(v) — \ f o iff K  has a finite computation in the realization & and at the 
valuation v e W and there exist v’ e K m{v) such that 1X3 (1/) = \ /  ,
(□  U  Ka)Jp) = sup {((□if)ia)3t(i>)
( 0  U  Ka)x(v) =  sup {((OK)'a)*(iO: i £
(U K'cLtJy) = sup {(X',a)e,(!>): i e 
(Pi K'«)„(3) =  inf {(iC"*)»: i e Jf},
(□  Pi *«)«(») = inf { « O J : ie  JIT),
( 0  n  **).(■>) = inf ■ > e JT),

where (□&)*« {and analogously {0K )la) denotes the formula:

a*(»') iff VeK'stiv)
/\^  in the opposite case

D K in K U U K a )...)) , (OK(OKUOKa)...))). □

Hence for example we get

*[<5iC]a (y) = {v 'eW :  3 e K#{v) and v0 = v and

-  A 0 and vn =  *0 }.

[ iM ] ,( ! ) ) =  { v 'e W :3 0..{v,,e K gi{v) and i/

[ K u M ] > )  =  K > )  u M » .
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Now we present the axioms and rules of the algorithmic logic with 
non-deterministic programs from (G. Mirkowska [61]): AX-A14, A26, 
Q27Q29 and A15-A24 for deterministic programs and moreover for
® e  {□,<>}:

N1 OK{a a $) = (D ifa a [JKP)
N2 0 ^ v ^ )  =  ( 0 ^ v 0 ^ )
N3 ® [ if M >  =  0K (® M a)
N4 =  ((<5 a ®Ka) v (-><5 a ®Moc))
N5 *[<5 K fa  s  ((-<5 a a) v (<5 a £ '(*[5  if ']  a)))
N6  ®*[<5K]a =  ((-<5 a a) v (®if(®*[<5if]a)))
N7 O iK u A Q a  = «>Ka v OMa)
N8  □  [ if  u  M ]a =  (D ifa a DMa)
N9 (g) (J ifa  =  (a v ® J i f  (®ifa))
N10 <g> f)K u  s  (a v ®
N il  © if'a  =  2f'a.

VPfe adopt the following rules:
r0, r5 and r2, r3, r4 for deterministic programs and moreover

a-* P { ( s ^ S K f i y ^ ó  a <x))-> p :ie jV }
T*' ® K a - * ® K f  f 7 ' (s*[51f']a)-»j3

{(5® j¿[<5 K [ ] ]  ‘M  a a)) -+0:i ejV }  {(s®if ‘ia) ft: ie ^ V )
7-8 : (s® *[51f]a)->0 ’ r 9 ' (s® J i f a ) - » £  ’

{/? -> s® ifia:iEM''"}
Tl° : p-+s®f)Koc ■’

where ®  e {□, <>}■

These ruies and axioms define the consequence operation of the algo
rithmic logic with non-deterministic programs denoted by CD (G. Mirkow
ska [61)).

The set o f program-substitutions SbY is defined in the extended algorithmic 
logic with quantifiers analogously as in AL though defining the function H  (see 
Definition 6) we put

H(3Xa) =  3eWi*(a) and H(V,a) =  VflWiT(a)

where x e V  and a e FY.
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Moreover in the algorithmic logic with non-deterministic programs the set 
Sbn is defined analogously as in but we put additionally

H(DKa) =  DKegH{ a)

for any D e { 0> OU> O f | ,  □> OU» d f l }  and a e F n .

L em m a 5.

(i) g(V\S(ct)) n  S(hu{a)) =  0 for every a e F0,
(ii) g(V \ S(K)) n  &(Keg) = 0 for every K  e Su ,
(iii) For euery generalized formula cc and for every individual variable y&V,

if y $&(«■), then g(y) where g eG  and e s g g □ .

T heorem  5. The extended algorithmic logic with quantifiers and the algorithmic 
logic with non-deterministic programs are closed under program-substitutions i.e. 
P(CE{$)) c  CE(f)) and p(CD(0)) c  Cn (0) for every program-substitution p e S b v or 
p e S b D respectively. □

Let us consider the set X ' of pairs <at ,a 2> in algorithmic logic with 
quantifiers such that is equal to ct2 or < a 1, a 2>  is one of the form from  
Definition 9 or additionally of the form
(16) < s i ...s„[x/T]a,s1 ...s„3Ta >  for a l5 a2> a e F v, sv ...,sne S 0, n e N , x e V  
and x e T0.
We define the binary relation < '  on Fv in the extended algorithmic logic with 
quantifiers for any a, fi e Fv:
a < 'ft iff there exist ai) ...,an e Fv such that al — a, a„ — /? atul for every 
z€ n — 1} the pair <<*j,0Li+l> is an element of X'.

Let us notice that the relation <' is an ordering in Fv such that any nonempty 
subset Z  cz Fv contains a minimal element. The above binary relation can be 
defined on Fa . For further considerations we shall need.

L em m a 6 . For any generalized formulas a, f ie  FV(FD); if 9(a) r\ V0 c  <9(/J) then 
s^H(a) *-* saH(a) is a thesis o f C£($) (Co (0)). □

Proof For simplicity we shall prove this lemma only for the language o f the 
extended algorithmic logic with quantifiers. The proof is by induction on the 
relation < ' defined on F v. Since the proof is analogous to the proof of Lemma 3, 
we consider only the case ot— 3 xX for some x e V  and for some generalized 
formula X.

Since [ x/t] X < '3 y i  and 9(2) n F 0 =  9([x/t] 2) n  F0 — 9(a) n  F0 for every 
x e T a, we get
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(1) (- / H{\_xjx] X) <-> s“H ([x/ t]  X) by the equality = sa and by the inductive 
hypothesis for every x e T 0.

O
The inclusion H(CE(fi)) c  CE(fi) holds and the rule of the scheme — is

sp
a derivable rule of the consequence operation CE, so by the axiom [ x/t]  A —> 3 XA 
we conclude that
(2) f- f  #([x/t]A) -► saH(o.) for every z e T 0.

According to (1) and (2) we obtain
(3) h sf [g(x)/g,(T)JH(Z) -* fH(a) for every x e T0.

We shall use the abbreviation 2  =  g(V)\S{sfidl TRUE). 2 is an infinite and 
enumerable set whereas g{9(X) u  {x}) is a finite set, so there exists 
z e  2 \  g(T(X) u  {x}). Hence and by the definition of 2  there exists y e V  such that 
z -  g(y) and g{y) $ S(sfi) u  5(s*). Since g{y) £ <?(5(A) u  {x}), we get y $ 5(A) and
g(y) *  g{x).

According to the Lemma 5 ( iii)  we get g(y) $ 9[H(X)). Hence g(y) f  
9(H (X))K j{g(x)}\j9(j)u9V%

Putting in (3 ) x = y and using the rule of the scheme we
{1J)  -> 6

conclude that
(4) s^H(a) -*■ s?H(a) for y £5(a ■ /?).

By the same argumentation as used in (2) we get f- s^\_g(x)!g'{x)"\H{X) -*■ 
s?H{a). Hence and by ( l )  we obtain 
0 )V n 9 ix )lg '{x )]H {X )^s< iH{a). '

Simultaneously by similar argumentation as before we find a special element 
y e  Vand then putting in (5) v = y and using the above-mentioned rule we get
(6) j- s“tf(a) -> spH(a).

On the other hand by (4) and (6) we conclude that
(7) 1- s“H(a) <-+ saH(ot). ■



Chapter 4

Algorithmic structural completeness

4.1 The problem of completeness of C R

In this chapter we introduce the notion of the algorithmic structural comp
leteness and we shall prove property for the consequence operation of AL. 
At first we shall consider the substitution rule and the structural rules. Next we 
shall study interrelation between all structural, Unitary and admissible rules on 
one hand and derivable rules on the other hand.

By a substitution rule r+ we mean the rule of the form: where p is
p{a)

a program-substitution. Assume the following abbreviation: Rt = U u  {r*}. □  
It will appear that the substitution rule allows us to examine deeply 

algorithmic properties of formulas and programs of AL.
We shall say that a rule r is structural iff <p(H), p(a)> e r for every sequent 

< X ,a > e r  and for every program-substitution peSb. □
We recall two definitions:

A generalized formula a is an element of the set £  iff there exists a classical 
formula /? (i.e. a formula without programs) such that a and /? are equivalent.

A rule r is Unitary iff for every sequent < X, a > e r the set X  is finite 
and X  u  {a} c: / .

The consequence operation C is algorithmically structurally complete iff 
every structural, limitary and admissible rule is derivable in C. □

Theorem 2 allows us to strengthen the consequence operation CR by 
substitution rule and to examine the CR — consequence operation. Obvio
usly CR (P) = CX(P). At first we shall solve the problem of completeness of CR  ̂
and next we shall prove that the consequence operation of algorithmic
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logic strengthened by the substitution rule is algorithmically structurally 
complete.

D efin ition  13. Let xae V For any one-one mapping h0 of the set V into F \  {x0} 
we define a function h on Tau  S u  F as follows:

(1) h(x) =  h0(x) for every x£V ,
(2) hi< p{x^tj )  =  (p(h{zy) , for any (pe<b„, n e N  and t 1>...,rIie T 0,
(3) h(q>) = q> for any <pe<50,
(4) h(ct) = a for every aeV0vj {TRUE, FALSE},

(7) h(s) =

(5) h(p(xv ...,z„)) =  p(x0,...,x0) for any formula p{xl,...yx ^ e  E,
(6 ) h(a •  ß) =  h(a) •  h(ß) and h(~'Ot) — •—>/i(a) for any generalized formulas a, 

ß and •  e { a , v , —♦},
[ ]  if s is of the form [ x ^ , x„/tJ

Oi//i(ai),"., a jh (a j]  if s is of the form (a),
(8 ) h&KAf]) = lh(K )h(M )l
(9) /i(_v_[<5KM]) =  ¿¿lh(6) h{K) h{Mf\,

(10) h(*l5K}) = *lh(5)h{IQ],
(11) h(Ka) =  h(K)h(a),
(1 2 ) ft(U Xa) =  U  h{K)h{a) and /i(D ^a) = f]h(K)h(a) □ .

T heorem  6. The consequence operation CR is incomplete. □  

Proof At first we shall prove the following inclusion:

(e) h(CR ({p(x) -► p(y)})) c= CR(p).

By Definition i. we know that CR{X) =  (J { C ^ X ): y <  i2}. We shall prove
that h(Cif{p(x) -► p(y)})) c  CR($) for every y. _____  _

Let y be the least ordinal number i.e. y =  0. Since h(s)h(S) = h(sS) for 
every s e S a and for every 5 e F0, the value resulted from applying h to the 
axiom A14 is the thesis. Hence

h(Cl({p(x) Ptv)})) c  C M

We assume inductively that /i(C^({p(x) -*■ p(y)})) c: CR(P) for every ordinal 
number p < y.

If y is a limit ordinal number, then by the inductive hypothesis we 
get

HCkS{p(x) -* p(y)}))c  c R(P).
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Now suppose that y =  p 0 +  i for some ordinal number p0. Let 
a e h(CyRt({p{x) -> p(y)})). Hence and by Definition 1 we get

Then according to the inductive hypothesis \- a or there exist X  c  
(C^o({/)(x) -> p(>>)}), ß e F  and r e R ,  such that a — h(ß) and <X, ß> er.

If r ^  r. then < h(X), hiß)>  e r  and by the inductive hypothesis 
h(X) c  CR(fi). Using the rule r we get (- a. Hence

(l) h (C M  <= c m

If r =  r„ then X  — for some X e F and by the inductive hypothesis 
h h{X). Since < { A } J>  e r„  there exists peSb  such that ß — p{X). Thus 
a — h(p(X)). As we know for any r\ e F

where g e G, e e £ g and H  fulfills the conditions from Definition 6 , so 
H/F0 =  hu for (e, g)~fu7iction u.

For further considerations some functions will be defined and their 
properties will be thoroughly analysed.

Let he’ be an endomorphism on F0 such that for any 5 eA t

The above definition is correct, since it is enough to show that for any 
classical open formula Xy, X2eF 0:

For Xu X 2 eF 0 u  {TRUE, FALSE) by assumption and Definition 13 we get 
Xi =  X2, which gives the thesis. If Xlt X2eE  then

ae/j(C^o({p(x) -> p(y)})).

he(t]) for rjeF 0
for rje F \  Fa

e
h(p{5 t)) if 5 — h(<5A) for some öy eA t  
h(p(5)) otherwise

if h{Xy) =  h[X2), then =  h(p(l2)).

O i / u > p{xy, ...,xn)

and

X2 =  [xj/ti .... xjx'n~] p(xy,...,xn)
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for some classical terms and for some «-argument predicate letter. Therefore by 
the definition of the set S g and by Definition 13 we get

i)) =  /i(e([x1/T1,..,x„/Tn]p(jCi,...,xn)))

= h W it* i/ti, x j r j  e(p(xl f xj)).

Obviously for any sL, s e S 0 and any tje F 0 if (S(sJ u  3(s\)) n  V0 = P then 
h(stf) = h(stf). Since g'(s)eS0 for every s e S 0 and e(p(x1,...,xlf))e F 0, we 
get

=  h {e(ix jx \,....xjz„] p(xl t x„))) =  h(p(X2)).

Let fiei be an endomorphism on F0 such that for every 5 e A t

( h m ) « S e V 0
(e.(<5) otherwise.

For any program X e S  we define a program K! as follows:

(i) If K  is of the form (a) then we put

K' =  [h ig ixjyh ig 'izj),..., h(g{x„))/h{g'{xn)), ...>g{ajhei{a.j].

Obviously if K  =  [ ], then K' =  [ ],

(ii) If K  is one of the form o[MW], jvl [<5MN~\ or then K' is of the
form o [M'N'~\, _vl [hei(r5)M' ¿V'] or *[/iei(<5)M'] respectively.

Now we define a mapping H x on F in the same way as it was done for the 
function H : F -» F from Definition 6 , i.e. instead of the (e, g)-function u and 
K eg we put there et and K' respectively.

Now assume that ss is determined by a couple < hog, e,> for every 5eF . 
Let q be a mapping defined on F as follows:

q(5) =
he*{6) if 6 e F 0 
s^H^S) if 5 e F \ F 0.
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Since he*{sp(xl , = h(g,(s))e.(p(z1>...,tJ) for every elementary formuła 
p ( r and for every s e S 0, we get h(g(V0)) n  =  0. Of course
9(e,,(<5))n V <=. {x0} for any elementary formula 5. Hence s' z =  %'(s))z for 
every s e S  and every z e ^(eJF)). Thus

(2) .s'ft*r(5) =  hci(s5) for every 5 e F a and s e S a.

Moreover we get

(3) saH 1(a') = he*(a') for every <5, <x' g F0 such that K0 n % ')  c  9(S).

By (2) we obtain the inclusion H l(Ax) cz CR{%. Simultaneously < f f 1(X), 
Bx( «') > e r  for every r e R  and every <X, a '>  e r. According to these 
considerations we get

(4) H ^ C M  cz C M

By (3), (4) and by the inductive hypothesis we get

(5) q (C M  c  C M

Using (3) and {4) we can prove by an analogous argument as used in 
Lemma 3 the following property:

(6 ) For any generalized formulas, <J>, T  e F if .9(0) n  V0 cz 9(T), then
\- s^H M )

Similarly as in Theorem 3 by virtue of (3) and (6 ) we can prove that for 
every O, T g F:

(7) h •  ^0 *-* (q{®) •  9(D) f°r any •  e { a , v , ->} and f- q(~>O)

Now we are going to prove the following equivalence:

(8 ) J- q{h(O)) <-» (h(p(<D)) for every O e F.

If O is a minimal element of the relation < introduced in Definition 9 then 
the thesis holds in this case.

Suppose that (8 ) holds for every generalized formula O' e F  such that 
O' <  0 .

Let O be of the form su ...,sn5 for some <5eF0 and for some s1,...,s„eS0. 
By A14, r, and (1) we get

h K h  -  s„<5) <-► h(st ... s„_ 1 s„S).
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Hence, by (5) and (7) we conclude that

|- q(h(si ... s„<5) ^  qQiiSi... sn_ L s„5)).

Using the inductive hypothesis it follows that

h q{h(s1... s„_l sn5)) «-+ h{p(si ... x sM -  

Moreover A14, r1 and (1) allow us to get

b h(p(st ... s„_ i s„<5)) <-> h{p(sl ... s j5)).

Therefore the thesis holds in this case.
If 0  is either of the form sA ...s„ o [KM~\ x¥, ... s„ _v.. [5KM] 'T or of the

form ... s„ * [¿K] *F, then by A23, A24 and A25 respectively and quite 
similiar argumentation as used before we get the thesis.

Moreover for ® being of the form Sjl •  '?') or ...sm( -■'i') for some
• e { A ,  v , ->} the proof is analogous as before by using the axioms 
A16, A15, A19, A20, A17, A18 respectively, which ends the proof of (8 ).

Now we return to the proof of (e). Since |- /i(A), we get (- q(h(X)) by (5). 
Hence, by (8) and r0 we conclude that f- h(p(X)), so (- a which ends the proof 
of (e).

Let x, y be two different individual variables. Obviously p(x) -*■ p(y) $
c K m-

Moreover C^({p(x) -*■ p(y)}) ^  F. Since in the opposite case a, -.a  e 
CR ({p(*) -» p(y)}) for every formula a, so h(oc), ->h(a) e h(CR ({p(x) -> p(y)})) 
and by (e), we get (- h(a) and |- ~'h(a), which is impossible. Therefore CR is 
incomplete. ■

According to the Theorem 5 we can introduce the rule of substitution 
analogously as in AL. We shall use the abbreviations C*E, Ch for the con
sequence operation CE and Cn strengthened by the substitution rule. The 
problem of completeness of the extended algorithmic logic strengthened by the 
substitution rule can be solved in a way similar to the one preserved above.

In the next theorem we shall consider the consequence operations C*E and 
Co, so we can omit it while reading the paper for the first time.

T heorem  7. The consequence operations CE and C*D are incomplete. □

Proof. A sketch o f the proof will be presented. We shall prove this theorem only 
for the consequence operation C*E. First we define the function h analogically to
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the Definition 13 but we add the condition h(3xa) = h(cc) for every x e V and for 
every generalized formula a. The inclusion

(1) KC'e({p (x) p(y)})) c: C M

is proved similarly as in Theorem 6, though we must add the equality H 1(3Xa) =  
3ft(9(;ç))i/1(a) in the definition of the function H 1. Moreover to proof the above . 
inclusion we need two properties:

(2) For every generalized formula a e Fv: if y e  V \  9(a), then h(g(y)) $ 9(H f  a)),
(3) For every program K e S: if y e V \S(K ), then h(g(y)) £ 9(K').

The function q in this proof is defined for every generalized formula <5 e Fv as
follows:

The condition (S) in Theorem 6 is checked up for a' of the form 3xX in the 
following way: q(h(a')) = q(h(\_x/x]X)), while by the inductive hypothesis

h q(Kl

h(s*-)h(H(X)) =  fc(s‘> (3 gWH(A)) =  htf'Hia')) = h(p(a% 

thus |- q(h(a)) ■<-»• h(p(a')).
These remarks enable us to prove (1) and the incompleteness o f the extended 

algorithmic logic with quantifiers strengthened by the substitution rule. ■

4.2 The algorithmic structural completeness of

In the sequel we shall separate a special class of derivable rules of the 
consequence operation CR . To do that we start with making some remarks 
about structural and admissible rules. It is easy to see that the rule r2 is not 
structural, but instead of it, we can consider a structural rule of the form:

[£f(X -» M K ‘a): i e JT)
3 F (X ^M (^K a )

where Sf denotes any finite sequence of substitutions.

moreover
h(j>([x/z-]X)) = K f i tx /x T s H m .  

h h(f(Lx/xYtH m  <-> h(s°')h(H(X))
and
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The following remark concerns admissibility of rules. Observe that r0 is 
an admissible rule but rA is not an admissible one, since for s =  [a/T R t/£], 
K =  [afFALSE] where a eV 0 we get

< {a, KTRUE], Ka> e r L and s{a, KTRUE] c  CR(® but

s(K a )iC Rm-

In order to introduce the notion of algorithmic structural completeness we 
need the special set of generalized formulas J .  For example lemma 7 in 
G. Mirkowska [58] and theorem in G. Mirkowska [59], p. 158, exemplity 
some forms of the formulas of the set

L em m a 7 For every generalized formula a without symbols *, f], [J we can 
find in an effective way a classical open formula a0 e F0 such that for every 
realization 9t and every valuation veW , cta(v) =  a03f(u). □

T heorem  8 . Let K (, M ^ S ,  i g (0,1,..., n} be programs in which the sign 
* does not appear and let a eFa. Any generalized formula ft of the form:

M 0 \J K 0...Mn { J K na

is a tautology o f algorithmic logic iff there exists a natural number m such that 
the formula

m m
M 0 \ f j K ‘0...M„ \f /K { a  is a tautology of algorithmic logic where

¡=o y=o
m

M \ f / K lX = M(2 v K xX v ... v K mX)) for any M  e S, K  e S, Xe F. □
j=o

It is easily seen that for any result of Theorem 8 we can apply Lemma 7 
to find a formula <x0 e F o which is equivalent to the formula fi from Theo
rem 8 .

Since the consequence operation is incomplete, it accounts for 
theoretical investigation of algorithmic structural completeness which although 
weaker, in accordance with our intuition.

T heorem  9. The consequence operation CR̂  of algorithmic logic is algorith
mically structurally complete. □

Proof. Suppose that there exists a structural, finitary and admissible rule r of 
the consequence operation CR, which is not derivable in this consequence
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operation. Thus there exist a finite set X  c= $  and a generalized formula ß e #  
such that < X , ß >  e r  and ß $ C R (X). Let us assume that X  =  (Aa, > ln}- 
According to the definition of the set #  there exist two classical open formulas 
a> A e Fa such that |~ (Xx a ... a Xn) X and f- ß «-+ a. Hence a 4 CR ({/l}). By 
structurally and admissibility of the rule r we get for every program- 
substitution peSb and every s e S ;

if s(ppO) C CR (P), then s(p(ß)).

Since by Corollary 1 [- p(Xx a ... a Xn) «-► p(X) and J- p(ß) <-» p(a) for every 
p e Sb, we conclude by Theorem 3 (ii) that

(1) If (- sp(X) then |- sp(a) for every p e  Sb and every s e S 0.

Let g e G be a mapping from Definition 2 such that g{Vvj V0) <= (J/u  V0) \  
9(a a 2). For further considerations we shall need an endomorphism he on F0 
such that:

e(a) = g(a) a X for every a e V0,

e(TRUE) =  TRUE and e{FALSE) = FALSE,

e(p(Tx, ..., t„)) = p(g'{xx),..., <?'M a 2

for every elementary formula p(ta, tJ  g £.
Since g' (si) =  g'(s)g'(x) for every t e T0 and for every s e S a and since

g\s)x = X, we get e(sp(zx,...,t„)) =  g'(s)e(p{r ,  T„)j for every s e S c and any
elementary formula p fr j, ..., tJ  g £. Thus e g ¿’g. Let us take (e, g)-function u, 
u : At -» F0 and a mapping hu being an extension of u to an endomorphism 
defined on F0. By Definition 6  we get an endomorphism H on F. By Defi
nition 7 we get a mapping p : F F which is defined by using g e G and e e £ g. 
Hence we get peSb.

Moreover let e0 be an endomorphism on F0 such that:

e0(TRUE) = TRUE and e0(FALSE) = FALSE,

e0(<5) =  5 a-><5 for every 5 e A t\{7R U E , FALSE}.

It can be easily seen that e0 e for g0 being an identity function on

Moreover J- heo(5) TRUE or \- heo(5) FALSE  for every classical 
open formula 5 e F0.
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Let Y ~  {xl 5 x„, Q j , am}, then by symbol sy we denote the substitution 
of the form

a jg (a j] .

By induction on the length of the classical open formula d s F 0 we get

(2) f- /ie(<5) <-+ ((s^5 a A) v (heo(5) a A)) for every 5 e Fu and every sY such that
m  c  7

First we consider the case |- hco(<5) <-► FALSE. Then by (2) we get 

(- he{5) ->■ (^5 a A), so f- /ie(5) -> (A -» Sy2>) for sy defined as in (2).

Let us assume that (- heo(5 ) <-> TRUE. By (2) we get

(3) h he(<5) -> (A -» ^5) for every classical open formula <5 e F0 and for sY 
defined as in (2 ).

If \- heo(X) <-> TRUE, then by (2) for such Y that 9(a a A) =  7  we get 

j- he(X) <-> (spA v - ’A).

Using ra we conclude that (- syhe(A) <-> (syŝ A v -is^A). Since 5(A) c  
Qm}, we get 9(s^A) c  g (F u  F0). Therefore by the definition of 

the fuction g it follows that 5(s^A) n  5(a a A) =  Obviously

{x:, .... x„, al 5 a j  = 5(a a A), so ( xt, x „ ,  al 5 a j  n  5 (v 0  =  0

and moreover sr%A =  ŝ A. By A14 we get

|- srhc(A) <-» (ŝ A v --SyA).

Since p(A) =  he(A) from Definition 7 then |- sr p(A). By (1) we conclude that
h sy(p(a)). __

On the ground of (3) and by using rt j- sYp{a) (syA -> sysya). By modus 
ponens rule r 0 we get )- sYX -> sySya. Moreover by A14, A1 and rQ we get 

)- syA -> sYsYa.
• Simultaneously sYJ^a =  sya, so |- sYX -> sya. Moreover by 7-j, r0 we can 

observe that sYa e C^({A}). Using the rule rx we obtain that sY Asya e C^({A}).
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Since 5(a) c  {xA, ..., x„, av  ..., a j ,  {xt , xn> aL, ..., a j  n  g(Vu  F0) = p and
since g e G is a one-one mapping, we get Sy 1 sra =  a. Hence by A14 and r0 

we get a g ^({A}), which is impossible.
If (- heo(X) *-*■ FALSE, then by the rule of substitution we get CKt({A}) =  F, 

which is impossible. ■

After defining the standard substitution rule by using the set of program- 
substitutions Sbx we can prove the incompleteness of algorithmic logic 
strengthened by the substitution rule in the language with generalized terms. 
For this purpose we need to extend Definition 13 by adding a new condition:

(13) h((p(zL, tJ) =  hixivitt, t„))) for every non-classical terra such that 
<pe<I>n, n e N  and t l 3 ...,Tne F'.

Moreover we can prove (in the same way as Theorem 9) that the 
consequence operation of algorithmic logic strengthened by the rule of 
substitution is algorithmically structurally complete in the language with 
generalized terms.

S A lgorithm ic..



PART II

Chapter 5

Automated theorem proving

5.1 Axioms and Gentzen’s rules of inference

In this chapter we shall describe another system of algorithmic logic. It enables 
us to formulate some problems connected with a retrieval system. It provides 
a comprehensive tool in automated theorem proving including programs, 
procedures and functions. We can get an answer whether some relations 
defined by programs hold and we can prove functional equations in a dynamic 
way by looking for a special set of axioms (assumptions) and then adding it to 
the standard set of axioms. We formulate the RS-algorithm which enables us to 
construct a set of axioms for proving some properties of functions and relations 
defined by programs. By RS-algorithm we get the dynamic process of proving 
functional equations and we can answer the question whether some relations 
defined by programs hold. It enables us to solve some problems concerning the 
correctness of programs. The system can be used for giving an expert 
appraisement. We shall provide the major structures and a sketch of implemen
tation of the above formal system.

We shall say that s is a sequent if it is a pair of sequences of generalized 
formulas. □

We shall write a sequent s in the form X  Jf- Y. The symbol a e X  means 
that a is an element of the sequence X  and the symbol a es means that a e X  
or a e Y The set of all sequents will be denoted by Seq.

Let ID be a family of sets of equations of the form t = x, where t, x are 
terms.

D efin ition  14. I f  X  elD then for any classical terms t, u we shall say that t 
and u are X  equivalent iff one o f the following conditions holds:
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(1) there exists a sequence tl t tn o f classical terms such that t is equal to t1
and u is equal to t„ and for every ie  {1,..., n — 1} either £; is equal to ti+1 or one
of the classical open formulas ti — ti+1, ti+l = t-v is in X,
(2) there exist n e N  and n-ary functor cp and a sequence of classical terms 
11, tn, ui t u„ such that for every 1 < i < n ,ti and are X  equivalent and t is 
equal to tn) and u is equal to <p(uv u„). □

D efinition  15. The sequent s the form X  |J- Yis called an axiom if and only if  the 
sequent s fulfils one o f the following conditions:

(1) There exists a classical term t such that t =  t belongs to Y,
(2) FALSE e X  or TRUE e Y  or X  n  Y  ̂
(3) There exists X l c ID  such that X t <=X and for some n-ary predicate letter 
p and for some classical terms tv ..., t„, ul , ..., u„ the following property holds: £f 
and are X t equivalent and p(tiy ..., £„) e X  and p(ut , un) e Y, for every 
1 < i < n. □

We shall denote the set of all axioms by Ax=. Now we shall introduce the 
main tool for proving theorems. Let s be a sequence of elements of the set S0 Le. 
the sequence of elements of the form: begin «4. =  wt; ...,un:=w„ end, for some 
n e N  such that for 1 < i < n we get if u, e V, then w{e T0 and if u{ is 
a propositional variable then wfe F 0.

D efin ition  16. I f  s is understood as it was defined above Le. as a sequence 
of the assignment instructions, then k(sw) means the execution o f s on the 
expression w from F0 u  T0. In other words we replace all u; by wf (1 <; i <, n) 
respectively. Sometimes this operation will be done simultaneously, but in this 
case we shall say that we count the function k in such a way.

I f a e F 0,pEFv,  K, M e S and at least one o f the programs K, M  is not an 
assignment instruction then:

k(s begin K\ M  end fi) =  s(JC(MjS)),
k(s if a then K  else Mfi) — s((<x a Kfi) v  (-»a a Mfi)),
k(s while a do Kfi) — s(p:= TRUE) Q  begin p: = p a a; K  end (p a ->a a f),
where p is the least element o f the set V0 \  S(s while a do K  p). □

U K  is a program and i e J f ,  then K° — Id and K l is a sequence of i-times 
written the program K.

For any F, Q, U being the sets of finite sequences of generalized formulas, 
U <= At, U t* % s being the sequences of elements defined as in Definition 16, 
K  e 5, <5 6  Fv \  At, £ e At, a, e Fv, x e V we define the schemes of the rules o f  
inference as follows:
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(*+) rihe.*K« (-*) k{sKa), r||-G 
r,sKa|H2

(P+) r\hU,Q,3
r\\-Q,s,u (-P) U,r,5\\-Q

r X  u\]-q

(C+) r|hra,G;r||-sftQ 
r| hQA* a p) (-C) sct,sp,r\\-Q

r,s(<x A P)\\-Q

(N+) su,n-Q (-N) r,s--«iH2

(1+) sa,r|hs/?,Q
r||-aa(o-/j) (-1) riNa,Q;sftr|t-e

(A + ) r|l-sa,ŝ ,Q 
r|(-e,s(Q£ V 0) (-A) s“,rihe;j/5,rii-e

r,s(a v «ll-fi

(U+) rH-s(JK(Ka), sa,Q 
riH2.sU*« (-U) ffsUK«||-0

( n + ) i'll-Q,s()Ku (-0) sHKilCa), so, Tlhfi 
r,sn^i|-Q

(S + )
rit-m ,Q
HI-QM (-s) HsO,r\\-Q

r.tfli-G

(V +) r|hs({x:=y)a)}g 
HI- Q̂Y*«

where y  is the least element of the set V such that y £ ^({r, Q, s}). 

(-V) =  (J t6r (— V)f where for every t e T0\

(-V ) 

V \  S(sa).

sVxa, (y: = t) (s((x: = y)cc)), F 1|- Q 
F> sVxa |[- Q

and y is the least element of the set

Let RSeil be the set of all of the above mentioned rules.
The deductive system <J5f, A x =, RSeq> will be called the system of ALQ 

with identity. We divide all the rules into two groups: (R+) and (-R).
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In the next paragraph we shall try to generalize the language i f  on the case 
of the set of generalized terms T.

It is known that for every generalized formula a of the language with 
generalized terms there exists a classical open formula x(a) of the language i f  
such that (a -> y(a)) a (yfa) -*■ a) is a tautology in this language. The definition 
of the mapping x was introduced by G. Mirkowska [58]. To get a complete 
characterization it is necessary to add to the previous rules, two rules of the 
form:

( , x nhx(pfri,~ , Q ) ,g  , v x(p(^u->^n)lr \\-Q

5.2 Functions and procedures defined by programs

The idea of defining some properties of functions and relations by programs 
played an important role in our considerations. It can be found in 
G. Mirkowska and E. Orlowska [63], G. Mirkowska and A. Salwicki [64], 
[89], A. Szalas [95], Some problems of elimination of defined symbols were 
considered by W. Danko [22] where the halting problem was considered as 
well.

Let cpp and pv ...,pr be symbols not belonging to the language if .  
We assume that the functor q)j is m-ary and the predicate letter pt is n-ary, for 
any j  e {1,..., p) and i e {1,..., r}. By if* we denote the extension of i f  obtained 
by adding the functors <pls ..., <pp and the predicates pv ..., pT to the alphabet
of <e

Let K l7..., K r, M l 5 Afp be some programs from i f  and let <xLi..., ar e F0 
and t l5..., t e T0 be some classical open formulas and some classical terms 
respectively such that:

for every ie{l,...,r} ,

HMjtj) =  {yL>-,ymj} for every ze{l,.^p}.

Now we introduce the following set of equations and equivalences which 
will be called the system of functions and procedures defining the notions
<Pv ., <pp and pv ..., pr:

w

Pi(*i, ...,xni) = K ial

<Pi(yv ymi) M pLp P i(X i ,- ,x J  =  Krar

where a =  f  is the generalized formula of the form (a -> P) a (fi -> a).
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In the language if* the sets T0, At’, f t ,  f t  f t ,  f t , f t  Seq’ and (Ax=)’ are 
defined analogously to the sets Ta, At, f t ,  F, f t ,  f t ,  5, Seq and Ax = . To define 
the set RSeq. analogously to the set RSeq we change using of the rules (P + ) and 
(-P). The rules (P’+ ) and (-P’) i.e. the rules (P +  ) and (-P) in the language 
can be used even if the classical open formula <5 eAt’ contains (pj{tl7..., tm) for 
some 1 < j  < p where (pj is from (*). Obviously we get the set (R’ + ) ancT(-R’) 
in the language SF' instead of (R + ) and (-R) respectively.

We extend the set of the rules of inference RSeq.. We shall consider (see 
G. Mirkowska and A. Salwicki [64]) two new rules:

+) —) Tffi,-)/begiii =  endM jt),Q

( , , ft)/begin xx :=Tt; ... x„. : = z„. e n d K ^ Q

where xA, x nj do not belong to ¡>({t1s ..., t„.}) for i e {1,.... r} and yx, ..., ym. do 
not belong to <p¿{zl t xmj}) for j  e (I, and 0 e A l\

Obviously the rules (-rcu) and (-ft) are analogous. Only the assignment 
instructions from these rules i.e. for example the program begin 
xA: ~  tx; x „.: ~  t„. end will be executed simultaneously on each classical 
open formula from At ie. it will be executed as a function of substitution 
e:AT -> T0 such that e(x¿) =  xi and i e r}.

If s is as in Definition 16 then E(s) = {zv z„}. After using one of the 
above mentioned rules we shall need the rule of the form:

r| ysm x\Q
1 ; m YQJisKx)

where /? e At’ and every element from ftft) u  E(s) is not an element of any term 
and formula in /? except sKx.

If it is possible, we shall use the rule (B) instead of Cf + ) or (-ft Now we 
define the set W of rules:

rit-Q(t =  t/TRUE) r ,  FALSE, r ”\\-Q
} T t Q  {Ta} T,,q>l = q>2,T"\\-Q

where cplt <p2 eO 0 and in the data structure of integers, the realizations cpL 
and (p2 are not equal,

f r«+)
rn-g(tA)

ril-g
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where t is a classical term built from constants, the standard functors *, +,~ 
(multiplication, addition, substraction) or the functors (pj from (*) for some 

j  < p and where x is a classical term, the value of which is equal to the 
value of the realization of t in the data structure of integers.

Now we describe some rules which change the right side of the symbol Jf-.

(rCi + ) — It replaces all occurrences {TRUE  a a) or (a a TRUE) by a. 
(rj41+) — It replaces all occurrences (TRUE  v a) or {a v TRUE) by TRUE. 
(rao+) — It replaces all occurrences (FALSE  v a) or (a v FALSE) by a. 
(rri +) — It replaces all occurrences (TRUE  -> a) by a and (a -» TRUE) by 

TRUE.
(rro+) — It replaces all occurrences (FALSE-* a) by TRUE  and (a -> 

FALSE) by ->«.
(rco+) — It replaces all occurrences (FALSE  a a) and (a a FALSE) by 

FALSE.
(tn+) — It replaces all occurrences (->->a) by a.
(rNl +) — It replaces all occurrences (->TRUE) by FALSE.
(rN0+) — It replaces all occurrences ( - FALSE) by TRUE.

Moreover the analogous rules: ( - r cl), ( - r j ,  (~ rA0), (~ rn ), ( - r i0), 
(~ rco)» (- r N0)> ( ~ rNtl ( “ r iX (“ r =) belong to the set W.

By 31 we denote the set containing the rules from W and the rules: (x+), 
i ' l l  (rcu+). (~rj, (B), (P’+), (-P’), (r'cu+), 3i is the union of two kinds of 
sets: (31+) and (-31).

5 3  Diagram of a formula

In this section we shall consider an extension of the well-known Gentzen’s 
ideas [30], described by G. Mirkowska [58]. At first we recall some auxiliary 
notions.

The following notions are standard: tree, root, leaf, level of a tree, height o f 
a tree, path and branch.

If D — < D, <  >  and D is a tree then by P(x, D) we denote the set of all 
immediate successors of an element x in D. □

Definition 17. <S, <  >  is a tree of sequents if and only ifS c z  Seq’ and it has 
exactly one root. □

If S  is a tree of sequents <S, < >  

shall understand the rule of the form 

sequent s’ e P(s, <S).

and s e S is a sequent, then by r(s) we 
P(s,<5) T
-------- . It means that s <  s for everv

s
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We shall say that the tree of sequents <S, < > is well formed for (-V') if the 
following property holds:
if the rule (-V'){ was used, then earlier we had to use the same rule for each t’ 
ealier than t in the ordered set T0. □

The set of all generalized formulas on the left side (right side) of the 
symbol \ f  of the sequent s will be denoted by left(s) (right(s)).

Definition 18. A sequent s is called indecomposable in *£' if and only if 
left(s) u  right(s) c: A t’, s contains neither symbol q>j nor p j l  < j  <p, 
1 < i < r/from (*) and if it contains at most classical terms. The other sequents 
are decomposable. □

D efinition 19. By a diagram of a sequent s e Seq' with a special set of axioms 
s i  c  Seq and the rules we shall mean the tree of sequents S s = <S, < >  if 
and only i f  it fulfils the following conditions:

(1) The sequent s is a root of <Ss.
(2) I f  s' e S and s' is indecomposable or if s is an axiom or a special axiom 

then s' is a leaf.
(3) I f  s' 6 S is on the even level of the tree 3  and if s’ is a conclusion o f a rule 

from X  where X  =  (9? + )\ (rcu +  ), (r^ +), (P'+)} then r{s) is an element o f X. 
It means that the order < has the following property: for every sequent s,

the expression P (s, ®) is a rule from 9?. We assume that if s' is decomposable

then we consider the first generalized formula on the right side o f the 
considered sequent s’ to construct r(s’).

I f  s’ is not a conclusion of a rule from (9i + )\ {(re„+), (*"„+). (P’ + )} then:
(i) I f  left(s') u  right(s’)  c  At' then the following condition holds:

(il) I f  s' is a conclusion o f some rule from {(rcu+), (r'y+), (P’+)} then 
r(s’)  is the same element o f this set. Otherwise r(s’)  e 
However if it is one of the rules (~tcv), (-t'cv) or (~P‘) then such 
r(s’)  is used as the last of all of these rules.

(ii) I f  right(s') n  ((F u  Fv) \A t ')  ^  0 then r(s’)  e (R '+ ).
(in) Ifright(s') c: At' and left(s') n  {(F u  Fv) \ A t ’)  #  pthen r(s’)  e ( -R ’).

(4) I f  s’e S is on the odd level of the tree <3 and if s’ is a conclusion of a rule from  
('-5R ) \  {(— rcv), ( -r'cu)> (~P)} then r( s )  an clement from this set. We assume 
that if s ’ is decomposable then we consider the first generalized formula on the 
right side of the considered sequent s’ to construct r(s’).

I f  s' is not a conclusion o f a rule from {(—t(U), (-t’cv), (-P')} then:
(i) I f  left(s’)  Kjright(s') <= At' then the following condition holds:

(il) I f  s' is a conclusion of some rule from {(—rcv), (-r'cu), (-P')} then 
r(s') is the same element of this set. Otherwise r(s‘)  e (SR + ).
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However if it is one of the rules ( -rcu), ( -r'cu)  or (~P‘)  then r(s’) is 
used as the last of all of these rules.

(ii) I f  left(s) n  ((F u  F fi \A t)  *  p then r(s') e (-R ‘).
(iii) I f  left(s’)  c  At' and right(s’)  n  ((F u  Fv) \  A t) ^  p then r( s’)  e ( R ’+ ).

(5) <Ss is well formed for f-V '). □

The deductive system <.£?*, (Ax =)’ u  si, jRSe?. u  91 > will be called the 
retrieval system where s i  is a special set of axioms. □

Using retrieval system we shall change the standard notion of proof which 
enables us to prove some properties which are not tautologies but which hold 
in a data structure. Moreover this system enables us to study some notions 
defined by programs.

We shall say that is a diagram of generalized formula a if <S, <  >  is 
a diagram of the sequent P ||-a  with a special set of axioms s i  and the 
rules SR. □

Definition 20. We shall say that a formula a has the proof in the retrieval 
system (a e proof < (A x =)' u  s i, RSeq. u  9 i> j  if and only if the height of the 
diagram of the generalized formula a is finite and each leaf is an axiom 
or a special axiom.

However it arises a problem how to choose the set s i  of the special axioms. 
Obviously this problem will be considered in a data structure (in a standard 
model of arithmetic) in which the functors and predicates are realized and 
where + ()m are interpreted as addition, substraction, multiplication,
m-th power respectively.

To explain an algorithm which is looking for the special set of axioms s i , 
first we shall study the example of the function f defined in the introduction:

/(n) = if n = 0 then z: =  1 else z: = n*f(n — 1); z.

We assume that the realization is in the set of integers with the obvious 
meaning of used symbols.

For further considerations we assume that A x f  =  (A x=)' u  (s e Seq’:
1 =  u e right(s)} and/(n) does not contain the individual variable u and u is the 
least element of the set V \ 5(f(n)) (we assume that V is well-ordered).

Example 7. The diagram o f the sequent |- /( l)  =  u in i f  with a special set of axioms {s e Seq’:
1 =  u e  rights)} and the rules is finite and each leaf is an axiom in S '  i.e./(l) =  u e  proof < Ax",

9 l ; > -

Proof First we construct the diagram of the sequent
(1) Ih/fl) = u-
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Using the rule (/■„,+) and (B+) we get
(2) |[-(n: =  l(if n =  0 then 2:=  1 else z: = n * f(n  — 1) (z))) =  u.

By (B) we get
(3) ||-R : =  1 (if n — 0 then z :=  1 else z :—n * f(n  — 1) (z =  u)).

By (ic+) and (A 4-) we get
(4) |h n : =  l(^  =  0 a (z :=  l(z  = 0))), n := 1(—-(/z =  0) a (z: =  n*f(n -  l)(z  =  u))).

Using (C-f) we get two sequents of the form:
(4.1) |f-fl :=  1(—>(n =  0)), n :=  l(n =  0) a (z :=  1(z -  u))),
(4.2) |[-fl: =  l ( z :=  n *f(n  -  l)(z =  u)), n:=  1(r =  0 a (z :=  1(z =  u))).
Case (4.1). By (C+) in (4.1) we get two sequents:
(4.1.1) |h« : = 1 (r =  0), n : =  1( - ( r =  0)),.
(4.1.2) ||-r := 1 (z : =  l(z  =u)), n : =  l(-<n =  D)).
Case (4.2). Using (C +) we get two sequents:
(4.2.1) |j-n: =  l(n = 0), n :=  l(z :=  r*/(r — l)(z  =  u)).
(4.2.2) |h « : =  1(2 :=  l(z =  u)), n:=  1 (z: =  n */(n -  1) (z =  u)),
Case (4.1.1). By (N+-) we get an axiom.
Case (4.1.2). Using (N4-), (-s), (s + ) we get 1 =  0 |f-l =  u, which by (rj is an axiom.
Case (4.2.1). Using (s4-), (r_4-) and (s-f) we get
(5) |h l  =  0, /(0) =  u.

By (rn> +). (p ’+ ) ^  (B) we get
(6) |f-n: =  0(iin =  0 then z :=  1 else (z :=  n*/(n — 1 )(z =  u))), 1 =  0.

By (P’+), (fc+), (P’4-), (A4-) and (P'4-) we get
(7) 11-1 =  0, r :=0(r = 0  a (z :=  1 (z = u))), n:=  0 —>(n =  0) a (z :=  n*/(n — l)(z =  u))).

Using (C4-) we get two sequents:
(7.1) |J-R: =  0(—>(n = 0)); 1 =  0, « =  0(n =  0 a (z :=  1 (z =  u))).
(7.2) ||-n : =  0(z :=  n * /(n  -  l)(z =  u)), 1 =  0, n :=  0(n = 0) a (z :=  1 (z =  u))).
Case (7.1) By (C4-) we get two sequents:
(7.1.1) ||-r :=0(n =  0), r : =  0(--(n =  0)), 1 =  0,
(7.1.2) ||-n :=0(z :=  l(z  =u)), n : =  0 ( i n  =  0)), 1 =  0.
Case (7.1.1). By (P'4-) and (N4-) we get
n :=  0 ( r  =  0) | |- 1 =  0, n :=  0 ( r  =  0) which is an axiom.
Case (7.1.2). By (P’4-), (N 4), (4-s) and (s4-) we get the sequent 
0 =  0 ||- 1 =  u, 1 = 0 ,  which is a special axiom and which belongs to Ax".
Case (7.2). By (C4-) we get two sequents:
(7.2.1) [f—n :=Q(n =  OX n :=  0 (z :=  n*/(n — 1) (z = u)), 1 =  0,
(7.2.2) ||-r : =  0(z :=  1(z = u)), n :=  0 (z :=  rt*f(n — l)(z =  u)), 1 =  0.
Case (7.2.1). By (P’-f), (s4*X (r„ 4-) and (s4-) we get
(8) |(- 0 =  0, 0 =  u, 1 =  0, which by Definition 15 is an axiom in ST  since 0 =  0 and TRU E  are 
equivalent.
Case (1.22). Using (P’4-) and (s4-) we get
(9) H O  * /(0  -  1)) =  u, 1 = 0, r : =  0 (z : =  1 (z — u)).

Thus by (r_4-) and (54-) we get the sequent | | - 1 =  u, 0 =  u, 1 =  0 from Ax".
Case (4.2.2). Using (s4-X (r„ 4-) and (s4-) we get the sequent ||- 1 =  u, /(0) =  u from A x~ . ■

It can be seen that the construction of the diagram enables us to find the 
special set of axioms which are necessary to prove of the above mentioned 
classical formula /( l)  =  u. In Lemma 8 we shall explain how to eliminate the 
case 0 =  u, 1 =  u. The interpretation of the functor/and the other functors in 
a data structure, for example in the set of integers, allows us to choose a special 
set of axioms to prove the needed properties.
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5.4 Retrieval algorithm for functional equations 
and relations

In this paragraph we shall try to formulate the algorithm which enables us to 
find a special set of axioms using the premise of function or procedure defining 
some notions.

Definition 21. By the premise of function defining the notion <pj from 
(*)/I < j  < pf for the classical terms t l t ..., te T '0 we mean the classical open 
formula x = u for some x e V0 and for u being the least individual variable not 
belonging to the expression defining (pj in (*). The formula x = u enables us to 
prove (Pj(tl}..., i^) =  u in the language by the special set of axioms {s e Seq": 
t  =  u e  right(s)) and the rules RSeq. vj 91.

By the premise of procedure defining p{from (*)/I < i < r/for the classical 
terms xv xn e T'a we mean either the expression b, when we can prove 
p,(x1}..., xn) = b in the language T£“, by the special set of axioms {s e Seq’: 
b e  right(s)} and the rules RSeq. u  91 or the expression -^b when we can prove 
pj(x1, ..., t„) = b by the special set o f axioms {seSeq': b e left(s)} and the same 
set of rules.

The premise of function defining the notion q> will be called the premise o f 
functional equation and the premise of procedure defining p will be called the 
premise of relation defined by programs. □

It can be easily seen that for p fx )  = p a  --p, where p e VQ and x g T'0 and 
for -ib as the only premise we can prove the classical open formula p fx )  = b 
in the retrieval system by the special set of axioms ^  =  {se Seq’: b e left(s)} 
and the set of rules RSeq. u  91. In this case b can be realized as a logical 
constant FALSE.

We shall give an algorithm which will be able to decide during the 
execution whether the starting definition of relation p{ from (*) /I  < i < rj is 
correct. It means that the definition of relation p{ is not of the form:

Pit*» x n)  = .., xn.).

This loop will be eliminated by the following procedure: if during 
the construction of the proof of p;( i i , ...» t^) =  in the retrieval system 
we met fe, and p, on the same side of the symbol ||- then STOP — we have 
to do with the case of the loop in the definition of pf and the proof does not 
exist.

Exam ple 8.
Let p be defined by the following procedure: 

p(x) =  ->p(x).
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We shall try to prove p(x) =  b in the retrieval system, with the empty set of special axioms. 
Therefore we consider the sequent:
(1) lb P(x) = b.

By (C +) and (1+) we get two sequents:
(2) P(x)|f-b,
(3) bf|-p(x).

Using the rule (-rcJ) to (2) and (rn>'+ )  to (3) we get
(4) -p { x)|hb ,
(5) b i(~ ->p(x).

Using (-N) and (N +) for (4) and (5) respectively, we get
(6) | |- p ( 4  b,
(?) P{4  b |K

If we do not use the above mentioned procedure we shall gel the loop, using (r^ + ) to (6), (-r^J 
to (7) and next using (-N) and (N-f). ■

The notion of the premise will be explained in the algorithm which will be 
able to guess for which x e T'0 we shall get % — u and whether b or ->b is 
a premise.

RS-algorithm looking for the premises of functions and procedures defining the notions 
<Pu -> (Pp, Pi, - ,P ,  of the form:

/I  <  j  < P and 1 < i <  r/ and constructing the special set of axioms in a dynamic process, runs as
follows:
(If the main idea is clear to the reader, we suggest omitting the details).
1. j : =  1; i :=  I;

Read(k); (k is a natural number helpful for “while")
J ( \ — an empty file; (It preserves some kind of sequents)

2. n :=  0; X :=  an empty file, which represents the premises of functional equations and relations 
defined by programs;
We put the sequent tJMJ  — Uj as the root in the j-diagram and we put the sequent
lb Pj(tj , ..., t* ) = b, as the root in the ¡-diagram, where Uj is the least element of the lineary 
ordered set V\3({<pj(t(,.... tj ), Mt}}) such that Uj £ {ul3..., for j >  1 and where the element 
bt is the least element or the lineary ordered set V0 \ 3 ({pj(tj, ..., tM, iC.-a,}), such that

for i >  1.
3. If a sequent s on the n-th level is indecomposable or if it is an axiom or a special axiom /i.e. an 

element of the set s4 of the form: (s e Seq’: a e rights) for some a from X and a #  ~ bm for each 
m :£ i, or b„e  lelt($) for some ~tom e X,  m <, i <, r}/, then s is a leaf. If s has more than one the 
same element on the left or right side of the symbol ||- then we omit the rest We check this point 
after using any rule. If all sequents on the n-th level are leaves then STOP — the proof exists 
and the set of axioms and special axioms is of the form {Ax") u  s i.

4. n :=  n + 1;
We construct the n-th level of the j-diagram of the sequent |f- < p j ( t \ , — Uj and the 

n-th level of the i-diagram of the sequent ||- p,(r j , t̂ ) =  b, in S?'  with the rules 9t and the 
special set of axioms, which was defined above.
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I f  it is possible we use, as in D e fin itio n  19, the rule from  (91 u  R Sei-)\  { ( - (J )}  to construct 
the n-th ievel in the h-diagram  where h 6  ( i j j  by the premises of the considered rule.

If  we need use in the construction o f the n-th level in  the h-diagram  the rule ( - ( J )  for 
a sequent s o f the form:
W , s'(p : =  T R U E )  ( J  begin p : =  p a  a; K  end (p a  —•« a /?) |(- Y , ¿¡, Z , then for further 
considerations we denote by Ai„(Q the expression o f the form:
begin s ^ p  :=  T R U E  end [begin p :=  p a  b; K  end]'. W e mean that I is a natural num ber.

It  is  known that we get the fo llow ing set of sequents as the result of using the ru le  (-(J): 
{M „(l)(p  a 'a  a  p), W  j[— Y , bh Z: l e J r }, but in  practice we do not construct a ll o f these 
elements. We denote Y , bb Z  by T.

N ow  we consider the fo llow ing condition for the sequent of the form  a  —><a a /f),
W | | -r: we use RS-a lgo rith m  from  the point 3 to the sequents: k{M„(k)p) |(-; Af„(fc) —>a ||—; 
M n[k)p |f- and if  R S-a lgo rith m  gives us the proof o f one of the generalized form ulas:
~ ’k(A fn(k)p), a, then we assume that the n-th level contains o n ly  k-1
elements of the form : M n(l)(p  a —¡a a /3), IF | | -r  for 1 <  1 <  fc — 1- 
In  the opposite case the n-th  level contains the sequent

/(p  :=  T R U E )  ( J  begin p :=  p a K  end (p a -> a  a 0), W  ||- T

and additionally it contains either k  elements o f the form : M„(!){p a - i « a /J), W  ||-T  for 
1 <  i <, k  when the rule (- ( J )  is used for the first tim e for the sequent with regard to 
s'[p :=  T R U E )  ( J  begin p :=  p a a; K  end (p a ->a a  /?) or one element M„(k)(p a ~>a a ff), 
W\\- F  when the rule (- ( J )  is used for the sequent more than once with regard to the above 
m entioned, generalized form ula. (In  fact it means that on the n-th level instead o f in fin ite  set o f 
sequents {M „(i)(p  a —>a a  /?), W  ||-T : l e J r) we shall consider only a finite num ber o f 
sequents).

(To have on the n-th level on ly finite num ber o f sequents we do nearly the same w ith the rules 
( f )  +  ) and (-V ). How ever instead o f the classica l term t we put a tem porary pointer o f dum m y 
d /see P. G b o rzyn sk i [29], [28]/. M oreover on each level we have to decide whether some sequents 
are axiom s. To  do that we shall use the w ell-know n unification algorithm  on the both sides o f the 
sign B -  

k :=  k  + 1;
5. W e revise the n-th level o f the h-diagram  and for every sequent s which does not belong to 

s i  \j  (A x “ )’ we consider two cases:
(i) We lo ok for the classica l open form ula of the form  t  =  u} in  the sequent s such that 
t  =  Uj £  right(s), t does not contain the functor <pJ and t  was obtained by none of the rules: 
(r„  + ), ( - r .)  applied to a generalized term  t containing the functor <p} and b u ilt by the functors: 
+  >*./. O™ for some /e.g. if  in  some sequent, the classical term t which is equal to 0  was
obtained from  0 * ip ^(t{,...,tJm) by (r_  + )  then the decom posable sequent was changed into the 
indecom posable sequent ana we lost the essential property/.
I f  we find such a sequent s which fu lfils two conditions:
(1) a e A t’, for every a e s,
(2) s is not a  conclusion o f any of the m les from  the set 9  =  {(r, - f ), (-r j), (r _ + X  (-r„X  (r j,  
(rn + ), ( - i j ,  (P ’ + X  ( - n  (B), ( C + X  K J .  (X + X  (-*)},
then we consider two cases:

Case 1. If  there is another classica l open form ula of the form  t ' =  Uj (we consider this case even 
if the restriction concerning the rule ( r .  +  ) in  the point 5 (i) is not satisfied), then we put this 
sequent to the file  J i  unless s is in M . W e ca ll this sequent the special leaf and we assume 
that s has no immediate successor.
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Hovever, if  s is in M  then S T O P  —  if h =  j  then the proof o f the classical open form ula 
<Pj(Li ,  =  “j  in the retrieval system  does not exist and if  h =  i then the proof o f the
classica l open form ula ..., r i J  & b; in the retrieval system does not exist.

Case 2. If  r  =  u} is the only classica l open form ula for some x w hich fu lfils the co nd ition  (i), 
then we put r  =  in  the file X  and the sequent s becomes a leaf. Then we remove a ll special 
leaves from  J i  co ntain ing t =  on the right of the sign )(- and we call them leaves.

(ii) We lo o k for the element bt in the sequent s. I f  we find such a sequent containing p, and bt on 
the same side o f the sym bol |[- then S T O P  —  we have to do w ith the case o f the form : 
Piix i, - j  *„,) =  ..., x „ )  and the proof does not exist. I f  s is not a conclusion of any of the
rules from  © we consider three cases:

Case 1 . I f  for every a e lefl(s) we get a e A t’\  {F A L S E ,  i>(} and a does not contain the predicate 
letter p L and if  fo r every ft e rig h ts) we get f ie  A t '\ {T R U E }  and 0 does not contain  the 
predicate letter pL and bt e right(s), then we put into the file X .

Case 2. I f  for every a e le ft(s) we get a e  A t‘\  {F A L S E }  and a does not contain the predicate 
letter p, and b, e left(s) and if  for every e  r ig h ts) we get /J e A f\  {T R U E } and does not 
contain the predicate letter p{ then we put —>bl into the file  X .

Case 3. I f  there is b, and —*6 , in X  then S T O P  —  the pro o f of the generalized form ula
Pi (T j , .... t ' j  =  bt in  the retrieval system  does not exist.

6. I f  s is an indecom posable sequent on the n-th level o f the h-diagram  which is not an elem ent o f
sd  u (A x " ) ' then S T O P  —  the proof o f the classical open form ula t}m)  =  ti} or
Pjfx'p ) =  b, for the case h =  j  or h =  i respectirely in  the retrieval system does/not exist.

7. I f  each indecom posable sequent from  the n-th level of the h-diagram  is an element of the set
sd u  { A .O  and if  there is no other sequent on the n-th level then S T O P  —  if  h =  j  then the set 
{s  eSeq’: a e  right(s) for some classica l open form ula a from  X  and a ^  bd and x ^  —>bd for
1 <  d <  /} is the special set o f axiom s for the proof of the classica l open form ulas:

Pifri» £,) -  “i. ■«. V>M’ -> = uj>
and the file  of the premises o f the above functional equations exists and contains a ll the elem ents 
from  X  which are neither bd nor —•bd fo r any d e { ] ,.... i). How ever if  h =  i then the set {s e Seq’: 
bd e right{s) for some bd from  the file  X  where 1 <, d <  i or bd e ieft(s) for some —<bi  from  the 
file  X  where 1 <  d <  i} is the special set of axiom s for the proof of the generalized form ulas:

- » Tn\ )  =  bu ■■■> Pfc\> » . =  K

and the file  of the premises o f the above relations defined by program s exists and contains a il 
the elements from  X  which are of the form  bd or ~'bJ  for any d e { 1, ..., i}.
I f  j  =  p and i =  t then S T O P  —  sd is the special set of axiom s for the proof o f a ll generalized 
form ulas from  (F P ) and X  is the file  of the prem ises o f functional equations and relations defined 
b y program s from  (F P ). I f  {j <  p and i <  r) ax (j <  p and i =  r) or (i <  r and j  =  p) then we 
change i and j  respectively and we go to the point 2 . □

Now we want to pay attention to a special case, which was mentioned in 
Case 1 of the point 5 (i). We want to prove in the retrieval system f(2) =  u 
by RS-algorithm.

Exam ple 9.
We start w ith the sequent:

(1) |hfl2) = u.
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A lter using some rules we get am ong other things two sequents:
(2) |(- {n :=  2){n =  0), (n : =  2)(z  :=  n *f{n  -  l) ( z  =  u)\
(3) lh {n :=  2)(z  :=  1 (z =  u)), (n :=  2 ) (z :=  n * /(n  — 1) (z =  u)).

The continuation of the proof depends on which sequent w ill be decomposed.
We shall show both of them:

Case 1. If  we continue our considerations w ith the sequent (2), we shall get at last the sequent o f 
the form :
(4) 0 =  0 |H 2 =  0, 1 «= ft 2 =  u.

B y Case 2 o f the point 5 (i) of RS-algo rith m  we get 2 =  u as the premise. Therefore each 
sequent containing this premise on the left side o f the sym bol ||- is a special axiom . It  allow s us to 
end the whole proof.
Case 2. If  we continue our proof with the sequent (3) we get at last the sequent of the form :
(5) ||- 0 =  u, 1 =  u, 2  =  u.

M oreover 0 in (5) was got from  the classical term 2* (0 */(0  — 1)) by (r„  + ). Since we sh a ll not 
be able to choose only one prem ise, we ca ll this sequent in  the Case I  of the point 5 (i) o f 
RS-a lgo rith m  the special leaf and put it in to  the file  M . A t that moment we consider other 
sequents, fo r exam ple the sequent (2), w hich allow s us to get the prem ise 2 =  u. B y Case 2 of the 
point 5 (i) o f R S-a lgo rith m  we remove the special leaf from  J (  and we ca ll it a leaf. It  allow s us to 
end the whole proof even in this case. ■

Case 1 in the point 5 (i) is based on the standard model of arithmetic with 
standard realization.

If there exist only terms without individual variables in the considered 
programs and formulas, except individual variables of the form x in the 
expressions x: = z and if we use only recursive functions and the computations 
of all programs in (FP) stop then the following lemma holds:

L em m a 8. Let <S0 =  < S ,< >  be the diagram o f the generalized formula a. 
of the form q>j{yv —,y m̂  = Mitj from (FP). I f  during the execution o f 
RS-algorithm for the premise o f function defining the notion cpj we get an 
indecomposable sequent s of the form |}- u =  u — xn, T 2 then there 
exist two sequents sk and s2 in S such that s < sv  s2 < s1? s and s2 are not 
compared by < and s2 contains exactly one classical open formula from 
{u =  tx, u = t„} on the right o f the symbol |[~.

We want to pay attention to one important matter. The diagram <5a usually 
has an infinite path (see the diagram for /(2) =  u) but using RS-algorithm, 
we get a finite subtree < S ’, < '>  of the tree S a i.e. a finite S’ <= S and 
< ' =  < /g. where < /g. means the restriction of the relation < to the set S’. 
Since the computation of the program Mj stops and gives us the result of this 
computation, this computation points out the path to the sequent s2. 
Obviously there is only one sequent s2 with the above mentioned property.

The main idea of this lemma is the following: if during the execution of 
RS-algorithm we get the path with the indecomposable sequent s of the form 
i f  ||- u =  t1? ..., u =  t„, r 2, (in this case we do not know which x} is the 
calculation of M f) ,  then by the assumption (the computation of all programs
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in (FP) stops), there exists another path containing the indecomposable 
sequent s2 with the only formula of the form u =  x for some j  e { 1 , n} where 
Xj is the result of the computation of Mjtj. Therefore during the execution of 
RS-algorithm we stop the calculation along the path with the sequent s 
and we continue the calculation on the other branch constructed up this 
moment and we look for the sequent s2. The sequent s2 enables us to get the 
premise of the considered function of the form u =  t - and to extend the set of 
special axioms.

Further we shall give some examples showing that the idea presented in the 
above algorithm allows us to fmd the special set of axioms for functions and 
relations defined by programs.

Using the rules from RSeq. u  9? we will be able to fmd the premises and 
a special set of axioms to solve the equality of the form < p ( U , t j  = u for the
Function defining the notion q> such that cp(tl  tJ  =  Mi is from (*) and
u $ &{cp(tv  i J )  u  S(Mt). Let =  {s e Seq': a e right{s) for some a from the 
file Z j  for i e {0, 1, 2, 3) and for the set of premises X t

Exam ple 10 . There exist the files X a, X v, X 2, X 2 of the premises and the special sets of axioms 
sd0, jd t, sd2, sd3l which are found by using R S -algorithm during the proof of the following 
expressions:

(1) g(n*) =  k e  proof <  (A x - )' \j  sd0, R Seq, u ! R > ,
(ii) h(l, 2) =  « j e  proof <  (A x - )’ u j d lt R Stq- u  9 l> ,
(iii)  k(x, 1) =  u2 e proof <  (A x - )' u  sd2, R Scq. u  3 t> ,
(iv ) p (l, 2) — b e proof <  (A x - )' \j  sd2, R Scq. \j  5R>,

O b vio u sly sdq =  {s e  Seq’ : r& =  u e r ig h ts )}, sd y = { s e Seq': 2 =  Uj e rig h ts)}, sd2 =  
[s e Seq ': x +  1 — u2 e right{s)} and sd3 — (s  e Seq': b e  right(s)}.

Proof, (i) T o  find X 0 an sd0 we m ake them empty and construct the diagram  of sequent

W  IF  S("*) =  «
by R S-a lgo rith m  in  the language SC" w ith the special set o f rules St and the special set o f axiom s 
sdq. B y (r ^ + J  and (B + )  we get the sequent
(2) IF  begin x  :=  n*; i : =  n end (begin i : =» « +  3; z :=  x  end(2 =  «)).

Th u s by (s +  ) we get
(3) |F n4 -  a-

N ext by Case 2 o f the po int 5 of R S-a lgo rith m  we put n* =  u into X 0 and therefore the 
sequent (3) belongs to the set sd0.
(ii) T o  find the needed X t and sdy we m ake them empty and construct the diagram  o f the 
sequent
( 1 )  M ( l , 2 ) = « x
by R S-a lgo rith m  in  the language if* w ith the special set o f rules 91 and the special set o f axiom s 
sdy. U sin g  (>■ „+) and (B + )  we get
(2) |F begin x := 1; y : =  2  end if  x — 0  then z :=  2  else z:= h[x -  1, h(x, y)) (z =  ut).

Hence and by (k + ), (A + )  and (C  +  ) we get two sequents of the form :
(2 .1) ¡F begin x  :=  1; y : =  2  end(->(x =  0)), begin x  :=  1; y :=  2  end((x -  0 ) a z  :=  2 (z =  « j)),
(2 .2) ||- begin x : =  1; y :=  2 end z : =  h{x -  1, /¡(x, y)) (z =  Uj)), begin x  :=  1; y :=  2 end((x =  0) a

(z :=  2 (z =  u j)).
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Case (2.1). U sin g (C + )  we get two sequents of the form:
(2 .1.1) |(- begin x : =  1; y : =  2  end (x  =  0), begin x :  =  1; y 2  end (—>(x  =  0)),
(2 .1.2) ||-begin x : =  1; y : = l  end (z =  2 (z =  u j) , begin x : =  1; y  :=  2  end (->(x =  0 )),
Case (2.1.1). B y (N + )  we get an axiom .
Case (2.1.2). B y (N + ), (-s), (s + )  and (ra) we get an axiom .
Case (2.2). U sin g ( C + )  we get two sequents o f the form :
(2 .2 .1) . |(- begin x : = l ;  y : = 2  end (x  =  0), begin x : = l ;  y :=  2  end { z :=  h(x — l ,  h(x,y))
(z =  “ l)X
(2.2.2) |(- begin x : -  1; y : =  2  end (2 =  2 (z =  u j) , begin x  : =  1; y 2 end (2 :=  /z(x -  1 , h{x, y))

(z = ui)X
Case (2.2.1). U sin g the rule (s + ), ( r _ + )  and (s + ) we get
(3) |M  =  0, /i(0, h (l, 2)) « =« ,.

U sin g the rule (r „ + X  (P ’ + ), (B + ), (P ’ -HX (k + ) and (P ’ +  ) we get
( 4 )  11-1 =  0, begin x : = 0 ;  y : =  h{ 1 ,2 ) end(((x =  0) a  (z  :=  2 (2 =  «,))) v  (- .(x  =  0) a  (z  :=  
h(x -  1, k(x, y)) (z =  u ,)))).
B y (A  +  ) and (P ’ +  ) we get
(5) |f-1 =  0, begin x \ — (X y : — A( 1,2) end((x =  0) a (z :=  2(z =  Uj))), begin x : =  0; y  :=  h (l,2 )  
end(—'(x =  0) a (z :=  h{x -  1, h(x, y ))(z =  u j)).

F o r sim p licity let us denote by H  the second generalized form ula on the right-hand side o f the 
above sequent. Le t us introduce the fo llow ing abbreviations: 
a =  begin x : — 0 ; y : =  h(l, 2) end(—>[x — 0)),
b =  begin x  : =  0; y : =  h ( l ,2) end (z :=  h[x — 1, h (x ,y ))(z  — u,)),
c =  begin x  : =  0; y ; =  / i(l, 2) end(x =  OX
d =  begin x : — 0; y : =  h (l,2 )  end ( z :=  2 (z =  u,)).

U sin g  in  (5) the rule (C + )  we get two sequents:
(5.1) |f- a, 1 =  0, H ,
(5.2) |(- b, 1 =  0, H .
Case (5.1). U sin g  (C 4 -) and (P ’ + )  we get two sequents:
(5.1.1) If- 1 =  0, c, a,
(5.1.2) |f-1 =  0, d , a .
Case (5.1.1). By (N + )  we get an axiom .
Case (5.1.2). B y the same rule as used in  Case (5.1.1) and by (-r j) we get
(6) 1 |f- 2 =  u ,, 1 =  0. Then by Case 2 of the point 5 of R S-a lgo rith m  we put 2 =  u , in to  X 2 and 
therefore the sequent (6) belongs to the set sd v
Case (5.2). U sin g  ( C + )  and (P ’ + )  we get two sequents;
(5.2.1) If- 1 =  0 , c, b,
(5.2.2) If- 1 =  0, d, b,
Case (5.2.1). U sin g tw ice the rule (s +  ) and ( r j+ )  we get an axiom .
Case (5.2.2). U sin g  twice the rule (s-F ) and ( r „ + )  we get
(7) ||- 2 =  «, A (—1, h(l, 2))) — uu \ =  0.

The sequent (7) is an element o f the set s t v  The case (2-2.2) is sim ilar, so we 
om it it.
(iii) To  find the needed X 2 and s i 2 we m ake them empty and construct the diagram  of the sequent 
|f- /c(x, 1) =  u2 by R S-a lgo rith m . The proof is sim ilar to (i). After using m any rules we get a t last two 
sequents of the form :
(1) |f- fc(x, 0) +  1 =  u2, 1 =  0 ,
(1’) ||-fc(x,0) + 1 =  u2, x  = u2.

F irst we consider (1). B y (P ’ + ), ( r „ + )  and (B  +  ) we get
(2 ) f| -y ; =  0 ( ify  =  0  then z : =  x  else 2 : -  k (x ,y  -  1) +  1 (z +  1 =  u2)X 1 =  0 .
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Hence by (P ’ + ), {& + ), (A + )  and (C + )  we get two sequents of the form:
(2 .1) ||- y : =  0 (—0  ~  0)), y ■ =  0 (y *= 0 a  (2 : =  x) (z +  1 =  u2)), 1 =  0 ,
(2 .2 ) |[-y \ ~  0 ((z : =  k(x, y -  1) +  l) ( z  +  1 =  u2)), y : =  0 (y =  0  a (z :=  x) (z +  1 =  u2)), 1 =  0 . 
Case (2.1). U sin g  (P ’ -f-), (C - f )  and (N + )  we get an axiom  and the sequent of the form : 
y G(y =  0) | (-y :=  0 ((z :=  x)(z +  1 =  u2)), 1 = 0 .  After using (+ s ), (P ’ + )  and (s +  ) we get 
0 =  0 |f- z +  1 =  «2, 1 =  0. Then by Case 2 of the point 5 of R S-a lgo rith m  we put z +  1 =  u2 into 
X 2 and therefore the sequent (6) belongs to the set sd2.
Case (2.2). B y (P ’ +  ), (C + ) , (s +  ), (/-„ + )  and (rj + )  we get, after some steps, the axiom  of the form  

— 1) +  2 =  u2, T R U E ,  1 =  0 and the special axiom  of the form  
|(- k(x, — l) + 2 = u2, x  + l = u 2, l  = Q.

The case (1‘) is sim ilar to the case (1), so we om it ¡L It  is worth to m ention, that if  we first 
consider the case (T ) we shall get the proof by the Case 1 in the point 5 (i) in R S-a lgo rith m .
(iv) To  find X 3 and s / 3 we m ake them empty and construct the diagram  of the sequent
(1) lb P (l. 2) =  b,
by RS-a lgo rith m  for i =  1, b2 =  b and k — 2.

O bviously by ( C + )  we get two sequents. N ext by ( I + )  we get:
(2 ) p ( l ,2 )|b b ,
(3) b  |b p ( l, 2).

U sin g the rule ( —r 'J  to (2) and (r^ -l-) to (3) we get
(4) begin x :  =  1; y : -  2 end K2a  |b b,
(5) b |b begin x : — 1; y : =  2 end K2a.

A t first we consider the point (4). B y (-k) and (-A ) we get two sequents:
(4.1) begin x : =  1; y :  =  2 end ((x  =  y) a (a :=  F A L S E )  a) Jb b,
(4.2) begin x  : =  1; y :=  2  end (—>(x =  y) a  begin u :=  0 ; while —>((u =  v) v  (u — x)) do u : =  u -f- 1;
if  u =  x  then a T R U E  else a :=  F A L S E ; end a) |b b.
C ase (4.1). B y  (-C ) and (-s) we get the sequent
F A L S E ,  begin x : — 1; y  : =  2 end(x =  y) |b b w hich is an axiom .
Case (4.2). B y  (-C ), (-/c) and (-N ) we gel
(6) begin x :=  1; y  :=  2  end (« :=  D(begin while —>((u =  y) v  (w =  x)) do u :=  u +  1; if  u =  x  then 
a : =  T R U E  else a :=  F A L S E ; end a))|b begin x : =  1; y : =  2 end (x  =  y), b.

By (P ’ + ), (-k), (s +  ), (-fc) and (-r„) we get
(7) begin x : =  l ; y  :=  2 end(u; =  0 (p : =  T R U E  ( J  begin p : =  (p A -’ftu =  y) v  (u =  x))); u: =  u +  1 
end (p a  ((u =  y) v  (u =  x)) a  if  u =  x  then a : =  T R U E  else a F A L S E  (a)))) |b 1 =  2, h, where 
p is a special element from  V0 (see D efin ition  16).

Since we need to use the ru le ( —(J)> by point 4 of R S-a lgo rith m  we denote by n the level o f the 
considered diagram  and by M „(0 the expression of the form:
begin x :=  1; y 2; u : =  0; p :=  T R U E  ead(begin p i - p  a  ->((u =  y) v  (u =  x))j u :=  u -t- 1 end)'.

N ext we verify whether the sequent k(M„(k)p) |b has the proof in the retrieval system
for k =  2.

Since k{M n(2)p) is  o f the form  T R U E  a -> ((0 =  2) v  (0 =  1)) a -> ((0 +  1 =  2) v  (0 +  1 =  1)), 
using the rules ( - r „ ) ,  ( - r j ) ,  ( - r X I), ( - r K1), ( - r co) to the sequent k{M J2)p) |b we get the sequent 
s0 such that F A L S E  eleft(s0). Hence s0 is an axiom . B y the point 4 o f R S-a lgo rith m  we sh a ll 
consider only two sequents of the form:
(8) M n(l) (p a  ((u =  y) v  (u =  x)) a (if  u — x  then a :=  T R U E  else a : =  F A L S E ;  a)) [\-l =  2 ,b  for
ie { 0 , i } .

U sing twice (-C ) in  (8) we get for l — 1 the fo llow ing sequence.
(9) M „ (l)((« =  y) v  (u =  x )),M r( l)  if  u =  x  then a :— T R U E  else a .=  F A L S E  a), A f„ (l)p

I H - 2 ,b.
U sing (-s), (-rc l), {-k), (-A ), (-N ) and (P ’ + )  we get two sequents:

(9.1) M „(l)(«  =  y ),M „ (l)((« =  x) a  ((a : =  TRUE)a)) v  ( - ( «  =  x) a  ((a :=  F A L S E ) a))) lb 1 =  2 ,b, 
(0 =  2) v  (0 =  1).

83



(9.2) M ,(l)(u  =  y ),M „(l)((u  =  x ) a  ((a: =  TR U E)a )) v  (* >  =  x) a ((a :=  F A L S E ) a))) | M  =  2,6 , 
(0 =  2) v  (0 =  1).
Case (9.1). B y (A  4-), (-A ) we get two sequents. N ext using (-s) and (r„) we get axiom s, since F A L S E  
is on the left-hand side o f the sign ((-.
Case (9.2). B y (A + )  and (-A ) we get two sequents:
(9.2.1) M „(l)((u  =  y) a ((a : =  F ftt/B Ja)), A f„(l)(«  -  x) |(- 0 =  2,0 =  1, 1 -  2), 6 ,
(9.2.2) A f„(l) (—> (u =  x) a ((a : =  FALSE)a)), M n(I)  (a =  x ) ||- 0 =  2 ,0  =  1, 1 — 2), b.
Case (9.2.1) U sin g  (-s), (-r_ ), (-C ) we get
(10) M„(L) (a =  x), M „(l) ((a : — TRU E)a), T R U E  |h 0 -  2, 0 =  1, 1 =  2,6.

B y (-P ), (-s) and (-r_ ) we get the sequent o f the form :
(11) T R U E  |[- 0 =  2, 0 =  1, 1 =  2, 6.

B y Case 1 o f the point 5 o f R S-algorithm  we put b into the file  X 3 and the sequent fro m  (11) 
is an element o f the set M oreover the sequent (9.22) is the special axiom  too. O b vio u sly  the 
sequent (8 ) for / =  0  is the special axiom , since b is  in  it on the right-hand side of the sign  |f-. 

Now we consider the point (5). U sin g (/c+), (A  +  ) and (C + )  we get two sequents:
(5.1) b |f- begin x :  =  1; y :=  2 end—>(x =  y), begin x : =  1; y : =  2 end((x =  y) a (a : =  F A lS E ja ) ,
(5.2) 6 |(- begin x  :=  0; y : =  2 end(begin u : =  1; while —>((u =  y) v  (u =  x)) do u : =  u +  1; if  u =  x  
then a :— T R U E  else a: =  F A L S E ; end a), begin x :  =  1; y : =  2 end ((x  =  y) a ((a :=  F A LS E )a )). 
Case (5.1). B y ( C + )  we get two sequents such that using (N + )  for one of them we get an axio m  and 
using (N  4-), (-P ), (s + ), (-s) we get the sequent o f the form  1 =  2, 6  |(- F A L S E  w hich by (r0) becomes 
an axiom .
Case (5.2). B y  (C + )  we get two sequents:
(5.2 .1) 6 |f- begin x :  =  1; y : =  2 end (x  =  y), begin x :  =  1; y  :=  2  end (begin a : =  0; w h ile- '((u  =  y) v  
(u =  x)) do « := «  +  ! ; if  u =  x  then a :~  T R U E  eke a : =  FALSE-, end a),
(5.2.2) b ¡¡- begin x : = l ;  y : = 2  end((a: =  F A L S E )a \  begin x : =  1; y : = 2  end (begin u := 0 ; 
while —>((u =  y) v  (u =  x)) do u :=  u +  1; if  u =  x  then a : =  T R U E  else a :— F A L S E ; end a).

Since both cases are nearly the same, we shall consider o n ly the case (5.2.1). F o r  further 
considerations we shall introduce the fo llow ing abbreviations: a is  equal to ((a =  y) v  (u =  x)), s i 
denotes begin p : = ( p  a —>a); « :  =  u  4- 1 end. U sin g { k + ) ,  (s + ), ( k + ) ,  (P ’ + )  and ( f c + )  in  (5.21) 
we get
(12) 6 ||- begin x : =  1; y \ — 2 end (« :=  0 [p .— T R U E  \ J  s i  (p a- >—>aA if  u =  x  then a : =  T R U E  
else a :=  F A L S E ]  a))), 1 =  2, where p is a special element from  V0 (see D efin ition  16). B y  (r„4~), 
(P ’ + ), (U + )>  (P ’ -b) and ( C 4-) we get two sequents, but one of them, after using ( ( J  4-), (P 4 -) and 
(s-t-), becomes an axiom  because T R U E  appeares on the right-hand side of the sign ]J-. Therefore 
we consider o n ly the last sequent which is o f the form :
(13) 6 |(- begin x : = V ,  y : =  2 end {u :=  0 {p :=  T R U E  (« A if  u =  .x then a :=  T R U E  else 
a: -  F A L S E ; a))), 1 =  2, begin x : =  l ; y  :=  2 end (u :=  0 (p :=  T R U E  \ J  s l(s l(p A  a  a if  u =  x  then 
a : — T R U E  else a : =  F A L S E ; a)))).

Let us denote by 6 the sequence o f generalized form ulas of the form: 
begin x : = l ;  y : = 2  end (u :=  0 (p :=  T R U E  \ Js l(s l(s l(p A  a a  if  u — x  then a :=  T R U E  eke 
a :=  F A L S E ;  a))))), begin x : = l ;  y :=  2 end (u :=  0 (p :=  T ftl7 B (s l(p A  c a  if  u = x  then 
a: — T R U E  else a : =  F A L S E ;  a)))).

U sin g  ( ( J 4-), ( P 4- )  and (C 4 -) in  (13) we get two sequents:
(13.1) 6 |f-begin x : =  1; y : =  2  end (u : =  0  ((p :=  T R U E ) a)), 1 =  2 , 6,
(13.2) 6 j|-begin x : = l ;  y : = 2  end ( u := 0  ( { p := r R I7 E )  if  u =  x  then a :=  T R U E  else 
a :=  F A L S E ;  a), 1 =  2, 5.

Let C be o f the form : begin x : =  l ; y : =  2 end (fz :=  0 (p :=  T R U E  f J s l( s l( s l(p A  h a  if  u =  x  
then a :=  T R U E  else a :=  F A L S E ; a))))).
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Case (13.1). By (C  +  ) we get two sequents:
(13.1.1) b |b begin x : =  1; y : — 2 end (« :=  0 (p: =  T R U E  (sip))), begin x : =  1; y : =  2 end (« : =  0 
((> :=  TRUE)«)), 1 = 2 , C,
(13.1.2) b |(- begin x : =  1; y : =  2 end (« :=  0 (p :=  T R U E  (st (a a if  u — x  then a T R U E  else 
a : =  F A L S E ;  a)))), begin x : =  I; y : =  2 end (« :=  0 ((p : =  T R U E  (a)))), 1 =  2, (.
Case (13.1.1). B y (1 J +  ), (P + ), (A + ), (s + ), (rc l + ), (C  +  ) we get two sequents. U sin g  for each of 
them (1 J+ ) , (P  + ), ( s - f ), (N  + ), (-A ), (ra) we get four sequents which are axiom s because F A L S E  
belongs to the left side o f the sign  ((- o f each of them.
Case (13.1.2), Let us consider only the generalized form ula T  o f the form : begin x  :=  I ;  y  :=  2 end 
(u : =  0(p ;=  T R U E  (s i (« a  if  u =  x  then a :=  T R U E  else a ; =  F A L S E ; a)))), which belongs to the 
right side o f the sign ¡b in (13.1,2). It is easily seen that using some rules of inference to the sequent
(13.1.2) w hich is of the form b |f- T , F , we get the sequent of the form :
(14) b ft- r ,  T .

Le t ¡i be of the form  begin x : — 1; y : — 2 end (tr: =  0 (p : =  T R  U E  (sl((a))) and k  be o f the form 
begin x :  =  1; y: =  2 end (u: — 0 (p :=  T R U E  (s i( if  u — x  then a :— T R U E  else a :=  F A L S E ;  a)))). 
U sin g (C + )  in (14) we get two sequents:
(14.1) b ih ft, r ,
(14.2) b ih k , r .
Case (14.1). U sing some rules of inference to the generalized form ulas which belong to T '
we get at last some sequents o f the form  b [(- T j,  p. N ext by (A  4-) we get sequents of
the form :
(15) h | l- r 2J begin x : = i ;  y : = 2  end (u :=  0 (p :=  T R U E  (s l(u  =  x), r 3.

Repeating this process and using in  turn two rules o f inference (s + ), (rx - f )  we get at last some 
sequents of the form : 
b |f- T R U E , F +, w hich are axiom s.
Case (14.2). U sin g  some rules of inference to the generalized form ulas from  F  we gel at last some 
sequents o f the form  b ||- F s, k . B y (k + )  we get
(16) b |b begin x :=  l ; y  :=  2 end (u :=  0 (p: =  T R U E  (s i ({(« =  x) a ( ( a : -  TRU E)a)) v  ( - ( u  =  x ) a

((« :=  FALSE)*)))))), F 5.
U sin g some rules of inference to the generalized form ulas from  T s and at last using (A + )  we 

get the sequent o f the form :
(17) b ¡1- begin x : =  1; y :=  2 end (u :=  0 (p :=  T R U E  (s l((u  =  x ) a ( ( a : -  TRUE)a))))), Va.

N ow  we use some rules of inference to the generalized form ulas from  r„ . A t last we use (C  +  )
getting two sequents o f the form:
(17.1) b ||- begin x : =  1; y : =  2 end (u :=  0  (p :=  T R U E  (s i (« =  x)))), F 7,
(17.2) b |b begin x :  =  1; y :=  2 end (a :=  0 (p :=  T R U E  (s i ((a :=  T R U E )  a))), r 7.
Case (17.1). Repeating th is process and at last using in  turn (s + ), ( r „ + )  and (r} + )  we get some 
sequents of the form  b |b T R U E , r 8 which are axiom s.
Case (17.2). Repeating this process and using at last (s + )  we get some sequents o f the form  
b }b T R U E ,  F 7 w hich are axiom s.
Case (13.2). W e shall on ly show how to use the rule for a special generalized form ula of the sequent 
because the other rules are not essential. Therefore this special generalized form ula w ill be still 
written on the righ t side or the considered sequent. By (C  +  ) we get two sequents:
(13.2.1) b |b r „  begin x : =  1; y : -  2 end (« :=  0 (p :=  T R U E  (si p))).
(13.2.2) b |b F 9, begin x : =  1; y : =  2 end (u :=  0 (p : =  T R U E  (s i(a  a  if  u =  x  then a \~  T R U E  else 
a : =  F A L S E ;  a)))).

It  is  easily seen that case (13.2.1) is analogous to the case (13.1.1) and the case (13.2.2) is 
analogous to the case (13.L2).

W e have proved (iv) for -  {s e S e q ': b e  r ig h ts)} and X 3 containing the cla ssica l 
form ula b. ■
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The above examples show that the constructed algorithm computes even 
such generalized formulas for which the standard computation is helpless, since 
as it was mentioned in the introduction, it is impossible to compile the program 
K 5 defining the function h{x, y) in the case x =  1 and y = 2. The retrieval 
system, however is able to find the additional premise u = 2 of function h to 
prove the formula h{  1,2) =  u.

5.5 The data structures and implementation 
of a retrieval system

The system is based on Gentzen’s axiomatization of algorithmic logic 
G. Mirkowska [58]. The implementation needs some structures. Objects of the 
type TNODE of the form:

K IN D ID E N T

L E F T R IG H T

where types KIND and IDENT are INTEGER and types LEFT and RIGHT 
are TNODE represent generalized formulas, generalized terms and programs. 
We present some representations:

a a ß ----- > 53 :=  t ■ - ->

IF  a T H E N  K  E L S E  M  ß - >
IF

a

T H E N

K

E L S E

M ß

V.iOt--- >
V i

a

B E G IN  K] M  E N D  a ------->
B E G IN E N D

------- f c j
a r ;

K M

W H IL E  a D O  K  ß ----- >
W H IL E

a

D O

K ß

P2(/1(jc5)) - - - >
P 2 / l X 5

1 r 1 r
L _

86



The object of the type FORMULA is of the form:

P L E A F

L L E A F

N E X T

where PLEAF and LLEAF are of the type TNODE and where NEXT is of the 
type FORMULA. The list of objects of the type FORMULA represents the 
sequent X  \\- Y. Let POINTER be an object of the form:

S E Q U E N T

" d o w n

where SEQUENT is of the type FORMULA and DOWN is of the type 
POINTER. Let HEAD be of the type POINTER. We can represent the list of 
the sequent X ,  |f- Yv X k |(- Yk where X t |J- Yt =  { f t , .... a 'f} |h { f t , ..., f t j  for 
1 < / < k in the following way:

H E A D

i

S E Q U E N T

D O W N

P L E A F 1

L L E A F

N E X T

I X, ¡h Yi

K IN D ID E N T
L E F T R IG H T

K IN D ID E N T
L E F T R IG H T

— a11

-  ß\

i
K IN D ID E N T

P L A E F r L E F T R IG H T

L L E A F K IN D ID E N T
N E X T L E F T R IG H T

l
S E Q U E N T

D O W N
xk it- n

We use the rule only for the last non-empty PLEAF or LLEAF in the 
considered sequent. It can be seen that (A+) adds a new FORMULA and 
(C +) generates a new POINTER and a new SEQUENT. Using (C +) to the 
last non-empty PLEAF in the sequent X  JJ- Y, we copy X  |J- Y and we put 
a new HEAD1 such that HEAD1. SEQUENT points to the copy of X  [J- Y. 
Next we pull a from the last non-empty PLEAF in the sequent X  ||- Y. Thus
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we change TNODE a a 0 into a. Then HEAD l.DOWN; =  HEAD.DOWN; 
HEAD.DOWN: =  HEADl. Moreover we pull from the last non-empty 
PLEAF, which lies in the line pointed by HEAD 1.SEQUENT. Next we change 
TNODE a a /f into /?. During the proof we use a lot of options to reduce the 
complexity of the tree.

In the end we shall provide a sketch of implementation of the retrieval 
system i.e. we shall present the main procedure PROVE showing only the area 
of activity of major procedures and functions.

U N IT  P R O V E  : P R O C E D U R E  (M  : P O IN T E R );
<  D eclaration of constants, variables and objects >

B E G IN
Read a form ula from  a file  and construct a sequent pointed by M;
Read a definition o f function or relation and construct a sequent pointed by M l;
Replace a function in a sequent by its definition and move a program  outside the equality predicate 
or replace a relation in  a sequent by its definition;
W hile possible, use some basic procedures to the last generalized form ula from  the rig h t side o f 
M .S E Q U E N T :
—  com pute arithm etic expressions /use (;■ _+)/ e.g. 1 + 2 — > 3,
—  compute special arithm etic expressions e.g. 0  *J\x)— >  0 , jc°  — >  1,
—  convert classical terms f j ^  t2 in a model of arithm etic into lo gical F A L S E  /use (r j/ ,
—  convert classical term s, w hich are equal in the above-m entioned m odel into lo g ica l T R U E  

/use (r i+ ) / ,
—  sim plify lo gica l expressions e.g. T R U E  a  a — >  cr.
Remove a sequent including F A L S E  on left side or T R U E  on right side;
W hile a tree M  of sequents is not em pty, execute the proof:
—  while the considered sequent pointed by M  contains program s, connectives, fu nctio ns or 

predicates defined in  M l, continue the proof and lo o k for the set o f axiom s:
—  if in  a considered sequent its antecedent exists then search for a connective or a program  

in the last form ula from  righ t side o f M .S E Q U E N T .
—  If  a connective or a program  was found, use a proper rule from  (R + )  or ( + R ), else either 

if it  is possible m ake substitutions and move the last form ula from  the antecedent to the 
beginning o f a sequent, or lo ok for the first form ula From the antecedent not belonging to A t 
and move a ll others form ulas on the righ t of it to the beginning of this sequent,

—  do some ordering procedure sim plifying the sequent i.e. remove empty Inodes, search 
axiom s and when found, erase the sequent,

—  repeat the above-m eDtioned two procedures for the premises o f the sequent;
—  search for a special axiom s w hich enable us to fin ish  the proof and update the list o f them,
—  continue the proof fo r the next sequent after rem oving the proved sequent.
E N D .{P R 0 V E }

5.6 Results of experiments

Now  we discuss some experim ental results. In  our experim ents we use IB M  P C /A T  w ith frequency 
of 50 M H z. Le t us consider the fo llow ing theories:
A R  —  arithm etic,
A L  —  algorithm ic logic,
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S T  —  set theory,
L T  —  lattice ; A LT —  axiom s o f the theory of lattice,
B A  —  boolean algebra ; A ba —  axiom s o f the theory of boolean algebra,
G  —  geometry,
C Q  —  calcu lus o f quantifiers,
P L  —  propositional logic.

F o r further considerations let us define the fo llow ing program :
K 6 —  if  x  =  1 then q l :=  F A L S E  else q l :=  TR U E;.

Now  we define some sets of axiom s:

¿i-*
a l -  VxV7(P (x ,y )^ Q (x ,y ))
a2 -  VxV ,(e (x ,y ) - P ( x ,y ) )
a3 -  VxV ,(J?(x,y ) =  (S (x ,y ) v  T(x,y))).
a4 —  Vx(l/ (x ) -  W(x))
a5 -  VI V/(fP (x ) = - .( P ( y ,x )  a  S(x,y)))
where

P(x, y) —  means that x £ y ,
Q (x, y) —  means that x  c  y or x  =  y,
R(x, i') —  means that the power of the set x  is less than the power o i the set y o r these sets 
are equipollent,
S(x,y) —  means that x  and y are equipollent,
71X y) —  means that the power of the set x  is less than the power of the set y, 
U(x) —  means that the set x  is fin ite,
\V(x) —  means that x  is Dedekind finite set;

b l —  VXV ,VUV 0(T (X , y, n, v) -+  P(x, y, u, u)) 
b2 —  VrV,VuV„(P (x, y, u, u) -> E{x, y , v, u, v, y)) 
b3 —  T(a,b,c,d] 
where

T (x , y, u, v) —  means that xyuv is a trapezium ,
P{x,y ,u1v) —  means that the segment xy  is parallel to uv,
£ (x , y ,z ,u ,u , w) —  m eans that the angles xyz and uvw are equal.

I N  :
T i -  Vx(Vy(y <  x  -  P(y)) -»  P (* )) -  Vx P(x)
T2 -  VxV7(x +  y =  y  +  x)
T3 -  Vx(x  +  Cl -  x)
T+ —  Vx((x  *  Cj A X *  c2) -*• c2 <  x)
Ts —  VxV /(x  <  y) =  3z(z *  c , a  x  +  z =  y)))

T6 —  c i ^  c2
The constants c , and c2 can be interpreted as 0 and 1. T h is exam ple shows as well th a t we 

can use another definition of the m athem atical induction.

G.:
G , -  Vx VrVx .Vr V0(p1(2C, Y, X ', Y ,a )  -  i CI p2{X , Y ,  X ', Y, C ,))
g2 -  vxvrvx,vr.vavClvC2((pj(at, y X', r,«) a Pl{x, y , x\ y c2) a p3(c!, ca» -  p*(c2, «)) 
g3 -  vB3xar3x,3r  p,(x, y r ,  r,*)
G4. —  VC l3C2 P 3(C 1, C2)

M oreover the expression p2(X ,Y ,  X \  1",a) means in tu itive ly that two points X , Y  lie o n  the 
first arm o f the angle and two points X 1, Y 1 lie on the second a im  of this angle and the p a irs  of 
segments O X , O X \ X Y , X ’Y 1 osculate respectively.
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The expression p2(X, T , X', £  C J  means that ihe point C j lies on two lines X Y 1 and X ’Y . 
The expression C 2) means that C 2 is the line O C y The expression P 4(C 2, a) means that 
the line C 2 is a b isectrix o f the angle a.

I f  X  is a set of axiom s then by X  we mean the conjunction of a ll these axiom s. B y  L  we 
denote the num ber of used axiom s in  the considered theory. T  denotes the duration o f the proof 
o f theorem or the duration o f the verification o f an expression. We recall that theorem s o f 
P L ,C Q ,A L  can be proved w ithout axiom s because retrieval system has a ll necessary rules o f 
inference. B y  D E F  we denote the definition of a function or a relation defined by program  (see 
(F P ))

If  during the proof o f an expression, w hich should be written in  the set D A T , wc need 
a special axiom , then in the colum n R E S U L T  the premise w ill be w ritten to inform  us about the 
elements o f si.

T a b ic  1

The table of some experim ental resides o f R S-a lgo rith m

T i l D E F D A T L R E S U L T

T IM E  
P C  486 

50 M H z

[m ] l>3

A L

/(« ) =  
K xz

II E si\  u — 2 0.33

/(3 ) =  u s i  :u  — 6 0.45

m  =  i  a
(Y t i- '(*  =  0 ) - » {f[x) — x  *f[x — 1) -»

+ 1) =  (x  +  i)  +f{xm

T H E O R E M 0.07

k(x, y) =  
K 3(z)

k(x, 1) -  x  +  1 T H E O R E M 0.30

k(x, 2) — u s i  \ u =  x  +  2 0.32

sM  =  
K M

21II■T*
¿J,

*KIIa 0.03

p{x,y) =  
K 2a

P(l» 2) =  b s i  :b  
means 

b =  T R U E

2.27

p'(x) =

■ W )

p'(l) B  b si\~>b  
means 

b s  F A L S E

0.30

S T Ü A 1 -
V*V ,((I/(jc) a  P(y, x)) -+ T[y, x))

5 T H E O R E M 0.88

L T I 1 a l t -» v x((
_ y = y —*-x  =  0) a  (VyX n  y =  y -* x  =  1))

15 T H E O R E M 256

B A 11 A b,  -  ({X  v  Y )\ Z  =  {X \ Z )  u ( A Z ) ) 18 T H E O R E M 2.8

i !  A ba Y xV r (X  c  Y ->  
Vz ( ( Z \ Y ) c : ( Z \ X ) ) )

18 T H E O R E M 0.07

E [ A a A - V x V r((X  =  T ) =
VZ((F c : Z )  ->  ( (Z \ X )  n ( Z \ 7 )  =  Z \  Y)))

18 T H E O R E M 0.39
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Com. Tab. 1

G f l  A 2  -> E[a, b, d, c, d, b) 3 T H E O R E M 0.18

A R n iN - ( ( P ( o ) A
P(x +  1))) ->  VxP(x)

T H E O R E M 2.10

C Q W f c jO s V , V , P ( x , y ) T H E O R E M 0.12

3 ,(3 yP M p ,.x )A 3 r P(fcjZ ,x ) ) v  
(3y- P M y ,c )  a  3 ,- ^ p f c M )

T H E O R E M 0.16

v .O p .M -a .x P a t* .))
=  3x2(P iW  -»• Pa(Xa)))

T H E O R E M 0.06

C Q {(x =  J'} A  (a =  z) a  P (x , u)) -* P(y, z) T H E O R E M 0.06

(P M  -* v ,ô W ) =  Vy{P(x) -*■  Q(y)) T H E O R E M 0.10

- ( 3 XP M  V  3 yÖ M ) V  3 .(P (z ) V  2(a)) IS  N O T  A  
T H E O R E M

0.03

P(x) =
- P M

P(jc) =  6 D E F IN IT IO N
IN C O R R E C T

0.02

P L ( P - > ( ß ~ » S ) ) - ( ( P ~ > ß ) - { P “> S)) T H E O R E M 0.01



Chapter 6

Theorem proving by decomposition

6.1 Axiomatization and decomposition

Let us consider the language <£”' =  <L,To,T ,F 0,F ,S 0,S ,F ’v> where F'v is 
defined as Fv and additionally it is based on the language with generalized 
terms T.

D efinition  22. Let M  be a program. We say that

(i) the program M  is correctly constructed if it is not a composition,
(ii) the program M  is of normal form iff one of the following conditions holds:

(a) M is correctly constructed,
(b) M  — [M A, M f\ for some correctly constructed programs M x > M n 

and for n >  2,
(iii) the program M  is a normal assignment iff M  is an assignment instruction 

or M  = [ Mj ^ , M„ ]  where M x, M n are assignment instructions and 
n > 2.
A normal assignment will be denoted by £. □

D efinition  23. Let 9 be a generalized term or a generalized formula and let 
a, eri 5 an be assignment instructions, neN . We define the execution o f LO as 
follows:

(i) i fL  — a then L8 is the result of execution o f substitution c  for the expres
sion 9,

(ii) ¿fX = [ f f i . - . f f j  then X 0.=  [_ol y a„9. □

92



D efin ition  24. Let K, L, M, P be the programs. We denote by symbols v, * the 
operations defined as follows:

(i) vP: = P when P is correctly constructed, 
v[P ,.K ]:=  [P, vi<C] when P is correctly constructed, 
v [[K ,L ],M ]:= v [K ,v [L ,M ]] .

(ii) S * K [5, K] when S is correctly constructed,
[K,L~]‘M : = [JC, L*M]. □

Let J{  be a model, v -  - a valuation, K, L, M  — programs, Z — a normal 
assignment, 5, <5A — classical formulas /i.e. formulas without programs and 
quantifiers/ and let cr be an assignment instruction.

A xiom s of decom position
If U, V} are programs, then we put

We denote by symbol <  the relation defined as follows:

A1 [Z,[a,iC]] < [ Z \ t,IC],
[Z,cr] -<ZV,

A2 -< [Z,(vK)*L] if K  is not correctly constructed,
A3 [Z ,[^[<5iC L],M ]]^< ?Z5([Z,(vK)*M]; [Z,(vLrM]),

[Z, [<5K L B  <  ?Z<5_0;Z, vK]; [Z, vL]),
A4 [Z ,[+[5 i : ] ,M ]^ <  ?Z<5([Z,(v[K, [Z, A/]),

[Z,* [&K]] -< ?Z«5([Z, v[K, * [<5K]]]; Z),

We can see that these axioms give us the rules of decomposition. 
Operations v and * defined in Definition 24 prepare the program for 
decomposition in the case when the program is of the form [IC, M] and K  is 
not a normal assignment. To explain Definition 24 and the idea of axioms of 
decomposition let us consider the following example [[51)s2], [s3, s4]]  where 
st, ..., s4 are assignment instructions.

K < L ,L < M
K < M

[ [ s1#52], [ s ^ s j ]  -< by Al.
[ [ s 1,s2] 's3,s4] =  by Definition 24 (ii).
CUi , 52S3],5 4] = by Definition 24 (ii).
[ [ > ! ,  [ i 2 > S3 ] ] ^ J  <  [ i l , [ S 2, S 3] ] %  fey  A I -
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[ si> s4- 4̂ ] — C5i> [52’ _  r^n ĉ 2> e^3’^4.i!n —
[slf S z ,  s3, s4] by Definition 24 (ii).

The expression [[s1,s2] } [s3>s4]]  is not an assignment instruction but 
using the operations v and * we get a normal assignment of the form [ i1, s2>
S3> 54 J -

L em m a 9. For any programs K, L, M  and for every normal assignment 
X — [o v ... of] the following conditions hold:

(i) vvK =  vK,
(ii) len(vK) =  len(K),
(iii) (v^)a(y) =  K#(v) for every valuation v and for every realization 3Î in 

a non-empty set U and in the boolean algebra 08o,
(iv) for every assignment a the program E’er is a normal assignment o f the form 

[ c x, on, cr],
(v) v((vK)*L) = v[K, L I
(vi) (vK)*({vL)*M) =  (v[KyL])*M- □

Definition 25. The length of the decomposition of the expression of the form 
[K, L] is equal to:
1 — i f  there do not exist programs K ‘, L such that [K, L] -< [£ ',  Ii] 
a + 1 — if there exist programs K \ L’ such that the length of [ ii ', L’] 

equals n and [ü , L] <  [Ü 1, l f \  is o f the form of one of the axioms 
A l—A4. □

It is easy to prove the following theorem:

T heorem  10. I f  Wt <  W2 then ( W ^  = (W2)m. □

L em m a 10. Let X, Xx be the normal assignments and let K, L be the programs. 
I f  [Z ,K ] < then [L,(vK)*L] -< [Xx,L].

Proof (Induction on the length of the decomposition of the expression [X, !£])• 
If the length of the decomposition of the expression [X, JKTj is equal to 2 then 
A z was used. Because £ j is a normal assignment, then [X,fC] -< 2^ is of the 
form [X, cr] -< E’er. Hence K  -  cr, Xx =  XV, thus [X,(v.K)*L] =  [X,[er, L]] and 
[£,[<7, 1 /]] and [E’er, L] — [£¿,1], which ends the proof of the
first step of the induction.

Now we consider all cases of decomposition of [X, IC] by the relation -<. 
Let us assume inductively that for any K any normal assignment X' for which 
[Z '3 if ']  -< XL and the length of the decomposition of the expression [£', K '] 
is less than [X,JT], we have [E',(vjK:')*L] < [ I ,v L\.

If Al of the form [Xr,[c r,ir]] <  [X 'V,K '] is used then K  =  [* ,£ '] ,  
E =  X'. Since by Definition 24, we have [X,(viQ’L] =  [X,[or,(v.K,)*.L]] -< [X'V,
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(vK')*L]. Using the induction assumption we get [E'*o-,(vK:')*L] -< [E lfL], thus 
[E,(viC)*L] -< [E z, Lj, which ends the proof in this case.

Let K \ L be the programs. If A2 oi the form [£ ',[£ ',  L']] <  i'L'XvKJL'] is 
used then K  =  [K', L'], E = E'. In an analogous way we get [E,(v((vK')*L'))*L]
<  [E X,L] by the induction assumption. Since by Lemma 9 (v) v((vK')*L') =  
vlK\L~] and [E^vCKMTD'L] <  [S t,L], we have [E,(v£)VL]-< [E ^L ], 
which ends the proof in this case. Let K', L, M’ be the programs. If A3 of the
form L '],M /]]  -< ?E5([E,(viC/)*Mf]; [E,(vL')*Ai']) was used and
since ?E(5([E,(vK')*M']; [E,(vL')*M']) -< Ex then we get [E^viCXM'] <  E ^  in 
the case M  jj- E<5 (the other case is similar). Thus by the induction assumption 
we get <  [2 i, Q- Since by Lemma 9 (vi) (v{(vK‘)'M’))*L  =
(v[iC',M/])’L = (viCX((vMXLr) and [Z,(vin*{vMT.L] -< [ 2 l5 L], we get [E, 

<[_!.,l i L l d K ' , ^  (vM')-L]] and [E, [.*.[5*7, 
[vM JLf] <  ?E5([E, (vX')*((vMTL)]; [E,(vZ0* ((vMTI)]) and moreover ?E<5 
([Z,(vKT((vMTL)]; [E, [(vL')‘((vMTL]) -  [E ,{vK')*{{vM')*Lf\ and [E,
(vK')*((vMXL)] <  [E l5 Zi]. enables us to finish this case of the
proof.

The proof in the case when A3 is of the form [X, si,[5K \ L ]] -< ?E<$([E, 
v K 'l  [E, vL']) is similar.

Let A4 be of the form [E, [*[<5i£'],ikf]] <  ?E5([E>(v[iC,, * [ ^ ' ] ] ) ‘M ']; 
[E .M 7]) and let M  1= —■?E«5. Then [X, AT] -< Eĵ  and by the induction 
assumption we get [X, (vM')*L] <  [Xl5L], Thus [E,(v[*[<5i£'], M'])]*] -< [E, 

and [ £ , [ * [ ^ ' 3 , ^ ) ^ ] ]  <  ?E5([E,(v[A:', *[<5K']])’ 
((vMO’L)]; [Z,(vM')*L]) and ?X5([X,(v[lC,<52C]])*((vM0m [E,(vM0*Lj) =  
[X,(vM')\L] and finally [E,(vM')*L] <  [Xl5L].

Let now J i  |= E5. Then [Z>[2C ,*[5K ,]]),M'] <  E1. By the induction 
assumption of the form [X,(v((v[K^*[<5,IT]])W3)LL] <  [X1:,L] and since 
V((VlK ',* [S K '^yM ') = ( v lK '^ S K '^ n v M 1) we get [2Uy[*[<52C,3, 
-< [E ,[* [^ ] ,(v M T L ]]  and [X, [* [^ '] ,(v M T O ]  ■< ?E<5([E,(v[X>[5JK:'] 
])*((vMTL]); [E,(vM0-T]) and ?S5([E,(v[iC'>*[«5K']]r((vM0*I)]; [Z,(vM0*L3) 
=  [E ,(v[K '5*[5ii']]r((vM')*L)] and finally [E, (v[X ',+[5^]])*((vMTL)] <  
[E 1,L], which ends the proof in this case.

The proof in the case when A4 is of the form [E, *[&K]]
<  ?£5([X, v[K, *[<5£]]]; E) is similar. ■

Definition 26. A normal assignment E is well-formed for the program K  iff 
9 ( 5 ^  n  9(sJvvj) = P for every st, Sj(i ^  j) from E and for every wk, w, e &(K) 
where for any expression x, 9(x) denotes the set of all individual and propositional 
variables occurring in x. □
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Definition 27. We shall say that the program K has STOP property in the 
model J i  iff Kgfo) LOOP for every valuation v in the model J i. □

By Lemma 10 we can prove the following theorem:

T heorem  11. Let K  be a program and X be a normal assignment well-formed 
for K. I f fZ ,  iQ  has STOP property in the model J i  then there exists a normal 
assignment X* such that [X, IT] -< XK. □

Proof. (The proof is by the induction of the length of K). The case when K  is an 
assignment instruction is trivial since [X, c] -< XV. Therefore by Lemma 9 (iv) 
X* = X*cr is a normal assignment.

Let K  be of the form [L, M], Since [X,K] has STOP property in the 
model J i , for every valuation v we get:

LOOP *  [ E , [ L ,M 3 ] »  =  Ma(L *(X »)) = Q M

Hence [X, L]a (y) ^  LOOP for every v. Thus [X, L] has STOP property in the 
considered structure. Since the length of [X, L] is less then the length of [X, K ], 
by the induction assumption there exists a normal assignment XL such that 
[X,L]-<XL. By Lemma 10 we get [X,(vI}*M] <  [XL,MJ. By A2 and 
Theorem 10 [XL, M] has STOP property in J i.  Because XL is well formed for 
M  then there exists XLAf such that [XL, Af] -< XLM which ends the proof in this 
case.

Let K be of the form By A3 [X, _y_[<5LM]] -< ?X5([X, vL];
[X, vM]). Let us assume that J i  f= X<5. Hence [X ,j^[5L M ]] ■< [X, vL\. By 
Theorem 10 we get that the program [X, vL] has STOP property. Since X is 
well formed for vL and by the induction assumption there exists a normal 
assignment Xvi such that the following relation holds [X, -< XvL.
The proof of the case M -rX<5 is similar.

Moreover the proof in cases when K  is one of the form [^[¿L M ],JV ], 
[*[<5L],M] or *[<5L] is obviously similar. ■

C oro llary  2. By Theorem 11 we get that every program K  having the STOP 
property in a model J i  can be decomposed by the decomposition rules to the 
normal assignment, which we denote by the symbol K M. □

6.2 Decomposing proving system
Let J i  be a model of arithmetic. For any T, Q, U being sets of finite sequences 
of generalized formulas, U c: At, U ^  0, s being a normal assignment, K e S ,  
3 e F '\At, ^ e At, a, fi eF', x e V we define the schemes of the rules of inference 
as follows:
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(P+)
n U , Q y5
t \ - Q ,5 ,U (-P) ^ . r . i j - G

f . i t / i - G

(N+)
sct,r\-Q

V{-Q ,$-«x (-N)
T|- sa,Q 

F,jr^aj-Q

(C+)
rj-5a, Q ;r \-sp ,Q  

FbQ,s(a a p) (-C)
sa,sj?,rj~Q 

r ,  s(a a P)\-Q

(A +  )
r\-scc,sp,Q  

rh fi,5 (a  v P) (-A)
scc ,r]rQ ;sp ,r\-Q  

r,s(a  v P)\-Q

d + )
sa ,r \-sP yQ

r \ - Q A « ^ P ) (-D
r \- s a ,Q ;s p ,r \-Q  

r,s(cc~* P)\-Q

(D + )
{T \-sK lat Q \ ie J r }

r \ - Q , s f ] K a ( - 0 )
in x ( K « ) .« , r i - f i
'  r . s n & i - e

(U + )
r \- s { J K (K a ) ,s a >Q

r \ - Q ,s { J K a <-U)
{siCia ,r |-8 : ie ^ K ‘}

(s +  )
r i - ( 5 ) ,e  . .  ( ¡ a r i - e  
rj-G .se  r ,s £ \-Q (fc+ u r \-Q ,s K a

( - * )*
[sK JMa X \-Q

r ,s K a \-Q (V+)
r(-s((x:=y)a),0

where y  is the least element of the set V such that y $({r, Q, s}).

(-V) =  U?er0(“ ^)z where for every t e T 0:

( ~ n
sVxa, (y:=*t)(s((x:=y)a))t F\-Q 

r,sV x*\-Q
• set F \  Q(sa).

and y is the least element of the

Formulas containing existential quantifiers are transformed in a standard 
way into equivalent formulas containing universal quantifiers. The rules (—k)M, 
(k+)M by Corollary 2 reduce programs to substitutions. Then the rules (s-f-), 
(-s) may execute the substitution on atomic formulas.
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Let Rfeq be the set of all of the above mentioned rules and the rules of 
decomposition. We divide all the rules into two groups: (£ + )■* and {—R)M.

It is known by G. Mirkowska [58], [57] and by A. Biela [5] that every 
generalized formula p(xt, .... tJ  containing programs can be transformed by the 
function i  into the formula of the form K t ... K mp{x\,..., t') where p(x'L, 
does not contain programs. To get a complete characterization it is necessary 
to add to the previous rules two rules of the form:

( s x{p(xi ,...,xj)yr\-Q
rhQ ,p(T15.. . ,o  x r,p(Ti ,...,TII)F(2

Let <p and p be the symbols not belonging to the considered language. We 
assume that the functor (p is m-ary and the predicate letter p is n-ary. By if* we 
denote the extension obtained by adding the functor (p and the predicate p to 
the alphabet.

Let K, M  be programs and let cceFa and te T a be such that:

HKcc) = { j q , xn)

${Mt) =  [ y ^ - .^ y j

Now we introduce in the same way as in chapter 4.2 the system o f function 
and procedure defining the notions cp, p:

[FP) (p(yv ..., yml) = M t p ( x .... xni) =  Kct

In the considered language if* the sets At’, Seq’ and {Ax~f are defined 
analogously to the sets At, Seq and (A x =). To define the set R £ q- in if* 
analogously to the set Rfeq we change the usage of the rules (P+) and (-P). The 
rules (P’ + ) and (-P’) can be used even in the case when the classical formula 
<5 e At’ and 5 contains (p{tl t ..., t j ,  where (p is from {FP}. Obviously we get the 
set (£'+)■* and (-& ')'*  hi the language if* instead of (£+)■* and {—R)M 
respectively.

We extend the set of the rules of inference Rfe q We shall consider the 
following rules:

{rcu + ), (r^ + ), K J ,  (-4), (rAH-), ( - r j ,  (rj, (r=+), ( - r =).

These rules and the set W are defined analogously as in Chapter 4.2. 
We shall need the rule of the form (B) which is one of the rules (B +  ), (-B) 

and for example:

r\-sK (x= u),Q
n - a ( ^ T )  =  u
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where u is not an element of &(sK). This rule is a case of the rule (B) from 
Chapter 4.2.

Moreover the rules simplifying generalized formulas containing FALSE or 
TRUE {e.g. FALSE v a  changes into a) belong to the set W.

By we denote the set containing the rules from W and the rules: (x +), 
(-id 6 ^ + ), (~0> (B), (P’ + ), (-P’)» 0"™ + ), (-O- is the union of two sets (# .+ )  
and (-£?.).

6.3 ^-diagram

In these considerations the model and the idea of decomposition will be 
used and the above-mentioned two rules (&+).*, (—k)M will play an important 
role.

The notion of indencomposability of a sequent in F£’ is analogous to 
Definition 18.

D efin ition  28. Let M  be a model. By ^-d iagram  of a sequent seSeq ' with 
a special set of axioms cz Seq’ and the rules we shall mean the tree o f 
sequents S s — <  S, <  > if and only if it fulfils the following conditions:

(X) The sequent s is a root o f 6 S.
(2) I f  s 'eS  and s' is indecomposable or s’ is an axiom or a special axiom then s' 

is a leaf.
(3) I f  s 'e  S is on the 2n-th level of the tree <5 and s' is a conclusion o f a rule 

from X  where X  — ( ^ + ) \{ ( r cy+), (r^+), (P’+)} then r(s’)  is an element 
o f X. It means that the order < has the following property: for every

P(s, <3)
sequent s, the expression — -■—- is one o f the rules from We assume that

s
i f  s’ is decomposable then we consider the first generalized formula on the 
right-hand side o f the considered sequent s’ to construct r(s’).

I f  s' is not a conclusion of a rule from (^* + )\ {(rCI>+), (r*y + ), (P'+)} 
then:
(i) I f  left(s’)  u  right(s’)  c  At' then the following condition holds:

(il) I f  s' is a conclusion o f some rule from {(rcu +), (r'u+), (P'+)} then 
r(s’)  is the same element of this set. Otherwise r(s’)  £(-£%*). 
However if  it is one o f the rules (-reil), (-r'y) or (-P') then such r(s') is 
used as the last of all o f these rules.

(ii) I f  right(s’)  n  (F f\A t) =£ 0 then r(s') e (P' + )M.
(iii) I f  right(s’)  c: A t’ and left(s’)  r\(F y\A t) i= fi then r(s') e ( - R ) M.

(4) I f  s’e S  is on the 2n +  1-th level of the tree & and s’ is a conclusion of a rule 
from ( -^ J \{ (“ 0 ’ (“'in). (-P*)} then T( s’)  is an element from this set.
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We assume that if s’ is decomposable then we consider the first generalized
formula on the right-hand side of the considered sequent s' to construct r(s’).

I f  s’ is not a conclusion of a rule from {(—rm), (-?•'„), (-P')} then:
(i) I f  left(s’) urigh t(s’)  c  A t’ then the following condition holds:

(il) I f  s’ is a conclusion of some rule from {(—rcu), {-r'co), (-P7)} then r(s’)  
is the same element of this set. Otherwise r(s‘)e (& m + ). However if it 
is one of the rules (-rcu), (-r'„) or (-P') then r( s’)  is used as the last o f  
all of these rules.

(ii) I f  left(s’)  n (F'f\At) *  0 then r(s’) e{~ R y* .
(iii) I f  left(s’)  c  A t’ and right(s’)  r\ (F'v\A tr) ^  0 then r(s’) e (R' +)M.

(5) S s is well-formed for (-V). □
The deductive system <.&?*, (Ax=)’ u  u  M,> will be called the

RETRPROV system where sdM is a special set of axioms. □
Using the RETRPROV system we shall change the standard notion of 

proof in order to prove some properties which are not tautologies but which 
hold in a model of arithmetic. Moreover this system enables us to consider 
some notions defined by programs.

We shall say that is Ji-diagram of generalized formula a if < S, < >  is 
^-diagram  of the sequent 0 (- a with a special set of axioms sdM and the 
rules □

D efinition 29. We shall say that a generalized formula a has a proof in the 
RETRPROV system (a eproof <(Ax")' ■u R feq- u ^ , > )  if and only if the 
height of the J i  -diagram of the generalized formula a is finite and each leaf is an 
axiom or a special axiom. □

However, there is a problem how to choose the set of the special 
axioms. Obviously this problem will be considered in a model (i.e. in a standard 
model of arithmetic in which the functors and predicates are interpreted and 
where +, —, *, f f r j  are interpreted as addition, subtraction, multiplication, 
m-th power and division respectively.

Let us remark that the ^-diagram  of the generalized formula extends 
Gentzen’s ideas: this is shown in Definition 28 (point 3 (i) (il)), since it makes 
further proving possible even in the case when we get a sequent containing the 
atom of the form (FP) or containing the atom including a term of the form (FP) 
e.g. a term defined by programs (see Example 11).

6.4 Algorithm for proving theorems

In this paragraph we shall formulate the RETRPROV-algorithm which 
enables us to prove theorems as well as to find a special set of axioms for 
expressions containing procedures and functions defined by programs.
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Let (FP) be a system defining the notions q> and p. Any Jt-diagram o f 
a generalized formula (p(tL>..., tm) = u from (FP) will be called a (p-Jt-diagram 
and any Jt-diagram of generalized formula p(r1 ) r j  =  b will be called a p-^tt- 
diagram □

The RETRPROV-algorithm:

1. Read(k); (k is a natural number helpful for “while”),
2. n :~  0; X:= an empty file. We put the sequent (- ^ (i1,...J£m) = u as the root 

in the (p-Jt-diagram (where <p(tL>..., t j  is a classical term from (FP)) and we 
put the sequent f- p(xv ...,xn) =  b as the root in the p-^-diagram  (where 
p (t15..., t„) is a classical formula from (FP) and ue
Moreover b e V0 \  5({p(rl 3 t„), Ka})\

3. If a sequent s on the n-th level is indecomposable or if it is an axiom or 
a special axiom (i.e. it is an element of the set of the form: (seS eq ’: 
a eright(s) for some a from X and a ^  -*b or b eleft(s) for ~*b eX}), then s is 
the leaf. If all sequents on the n-th level are leaves then STOP — the proof 
exists and the set of special axioms is equal to

4. n : = n + 1;
We construct the n-th level of the (p-Jt-diagram of the sequent 
(- ip{tv, ..., t j= ^ u  and the n-th level of the p-^f-diagram of the sequent 
\- p(1?..., t„) =  b with the rules 0 ,  and the special set of axioms which was 
defined above.

If it is possible we use rules from (0 , \j  R fei‘) \  {(-fj)} to construct the 
n-th level in the <p-Jt-diagram or in p-^-diagram  using the premises of the 
considered rule. We pay attention to use the rules (rct,+), (—rcu), (P’ + ), (-P’) 
only in the case when no other rule from 0 t can be applied.

If we need use in the construction of the n-th level in the cp-, Jt-diagram 
or p-^f-diagram the rule (-1J )  for a sequent s of the form: T, s1 t j  {Kcl)\-Q, 
then for further considerations we denote by M ff) the expression of the 
form ¿K l where l is a natural number.

It is known that we get the following set F Q} of sequents as the
result of using the rule (-(J).

However we do not construct in practice all of these elements. In this 
case we assume that the n-th level contains the sequent T, s' \J (Ka) j-Q and 
additionally it contains either only k — 1 elements of the form: T \-Q
for 1 < / < k — I when the rule (-(J) is used for the first time for the sequent 
T, s' (J Ka. Y Q-, or one element Mfk),  T |-Q, when the rule (-(J) was used for 
the sequent more than once.
(In fact it means that on the n-th level instead of an infinite set of sequents 
{M„(f)> T 1-Q : le  J f}  we shall consider only a finite number of sequents). 

(To have on the n-th level only a finite number of sequents we do nearly the 
same with the rules (f )+ )  aod (-V). However instead of the classical term t we
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put a temporary pointer of dummy d. Moreover on each level we have to 
decide whether some sequents are axioms. To do that we shall use the 
well-known unification algorithm on both sides of the sign ¡-). 

k : = k + l ;
5. We revise the n-th level of the tp-^-diagram or p-^-diagram . If a sequent 

se(Ax~)' then s is a leaf. Otherwise if s£{i4=)' u  then we consider two 
cases:
(i) We look for a classical formula of the form x =  u in the sequent s such 
that t = u e  right(s) and t does not contain the functor (p and x was not 
obtained by any of the rules (r= +), (-r=) to a generalized term t containing 
the functor q> and built by the functors: + , *, —, ()m for some me J f  (e.g. if 
in some sequent, the classical term t equal to 0 was obtained from 
0*<p(tx, tm) by (r= +), then the decomposable sequent was changed into 
indecomposable sequent and we have lost the essential property).

If we find such a sequent s that fulfils two conditions:
(1) a e A t’ for every a e s ,
(2) s is not a conclusion of any of the rules from the set 2# =  {(rx +), (-rj, 
(% +), (-r,), (rj, (r„+), (-r„), (F  + ), (-P’), (B), (r^+), (-O , (Z + ), (-*)}, 
then if r =  u is the only classical formula for some r which fulfils the 
condition (i), we put t =  u in the file X and the sequent s becomes 
the leaf.
(ii) We look for the element b in the sequent s. If we find such a sequent, 
containing p and b on the same side of the symbol f- then STOP — we deal 
with the case of the form: p(xv ...,x j  =  ~^p(xl}..., x j  and the proof does 
not exist. If s is not a conclusion of any of the rules from we consider 
three cases:
Case 1. If for every a e left(s) we get a e  At’\  {FALSE, b} and a does not 

contain the predicate letter p and for every e rightfs), ¡3 e At’\  {TRUE} 
and does not contain the predicate letter p and b e right(s), then we 
put b into the file X.

Case 2. If for every a e left(s), a e At’\  {FALSE} and a does not contain the 
predicate letter p and b e left(s) and for every /Jeright(s) we get 
ft e At’\  {TRUE} and if ft does not contain the predicate letter p then we 
put ->b into the file X.

Case 3. If there is b and - h  in X then STOP — the proof of the generalized 
formula p(r l t r j  = b in the RETRPROV system does not exist.

6. If s is an indecomposable sequent on the n-th level of the p-^-diagram  or 
<p-^-diagram which is not an element of u  (Ax- )' then STOP — if we 
considered <p-^-diagram then the proof of the classical formula

t j  =  u in the RETRPROV system does not exist. Otherwise the 
proof of the classical formula pizj,,...,x„) = b in the RETRPROV system 
does not exist.
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7. If every indecomposable sequent s from the n-th level of the <p-^-diagram 
or p-^-diagram  is an element of the set u  (A x =) and if there is no other
sequent on the n-th level then STOP — if we considered (p-M-diagram 
then the set {s e Seq’: a e right(s) for some classical formula a from X and 
a ^  b and a #  ^b]  is the special set of axioms for the proof of the classical 
formula:

and the file of the premises of the above mentioned functional equation 
exists and contains the only element from X which is neither b nor ->&. If 
we considered p-J{-diagram then the set {s e Seq’: b e right(s) for b from the 
file X or 6eleft(s) fo r-h  from the file X ) is the special set of axioms for 
the proof of the generalized formula:

P(t = b. n

Let us make a remark: the RETRPROV-algorithm can prove the classical 
formulas as well as the generalized formulas.

6.5 Examples

Now we shall give an example which shows that the idea presented in the 
above-mentioned algorithm allows us to find a special axiom for a function 
defined by a program.

To explain the main ideas of the execution of our system let us consider the 
following example:

Exam ple 11.
H /U ) =  u where f is a  function defined as follows: /(«) =  K Ls. We recall that K 1 means if n =  0 
then s : =  1 else s : =  n*f[n  — 1).

T o  prove the above mentioned expression we shall try to find a m issing assumption.
The execution runs as follows:
h s1 : =  l ( i f  =  0 then s : -  1 else =  s 3 +/(s2 -  l))(s =  u)((reu +  ), (B)),
[-begin S j : =  1; s : =  s2 » fts, -  1) end (s =  u) ......................................................................  ((-*).*)>
(Sometimes for simplicity we shall write such a generalized formula in the form:
\- begin s : = / (0 )  end (s =  u).)

>/(0) = u ......... ...................................... .......... ................... ...... ................-.....  ((* + )),
|-s2 : =  0 ( if  s2 = 0  then s3 : =  1 else s3 : =  s2*J[s2 -  l) ) (s a =  u )((r„ + ), (B)j, 
h  begin s2 : =  0; s3 : =  1 end (s3 =  u) ..............................................................- ...........................  ((—k ) ^ ,
h  1 =  ........................................................................ .................................................... ...... - ...... . ((*+))-

Th is  system admits the sequent |- 1 =  u as an additional axiom (a special axiom). Intu itively 
it means that / ( l )  =  1. So our system proved the expression [- /(7) «  u by finding an additional 
axiom and calculated the value of /(1). ■
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Exam ple 12.
Let r  /(3) =  u where /(«) is defined as in Exam ple 11. D uring the execution of the 

R E T R P R O V -a ig o rith m  the set of additional axioms is generated. The proof is identical to the 
proof in Exam ple 11. In  this case =  (u =  6}. ■

The R E T R P R O V -a ig o r ith m  is a dynam ic way of looking for a missing axiom  necesary to 
solve a functional equation defined by procedure. O u r system can as well find the boolean value o f 
the relation defined by the procedure P (x ) =  K ol

Example 13.
Let us consider the order relation between natural numbers.

(1) (- p (l, 2) =  b where p[x, y) =  K 2q and

K 2 means if  x 3 =  x 2 then q : =  F A L S E  else 
begin x 3: =■  0;

while—>((x3 =  x 2) v  {x 3 =  X j)) 
do

*3 '• — x3 + 1;
i f  x 3 =  X j

then q : = T R U E  else q : =  F A L S E  
end

(2) p Q ,2 )h b  .............................................................................................................................. ( ( C + ) ,  (1 +  )),
(3) b \ - p { l ,2 ) .................................................................................................................. .............{ ( C + ) ,  a + ) ) ,
(4) begin x 3 : =  1; x 2 : =  2 end K 2q h  b ........................................................................ ((2) and ( - F J ) ,
(5) b j- begin x 1 :=  1; x 2 : =  2 end K 2q ........................................................................  ((3) and (r^-P)),
(4.1) begin x3 0 while —>((x3 =  2) v  (x 3 =  1)) do x 3 : =  x s +  1; i f  x 3 “  1

then q : =  T R U E  else q : =  F A L S E  end q \ - b ...........................- ..................................... ( (—k)^),
(4.2) begin x 3 0; (v(begin x 3 : =  x 3 + 1 ;  while —>((x3 =  2) v  (x3 =  1)) do x 3 : =  x  3 4-1

end))* i f  x 3 — 1. then q : =  T R U E  else q : — F A L S E  end q (- b (by the rule of
of decomposition A4),

(4.3) begin x 3 : =  0; (begin x 3 : =  x 3 +  1; (while ~ ,((x3 =  2) v  (x 3 =  1)) do x 3 : =  x  4- 1;)* if
x3 =  1 then q : =  T R U E  else q : =  F A L S E  end) end q f- b ...................  (by D efin ition  3 (i)),

(4.4) begin begin x 3 : =  0; x 3 : =  x 3 +  1 end begin (while -■ ((x3 =  2) v ( x 3 =  1)) do x 3 : =  x 3 4 -1 ;
if  x 3 =  1 then g : = T R U E  else q :=  F A L S E  end end q\-b  ..............  (by the rule of
decomposition A1 and Definition 3 (ii)),

(4.5) begin begin x 3 : =  0; x3 x3 +  1 end if x 3 =  1 then q := TRUE else q :=  FALSE end q\~b
............... ..........................................................................  (by the rule of decomposition A4),

(4.6) begin begin x 3 := 0 ;  x3 : = x 3 +  1 end g := T R U E  end q\-b
........................................................... (by the rule of decomposition A3 and Definition 2 (i)),

(4.7) begin x3 :=  0; x3 :=  x 3 +  1; q : =  TRUE end q (-6
....................... _................ ............................ ..................... (by the rule of decomposition Al),

(4.8) T R U E  1-6 .......... - .............................................................................................................................  ((-s))-
By point 5 (case 1) of the RETRPROV-aigorithm we put b into X and by point 7 the sequent

(4.8) becomes a special axiom in the se since ^  — [seS eq ': 6 e rights)}.
By analogous considerations in the case (5) we get the sequent b [- TRUE for b f-p(l, 2), which 

is an axiom. ■

Example 14.
Let us consider another example. We consider the function h defined as follows: 

h{xltx2) = (if x J -  0 then x 3:= 2 else x 3 :=  A(x, -  1, h(x1,x 2)))x3.
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We shall try to compute the value of function h (l, 2). Let us remark that some com pilers 
(for example P A S C A L , C ) cannot do i t  However our algorithm manages to solve even this 
problem, which seems to be rather sophisticated:
(1) M (U ) = «
(2) |- begin x , : =  1; x 2 '■ =  2 end (if x ,  =  0 then x3 : =  2 else x 3 : =  h(xl — 1, h(x ,, x 2))) (x 3 =  u)

.................................................................................................................................................. ( ( r „ H  ( B + ) ) ,
(3) |- begin x 3 : =  /i(0, h( 1,2)) end (x3 =  u) .................................................................... ((& +  ).*), (r„  4-)),
(4) f- h(Q, A(l, 2)) = u ..................................................................................... ......................  ((s +  )).
(5) |- begin X j : =  0; x 2 : =  A(l, 2) end(if x x -  0 then x 3 : =  2 else

*3  :=  K * i  -  1, /»(Xj, jc2)))(x 3 =  u ) ................................................................................ ( ( r „ + ) , (B  +  )),
(6) h  begin x 3 : = 2  end (x 3 =  «) ..................................................................................................  ((* +  ).«)>
( 7 )  h 2  =  « ......................................................................................................................................... ((s +  )).

B y  point 5 (i) of the R E T R P R O V -a ig o r ith m  we put u =  2 into X . B y  point 7 of this algorithm  
we get sdM =  {s e S e g ':  u =  2eright(s)}. So |- u =  2 becomes a special axiom. ■

Exam ple IS .
Le t us consider the function k defined as follows: 

k f c j . x J  =  ( if  x 2 =  0 then x 3\— x x else x 3 : — k(xu x 2 — 1) +  l ) x 3.
By using the R E T R P R O V -a ig o r ith m  we shall try to prove the expression of the form:

(1) (- k(x, 2) — v where x is an individual variable.
(2) |- begin x x : =  xr, x 2: -  2 end (if x 2 — 0 then x 3:=  x 1 else x 3 : =  k(xx, x 2 -  1) +  l ) ( x 3 =  u)

 - (( '»+ ), (B+)),
(3) (- begin x 3 : =  fc(x, 1) +  1 end (x 3 =  «) ................................................................................  ((* +  ).«).
(4) h  k{x, 1) T  l  =  u ..... .......................................................................................................................... ((s +  )),
(5) h  begin x x :=  x; x 2 : =  1 end (if  x 2 =  0 then x 3 : =  else x 3 : =  fc(xj . X j — 1) +■  1)

(*3  +  1 =  U) .........................................- ............................................................................  ((rcu +  )i (®  +  ))j
(6) (- begin x 3 : =  k{x, 0) +  1 end (x 3 +  1 =  « ) ............................................................................ ((/c +  )_*),
(7) \~ k{x, 0) +  2 =  u .......................................................................................................  ((s +  ) and (r„  -t-)),
(8) (- begin x 3 : =  x; x 2 : =  0 end (if x 2 =  0 then x 3 : =  x x else x 3 : =  fc (x j,x2 — 1) +- 1)

(x 3 +  2 =  m) ........................................................................................................((r„ +  ), (B +  )),
(9) h  begin (x 3 :=  x) end (x 3 +  2 =  u) ........ ............................................................................... ((*+).*).

(10) x +  2 =  u ......................................................................................................................... .............((s -T))-
B y  point 5 (i) of the R E T R P R O V -a ig o r ith m  we put k ==x +  2 into X . By point 7 o f this 

algorithm we get .<aM =  {se S e q ': u =  x  +  2eright(s)}. So (10) becomes a special axiom. We can 
see that our algorithm does not sim ply calculate an expression, but instead it tries to prove i t  W e 
gel the expression x  +  2 =  u as a solution of the functional equation k(x, 2) =  u. which certainly is 
not only a calculation. ■

Exam ple 16.
Le t us consider the following expression:

(1) I“ V x2((Pi(^z) -* 3*p2(x)) =  3 x10 j (x 2) -v  p2(xj)))
O f  course we present only a sketch of the proof of the sequent (1).

-(2) |- x2 :=  y(((pi(x2) -* —tyx -■ p2(x)) -►  -'V 11 - (p ,(x 2) -  p2(x,))) a

( -iVxl ->(Pi(*2) -*> Pa(*i)) -* (Pi(x2) -* T ito ) ) )  .................................................  (* +)>
(3) |- x , : =  y{ ->Vxl ->(p1(x2) -*  p2(x j)) -►  (p j(x 2) -* -> p2(x ) ) ) .......................- ...... .........  ( C + ) ,
(4) x 2 : =  y ((p ,(x2) -> - V ,  - -p 2(x)) -  - ’VXJ —'(pa(x a) -» p2(x,)) ........................................... ( C + ) ,
(3.1) \ -x 2 :=  y(Vxl - { p ^ a )  - ► p2(xj))), x 2 : =  y (P j(x 2) -  -  V t -»p2(x)) ...... ................ (I +  ), (-N ),
(3.2) x 2 : =  y (p i(x 2)), x 2 : =  y(Vx ” ,jPzM )  h x 2 y( xj  :=  y , (  —-(p,(x2) -> p2(xj)))

........................................................................................................................ ........ ( I+ ) ,  (N + ) ,  (V  + ) ,
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(3-3) Pi(y), *2 := y{Vx ~ ‘p2{x)), - ’pa( l1), x 2 : =  y (x , := P jO b ta ) -* p2(x,)) h
- ...................................................................................................( - n  (-s). (n +),

(3-4) p M  x 2 : =  y (V , - .p 2(x)), p2( y j  (- p ^ ) ................ ................................................. ( I+ ) ,  (-N ), (-s),
(3.5) p,(y), x 2 : =  y ( V ^ p 2(x)) \- p2{h ), p ,(y ) .................................................................. ( I+ ) ,  (-N ), (s +  ),

which is an axiom  by unication,
(4.1) x 2: =  y (p ,(x2) -» ->VX->p2(x}), x 2 : =  y(VXJ ~ '(p J(x 2) -* p2(Xj))) (-

............................... .............. -.......... -.... .............................................(I + X(N+),
(4.2) x 2 : =  } {V ; i - '(p 1(x2) - > p 2(x 1)))> (y2 : =  i 2(x2 : = y ( x i : = y 2( - - ( P i(x 2)-»

Pi(^i))))) h Pi(y) -■ ..................... - .................. ................... - .........................................( - v ), (-1), (s + ) ,
(4.3) x 2 : =  y(Vxl - ’ (p1(x2) -> P jfx J )) ,  (y2 : =  r2(x2 : =  y{x, : =  y2( - ( p , ( x 2) ->

P i(* ,))))) \ -x 2: =  y(x  : =  y 3( - ,p2W )
(4.2.1) x 2 : =  y(Vx, -■ (p ,(x2) -*■  p2(x,))), p ,(y) h p2( i2), pj(y)

.......................................................................................(-N), (I +  ), (s-h), (’S), which is an axiom,
(4.3.1) x 2 : = y ( Y , 1- . (p 1(x 2) - p 2(xi))), pjCy), p2(y3) h p2(£2)

...........................................  (-N), (I +  ), (N  +  ), (-s), ( s + )  which is an axiom by unification. ■

Exam ple 17.
Let us consider the following formula: 

f )  =  l A  (Vn( - ( n  =  0) -*■  if[n) = n *J[n -  1) ->/(«  +  1) =  (n +  1) *Jt«)))) 
where f was defined in Exam ple 11.

In  some cases we axe able to use the mathematical induction, e.g. in this example 
we proved the correctness of a program  defining the factorial. It  means as well that we 
proved (this proof is too long so we omitted it) the equivalence between two descriptions of 
factorial: the mathematical definition and the program. The mathematical definition is as 
follows:

- . r
1 n * (n — 1)1

when a =  0
(«)

when n >  0

and the program is given in Exam ple 11. T h is  proof shows the correctness of the program.

Example 18.
I f  we want to calculate the value of the expression of the form: 

l. L
------(. —  where i 2, ml7 m2 denote the variables o f the type of integer, first we calculate the value
m j  m2
m3: — NWW(mu m2) where NWW(mu m2) is the least, common multiple of m1 and m2. N ext we

calculate the values lj  :=* * — , ¡2 ; =  l2 « —  and 13 : =  lx +  l2. Obviously the result of the division
Tfl ̂  TTi^

l3
during the calculation of I j and l2 is integer. Hence —  is the result of the considered expression.

m3
D uring this calculation we considered the function NW W (x, y). Now  wc show how we can use the 
rules of decomposition especially the rules (—&)_* and (fc+ )^ . Let NWW{xiyy }) — K az where K 0
means:

begin
x : =  x 2; y : =  y ,; 
while —>(x =  y) do 
if  x  >  y then

x : = x — yy
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else
y : = y -  x\

«’: =  x;
2 : =  x ,  *(y,/w); 

end
We shall show how to get NWW  (6, 4) in the standard mode! of arithmetic. We have to 

calculate the value (A ^ z),,^ ,) where a, is the valuation such that u ^ x ,)  =  6 UjQ#,) =  4. T h is  
valuation is represented by the substitution s — begin x ,  : =  6; y , : =  4  end. We decompose the 
program begin s; K 0 end to the norm al assignm ent
[sK J  = [[x,/6, y,/4], [[x/x„ y/yj, [* [-(x  = y) ^_[(x > y) [x/x -  y] [y/y -  *]]], [w/x], 
[2/(*j -Oj/w))]]]] A-k [[[x ^ .y ,^ ], [x/xj,y/y,]], [*[~<x = y)_Y.[(x > y) [x/x -  y'J [y/y -  x] j'J, 
[w/x], [z/x, *(y,/w))]]] [[[xj/6, y,/4], [x/x„ y/y,]], (v[^[(x > y) [x/x -  y] [y/y -  x]],
-[ -(x  = y)^[(x > y) [x/x -  y] [y/y -  x]]])‘ [[w/x], [z/(x, *(y,/w))]]] Dcr-^ (iKii)[[[x,/6, y,/4], 
l x/xi> [>-[(* > y) [-x/x -  y] [y/y -  x]], [*[->(x = y) _y.[(x > y) [x/x -  y] [y/y -  x]]],
CCw/x], [a/iXj.^/w)}]]]]] A2< [[[x,/6,y,/4], [x/xl5y/y,]],(v[x/x -  y])-[*[-*(x = y)*.[(x > y) 
ix/x — y] [y/y ~ *]]], [[»/*], [*/(*, * (y » ) ] ] ] ]  «■*■*«« [[[*,!«, y,/4], [x/^.y/yj], 
[[x/x-y], [*[->(x = y) _y_[(x > y) [x/x — y] [y/y — x]]], [[w/x], [z/(x, *(y,/w))]]]]] Ak  
[CCxAyi/4], [x/xj,y/y,]]‘[x/x — y], [*[-’(* = yj -*.[(* > y) [x/x -  y] [y/y -  x]], [[w/x], 
[2/(Xj *(y1/w))]]]]Dtf-|:*iii) [[[x,/6,y,/4], [[x/xj.y/y,], [x/x-y]]] [*[->(x = y) _y.[(x > y) 
[x/x -  y] [y/y -  x]], [[w/x], [z/(x, *(y1M )]]]] ^  [[[x,/6, y,/4j, [[x/x„ y/y,], [x/x -  y]]], 
[[w/x], [z/x, *(y,/w)}]]] A-k [[[x,/6,y,/4], [[x/x„y/y,], [x/x -  y]]]*[w/x], [z/(x, *(y,/w))]] 
D‘r^ “’[[W fi.h/fl, [[x/x,,y/y,], [x/x -  ?]]’[*>/*]], [z/(x, »(y,/w))]] L[[x,/6,y,/4],
[[x/Xj.y/y,], [[x/x -  y], [w/x]]]], [z/(x, *(y,/w))]] Ak [[x,/6, y,/4], [[x/x„y/y,], [[x/x -  y], 
[ w / x ] ] ] ] - ^ , ^ » ) ] « ' ^ «  [[x,/6,y,/4], [[x/x„y/y,], [[x/x-y], [[w/x]], [z/(x, *
(y»)]]]]].

L e t  us denote the normal assignment [[X j/ 6 , y ,/4 ], [ [ x / x , ,y / y , ] ,  f [ x / x — y], [ [w / x ] , 
[z/ (x , * (y ,/w ))]]]] ]  by symbol £ 0. We proved by using it ,rjuul that the program [ s K J  can be 
decomposed to the norm al assignment X Q. Therefore [ s JC J  -< By Theorem 10 we get 
I s K J  R(v) =  Hence (JC .zU » ,) -  zr {K r (Vj)) =  zr (K oK(sM )  =  =  2*(Z.*(t>)) =
6 * (4 / ( 6 -  4)) =  12.

W e proved that the function N W W (6 ,4 ) defined by program has the value 12. Therefore 
R E T R P R O V -a Jg o ritb m  during the prove f- JVWW(6,4) =  u finds a special set o f axiom s 
jit ah =  {-s £ Seq': 12 = u e right(s)}. ■

Let us remark that the RETRPROV system described above definitely 
differs from JRS-algorithm. The main difference concerns the set of rules (rules 
of decomposition) and the RBTRPROV-algorithm. The key idea lies in the 
rules {k+)M and {—k)M, since from Corollary 2 and the model of arithmetic, 
the expression (sK)^ being the result of the execution of program enables us to 
optimize the calculation. It is also worth emphasizing that RETRPROV 
produces results in an evidently shorter and faster way (see Example 7 and 
Example 11 or Example 10 (iv) and Example 13), the correctness of which is 
guaranteed by Corollary 2.



Chapter 7

Summary and concluding remarks

7.1 Conclusion

The main result of the first part of this paper is algorithmic structural 
completeness of algorithmic logic strengthened by the substitution rule i.e. the 
derivability of all structural, finitary and admissible rules. To date the 
well-known substitution rules which were considered do not fit into these 
considerations, since they do not preserve the properties of programs. The 
substitution rule which was defined in this paper was just enough strongly 
deductive to allow to prove algorithmic structural completeness of algorithmic 
logic. This result enables us to use many structural and finitary rules in practice 
provided admissibility of them is proved. Some examples of such rules:

¿'(while ad o  K) TRUE, ¿ '  M  TRUE, ¿ '  L TRUE 
¿‘’(while a do begin M ; K; L  end TRUE) 

where (5(M) u  9(L)) n  (5(a) u  5(K)) =  0 and ¿ ' denotes any finite sequ
ence of substitutions.

2. where a is a classical open formula and p is any program-
P(«)
substitution.
Let us take peSb  wich is defined by geG , classical open formula X 
and by the functions e and e0 such as in Theorem 9. We get from a the 
formula p{a) equal he{a) which is equivalent (s^a a X) v (/ie°(a) a  ->X) for 
sY being such as in Theorem 9.
________________ _______________________
¿'({while a d o K )  TRUE  -» (while £ do K) TRUE’ 
where ¿ '  denotes any finite sequence of substitutions.
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Such rules allow to simplify the proofs of correctness of programs.
It is worth to pay attention to the following questions:

(1°) Is it true that the property of structural completeness of some logic is 
a result of the completeness of this logic i.e. of the property of the form 
CR{X) — C ̂  {X} for every set of formulas X.

(2°) Is it true that the property of Post-incompleteness of algorithmic logic (i.e. 
Q?.({a}) ^  F for some a strengthened by the substitution rule is
a result of the completeness of this logic for the set of rules R.

To answer these questions it is not enough to know whether the property of 
completeness holds.

Let us consider the point (1°). There exists a consequence which is complete 
but is not structurally complete. Such a system is for example the classical logic 
with quantifiers based on the set of axioms A Q and on the set of rules 
RoV — { t 0 ,  r¥}, where r 0 is the modus ponens rule and r¥ is the generalization 
rule of the form:

a, a -» (i a
" n 5 rV ■ wP Vra

Indeed, such a system is not structurally complete. To illustrate that let us 
consider the rule r defined as follows:
<{a}, $ >  e r  iff there exists e e £  such that:
a =  ~’VxV}l(e(P(x)) e(P(y))) and = Vx -(e(P(x)) -» e(P(x))),
where £  is the set of substitutions defined by W. A. Pogorzelski and T. Prucnal
[71].

The admissible rules in the logic with programs are called permissible in the 
logic without programs. The defmition of the latter is analogous to the former 
one. The rule r is admissible in the considered logic since a is not valid in any 
interpretation, in any model with a single element therefore a $CRô (AQ) for 
every e e £ .  Since the antecedent of the definition of permissibility is false 
therefore the rule r is permissible in this logic. Moreover r is structural. 
However r is not derivable in this logic since in the opposite case for e e £  
such that e(P(x)) =  P(x) and e(P(y)) =  P(y) by the deduction theorem, we get 
a ^ P f c )  a -P(y)) -► Vx -(P(x) -> P(x)) e CRoV(Aq) which is not true. Therefo
re the structural completeness is not an immediate result of the property of 
completeness. □

Now we consider the point (2°). Some variant of the question (2°) was 
known i.e. the logic without the substitution rule is incomplete. However, with 
regard to the study of the structural rules and the extension of algorithmic 
logic to the algorithmically structurally complete logic it appeared that the
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introduction of the notion of the substitution rule was the sufficient condition. 
After introducing a new substitution rule with a very strong deduction we get 
the algorithmic structural completeness of algorithmic logic strengthened by 
the substitution rule. Therefore> the algorithmic logic strengthened by the 
substitution rule could become complete. So we have to prove the incom
pleteness of such extended algorithmic logic. The proof of incompleteness of 
this logic could be done in a different manner if we knew that the substitution 
rule was hereditary in every model (i.e. if < {a}, /? > er. and a is valid in 
a model then (S(fi = p(a)) is valid in this model too). But we think that it is not 
easy to prove this property without our considerations. The difficulties depend 
on changing the shape of Formulas by using the substitution p e Sb which is 
defined by e fulfilling some properties (see Definition 3, 8 and Theorem 9). 
For example: e{p{xly...,xn)) =  p(r'u ...,z'n) a X.

It is worth to notice that the theorem on algorithmic structural comp
leteness allows us to use many secondary rules in various considerations. The 
only condition which such a rule ought to fulfil is to be structural, fmitary and 
admissible in algorithmic logic strengthened by the substitution rule. This 
condition is in a way a useful criterion for using many secondary rules.

There is an interesting and open problem of getting structural completeness 
without assuming Unitary rules. □

The second part of this paper is devoted to the construction of proving 
algorithms. The first of these algorithms called RS-algorithm use Gentzen’s 
method and some idea of decomposition of formulas containing programs. We 
use some P. Gburzynski’s ideas [28], [29] connected with proving theorems 
without programs but we make it possible i.e. we extend these ideas essentially 
to a case of algorithmic logic i.e. we can prove algorithmic formulas and test 
programs and their properties for example the correctness and equivalence of 
some programs and we can consider functions and relations defined by 
programs. At the time the existing implementation of proving theorems was 
not able to achieve that. Therefore our implementation was the first one 
serving programs. The new created RS-algorithm in a sense enables us to 
execute an expert’s report since it answers the question whether some relation 
p(x, y) defined by a generalized formula holds. For example if p(x, y) is defined 
by K 2b which expresses the order relation between natural numbers x  = 1 
and y =  2 then we ask the question by writing for example p{ 1,2) = b and we 
understand this expression as follows: for which b the relation p( 1,2) holds. The 
proof depends on assuming b to be TRUE when the relation p(x, y) holds or to 
be FALSE otherwise. For example if x =  1 and y = 2, the algorithm tries to 
prove the expression p{1,2) =  b by replacing p(l, 2) by the program K zb 
defining this relation. Finally using the rules of decomposition we get the 
sequent TRUE |= b which ends the proof by adding the special axiom 
{seSeq' :beright(s)} to the set of axioms.
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The action of RS-algorithm cannot be treated as a calculation of the 
program since for the program of the form: begin i : = i + 3; z : =  x end and 
for the function g(x) defined by K Az7 the algorithm gives for the equality 
g(n)4 =  u the axiom i.e. the set of sequents {seSeq'iu = n4 e right(s)} as the 
solution to this equality.

It is known that without changing variables into values the standard 
calculation of function g is impossible. It is worth to notice that the considered 
RS-algorithm gives us the result even in case when the standard calculation 
overflows the stack. To explain that let us consider the program of the form: if 
x =  0 then z: =  2 else z :~  h(x — l )h(x,y))\ denoted earlier by K s and the 
function h(x,y) defined by K sz.

We shall try to calculate the value of the function h( 1,2) during the 
execution of RS-algorithm and in fact we shall try to prove the equation 
h(l, 2) = u3. RS-algorithm finds the solution u3 =  2 though the shape of the 
program defining the function h evidently makes it impossible for compiler 
since the compilation leads to overflowing.

The mere process of dynamic looking For the set of axioms is more 
complicated than it seems from this short description. The example of this can 
be a test of the proof of the expression/(2) =  u for /(2) defined by K Lz. During 
the proof there appeare two sequents. The first of them leads to the sequent of 
the form: (= 0 =  u, 1 =  u, 2 = uy which at first sight makes the further proof 
impossible since we have difficulties with choosing the proper assumption 
among the expressions of the form: u = 0, u = 1 and u = 2. The second 
sequent leads during further decomposition to the sequent of the form: 
O = 0 ) = 2  =  O, 1 =  0,2 =  « which becomes an axiom after assuming that each 
sequent s for which 2 =  u e right(s) is an axiom. Lemma 8 enables us to solve 
this problem. It ensures that for every leaf of the tree which unables us the 
univocal choice of the specific axiom (the sequent containing the expression of 
the form u = t  on the right side of the symbol |=) among many such 
expressions occuring in this leaf there exists another leaf in which this choice is 
univocaf i.e. there exists only one expression of the form u =  t  on the right 
side of the symbol |=. After this choice the earlier leaf in which appears 
diversity of meaning becomes an axiom too.

RS-algorithm contains also a particular manner to avoid the difficulties 
which appear during the decomposition of the sequent containing the program 
with the word WHILE. The rule generates in one case the infinite set of 
sequents and only the special treatment of this case enables us effective activity 
of RS-algorithm.

The expression of the form: W, s while a do Y ,b ,Z  is changed by the
rule (+k) into the formula W, s(p:= TRUE) (J begin p: =  p a a; K  end(p a 
— a a /?) |= 7, b, z. For further considerations we denote by Af„(/): begin sr, 
p : =  TRUE  end [begin p := p a a; K  end]i where l means a natural number.
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As a result of using the rule ( + U)  we ought to consider the set (M„(i) 
(p a  ->a a  p), W  (= Y, b, Z  : Since it is impossible to construct all of
these elements in practice therefore we further consider the sequent of the form: 
M„(/)(p a ->o! a  (5), W £= r  where r  denotes the expression: Y, b> Z. This 
sequent is treated in a special way by RS-algorithm in the point 4.

RS-algorithm enables us to prove the correctness of some programs with 
STOP property. Moreover this algorithm eliminates the inconsistence of the 
definition of relation. Let us assume the following definition: p(x) =

If we want to know whether the relation holds RS-algorithm starts the 
proof of the expression of the form: [= p{x) = b. Since during the execution of 
RS-algorithm we meet the expressions b and p(x) on the same side of the 
symbol [= therefore RS-algorithm STOP and we get an answer about the 
inconsistence of the above definition of p(x) since only the expression with 
negation is able to change the side of the symbol J=.

Besides the Gentzen’s method we considered in our paper a sequential 
method of the decomposition of programs. This method decomposes each 
program with STOP property in the model M  into a normal assignment which 
can be executed on terms or on formulas. The assumption of STOP property 
of the program means in implementation the possibility of execution of all 
needed calculations in this program. Under such an assumption there is no 
problem with the decomposition of the considered program.
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A ndrzej Biela

A lgory tm iczna s tru k tu ra ln a  zupełność 
i system  w yszukiw ania dowodów tw ierdzeń 

w teo riach  algory tm icznych

S t r e s z c z e n i e

Dow ody poprawności oprogramowania są jedynym  sposobem zapewnienia użytkow nika 
(inwestora), że można z niego korzystać bez ryzyka. W pracy rozważa się zatem klasę reguł 
algorytmicznie strukturalnie zupełnych, pozwalających na poprawne wnioskowanie.

D uże znaczenie w automatycznym dowodzeniu twierdzeń ma właściwy dobór reguł, dlatego 
badania rozpoczęto od próby uzasadnienia wyprowadzalności reguł dopuszczalnych w logice 
algorytmicznej.

W publikacji zawarto w yniki badań dotyczące algorytmicznej strukturalnej zupełności lo g ik i 
algorytmicznej oraz omówiono system automatycznego dowodzenia twierdzeń, w którym  pewne 
relacje czy funkcje mogą być reprezentowane za  pomocą programów. Badania przedstawiono 
w języku  umożliwiającym wyrażenie własności programów (rozdz. 2).

Pierwsza część pracy dotyczy:
1) wprowadzenia reguły podstawiania do logiki algorytmicznej i do logiki z Diedetermini- 

stycznym i programami ora2  udowodnienia zasadniczych własności podstawiania (rozdz. 3),
2) uzasadnienia algorytmicznej strukturalnej zupełności logiki algorytmicznej z  dołączoną 

regułą podstawiania (rozdz. 4).
Zdefiniowano zbiór podstawień tald, że wprowadzona za jego pomocą reguła podstaw iania 

okazała się, mówiąc intuicyjnie, na tyle „silna dedukcyjnie", iż pozwoliła na uzyskanie a lgorytm icz
nej strukturalnej zupełności lo giki algorytmicznej. N a  podstawie tej własności stwierdza się, że 
w konsekwencji logiki algorytmicznej każda reguła strukturalna, Unitarna i dopuszczalna jest 
w niej wyprowadzalna. M ożna zatem swobodnie stosować reguły z tej klasy. Ponadto dla 
niezupełnego systemu logiki algorytmicznej otrzymano pewien rodzaj guasi-zupełności, którym  
jest algorytm iczna strukturalna zupełność.

D alszą  część pracy (rozdz. 5) poświęcono omówieniu systemu dowodzącego, który u m o żli
wia dowodzenie twierdzeń metodą Gentzena, sformułowanych w języku różnych teorii, a także 
dowodzenie twierdzeń o programach. Ponadto możliwe są dowody wyrażeń nie będących 
twierdzeniami, polegające na znalezieniu i dołączeniu dodatkowych aksjomatów um ożliw ia
jących dowód. System ten pozwala również na dowodzenie poprawności programów, ro z
wiązywanie równań funkcyjnych, których funkcje są zdefiniowane za pomocą programów, 
a także badanie relacji zdefiniowanych za pomocą procedur oraz badanie niezależności 
aksjomatów.

Pragnąc potwierdzić wiarygodność teoretycznych rozważań, system ten został zaimplem en
towany w języku L O G L A N , a następnie w języku P A S C A L  i z  jego wykorzystaniem wykonano 
liczne eksperymenty. Niektóre z  nich zostały zaprezentowane w podrozdz. 5.6.

Była też możliwa inna metoda dowodu wyzyskująca model arytmetyki, dlatego rozdz. 6 
zawiera opis tej metody, polegający na rozkładzie programów. W  książce podano aksjom aty
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rozkładu i twierdzenie gwarantujące sprowadzenie każdego programu z własnością S T O P -u  
w rozważanym modelu do podstawienia będącego wynikiem tego rozkładu. Reguły om aw ia
nego systemu dowodzącego posługują się wynikiem będącym podstawieniem, a nie samym 
programem, co znacznie upraszcza dowód. W  rozdziale 7 omówiono główne idee przedstawione 
w pracy.



Andrzej Biela

AjiropHTMHqecKasx CTpyKnrypHaH nojmoTa 
h  c H C T e M a  H a x o / íK ii  h  A O K a 3 a T e jif c C T B a  T e o p e M  

b  a jir o p H T M H H e c K H X  T e o p iu ix

P e 3  K3 M  C

B aaTOMaTHiHOM A0Ka3axeju,CTBe TeopeM fiojiLuioe añaTeane HMeer cooTBercTByrotuHH 
ox6op npaBHJi, n03ToMy ara  HccneaosaHafl nasajm c HcabrraHHH A0ica3aTejn>CTBa BLraeAeHHK 
npaBHji flonyCTHMLix B ajtropHTmhhcckoh jtorHKe, B pafiore coaepxaTCa a ro ra  HCcneAOBaHHñ, 
Kacaiomaeca anro parMErnecKoñ crpyKTypHoñ noJiHorw ajrropfrrMfnecKoü noratua, a Taic«e 
o6cy*fíeHa a aefi cacrreMa aaroMaTHiaoro AOKaaarejiiCTBa TeopeM, b tcoropoñ fleaoroptie 
or Hornean« hah (JtyHKUUH Moryr 6utb  npeAcrawieHLi c noMOmwo nporpaMM, 3 r a  
HCCJieAOBaHHH npeACTaaiiemj Ha H3hiKe ajiropar mhhcckosí jiothkh, Ae-JiaioiueM bo3mojkhmm, 
BHpaxeHBe co6cr bchhocth nporpaMM (rnaBa 2).

ílepBas stacrfc pafioTLi Kacaerca:
1) BseAeHHH upaBHJia itoactslhobkr b ajrropHTMHaecicyio Jioraiíy 0 JioraKy 

c HeAeTepMaancrKHecKHMH nporpaMMaMH a Tarace AOKaaaTej&cTBa npHmwaaarabHKDí cbohctb 
noACTaHOBKrr (raasa 3).

2) AOKaaarejTLCTBa anroparMHaecEoñ CTpyirrypHoñ nojiaOTU ajiropBrrMHaeCKoñ nonaim 
c npHJio«eHHUM npaBHJioM ixoact lhobkh (rirnsa 4).

Tcm cawíJM onpeAenHJia Tasoe MHoaecrBO hoactehobok, a ro  no3BOmno uoAyaarb 
crpyKrypHyio rtonsory ajiropHTMirreCKOH jiothkh. 3 r a  cofierBeHHoerb ycTaHaBJiHBaer, ato 
b pe3yjXŁraTe arcroparmrbcckoh normar KaxAoe crpyjorypBoe, tfiBRHTapaoe r AonycTHMoe 
TipaBHno flBJwerca BWBeAEHRLiM- TasHM o6pa30M mokho cbo6oaho npHMeHETŁ npaBHJia H3 
3Toro tenacea, KpoMe Toro ¡vía Henojiaofi cacreMu ajiropfrrMEraecicoñ jiorasa nojiyaeH 
HeKOTOpŁIH pOfl qUASÍ-nOAHOTM, KOTOpblM HBHHeTCK ajITOpHT Mxrrecica¿i crpyKTypHaji 
noAHOTa.

Cneayio m aíi n a c rt pa6orbt (m asa  5) nocsam cHa oficyxAeHHio AOKaaBrsaiom ea cncxeM tr, 
KOTOpaH «enaer bo3Mojchlim AosasarejibCTBO  TeopeM mctoaom resrrueH a ctjjopM ynHpOBaHHLix 
Ha fObiKO paaBLix Teopañ, Toare AOKaaareabCTBO TeopeM coaepKaw H x cporpaM M U. CBepx toto 
bo3mo;khw AOKaaaxe/ihCTaa BbxpaaceHHH He hbjuqowhxck TeopeMajwna, 3ac/noaaiom HecH 
b Haxoajee h npanoarefloaa AoSaBOHHbix aacHOM AeaaKmxHX bo3moschejm AQKa3aTe.ro>ctbo. 3 r a  
CHCTeMa AW iaer B03M0x h íjm  Toare AO KasaTeaŁcrao npaBHjrbHOcra nporpaMM, pemenne 
(JtyHKHHoaajaaLix ypaBHeaHH, KOTOpux (JjyHKAKH onpeAeneaw c domoiubio nporpaMM, T o s e  
KccjieAOBasHe onpeAeaeH&hix CBJ53eñ c homoeamo npoueAyp a Tarase HcaieAOBaftae
CaMOCTOHTeAŁHOCTH BACHOM.

IJ[ejiBto npeAcraBAeHHH reopeTHHecKm  paccyagreHHH 3Ta cacreM a 3aHM iiiieM eKr oaana Ha 
aaHKe J IO r J IA H  a 3aTeM IIA S C A J I h  c  ero noMomtno cAem oa paa 3KcnepHM esroB. 
H e xo ro p íJe  E3 hhx 6hah npeAcraBJieHU b rnaae 5.6.

TaK tcaa B03M0xaa fiama Apyraa MeroAa AOKaaaTejiBCTB nps HcnoabaoBasHM moacah 
apH^MeTHKH, D03T0My b rjtase 6 coAepXHTca onHcame sro ro  MeroAa, 3aKJnonaK)merocR

1 2 1



I

9 pacrmcaaHB npcrpaníM, IlpcACTaaneHM tsm  slkceomw pacnHcaHHK h TeopeMa 
rapasTupyiomaa npascAemse aa»KOK nporpaMMu co cbohctbom S T O P -a  b paocyameHHoS 
Moflean k noflcr anease «aasKmieScs pesyjararoM ax oro paecrmcamm. T sm caiwuM 
npasajia paccyacflaeMosi noEcaabiuaiomeH chctcmli noJiLayicTca pcavatraTOM, HBAKiomHMCg 
(JOflcrraHOBKOH, a ne cämoh nporpaMMoS, tto anawreatHo cospamaer A0¡ta3aTejn>ciB0.


