
On the correctness and completeness of a deterministic algorithm
elaborating direct superclasses in Java-like languages

Hans Langmaack
Institut für Informatik
Christian-Albrechts-Universität zu Kiel

Andrzej Salwicki
National Institute of Telecomunication
Warsaw

Marek Warpechowski
Institute of Informatics, Warsaw University
{salwicki | warp} @mimuw.edu.pl

Abstract. In an earlier article [4] we analyzed the problem of determining direct superclasses in
Java and Javalike languages. We gave a specification of the problem showing that it closely reflects
the requirements of [2]. We presented a nondeterministic algorithm and proved its correctnnes and
completeness. This paper presents a deterministic algorithm which elaborates direct superclasses
as well as new problems. Another advantage of the proposed algorithm is error recovery. Should
the algorithm report an error it continues its job and eventually reports more errors at one pass. A
problem arises in connection with this feature of our algorithm: can we trust the subsequent error
signals? is it possible to prepare better scheme of error recovery?

1. Introduction

Java allows inheritance of classes and inner classes. The combination of these two tools of developing
programs proved its usefulness. cf.[4] and [1] – chapter on inner classes. On the other hand it compli-
cates the life of programmers and of compiler writers. One of problems that appeared is the elaboration
of direct superclasses. Let the header of a class K be class K extends B {. Which of possibly many
classes B is inherited? For there may be several classes of the same name in one program. Moreover Java
allows to inherit from classes that are values of qualified types of the form C1.C2.....Cn For example, a
class K may begin “class K extends C1.C2.....Cn {”. Now the problem of determining which class of
name Cn is the direct superclass of class K is even more complicated. It may happen that qualified types
used in a program define a cycle of mutually depending classes. Without solution of this problem one
can not make the static semantic analysis of source code. Obviously compilers exist and programmers
are using them. However, our experiments showed that compilers are not unanimous, it may happen that
different compilers indicate direct superclasses in different way. There are also cases that different com-



2 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

pilers detect erroneous structures of classes and signal it improperly. Also programmers have different
opinions and indicate direct super classes in different ways. The reference manual of Java: Java Lan-
guage Specification is a thick volume and the needed information is scattered throughout it. One attempt
to standardize the semantics was made by E. Boerger and his colleagues [5]. The book is restricted to
Java 1.1 and does not discuss the problems caused by inner classes. A paper by Igarashi and Pierce [3]
was the first to discuss the semantics of inner classes. In its section 5 we found the rules for elaboration
of direct super classes. The set of rules together with the principle ”apply the rules bottom up“ was pro-
posed by Igarashi and Pierce as a method of elaboration of types. The method has some drawbacks. The
most important is that it does not guarantee the halting property [3]. Moreover the method has no means
to signal eventual errors in extends clauses. In a recent paper we proposed a non-deterministic algorithm
and made its analysis proving its correctness and completeness. The non-deterministic algorithm is an
abstraction, some details of implementation are omitted. It does a diagnostics of erroneous source codes
but has no error recovery mechanism. All these drawbacks are eliminated in the algorithm presented
below. The algorithm works in the data structure of classes which is a simplification of the symbol table
of a compiler. We present a formulation of the problem, a deterministic algorithm, an analysis of seman-
tic properties of the algorithm. We show that the algorithm does precise diagnostic of possible errors in
source code as well as error recovery which makes possible to continue collecting more errors after the
first one was found.

2. Data structure of classes and the formulation of the problem

This section is a modification of section 2 of [4]. Let P be a Java program. In our discussion we shall
use the structure of classes:

S = 〈Classes, {null}, Id, Types, decl, name, ext, Root, Object〉

where

• Classes is the set of classes declared (more distinctly: class declaration occurrences) in a program
plus two predefined classes Root and Object,

• Id is the set of identifiers (allowed by the programming language),

• Types is the set of types, simple or qualified i.e. finite sequences of identifiers separated by dots,
the empty sequence ε included,

• decl : Classes \ {Root} −→ Classes is the function which for each class K 6= Root returns the
class textually, directly enclosing K. For simplicity we see Object as a class without any classes
declared inside. We assume decl(Root) = null.

• name : Classes \ {Root} −→ Id is the function that returns the identifier of a given class. Class
Root has no name, name(Object) = Object.

• ext : Classes \ {Root,Object} → Types
is the function which for each class K /∈ {Root,Object} returns the extension type. If the exten-
sion clause is omitted in the declaration of class K then ext(K) = ε. Otherwise ext(K) is equal
to the type found in the extension clause.



H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses 3

• Root and Object are distinguished elements of the set Classes.

The structure S has the following properties.

• decl(Object) = Root

• The pair 〈Classes, decl〉 is a tree. The class Root is its root.

• If decl(K) = decl(M) then name(K) 6= name(M) or K = M

In the remainder of this paper we shall use the function .C : Classes → Classes ∪ {null}.
Let K be a class, let C be an identifier. The expression K.C denotes a class Y which is declared within
class K and its name is C or null if there is no such a class. K.C = Y if and only iff (∃Y )(decl(Y ) =
K ∧ C = name(Y )). Otherwise K.C = null. The well-definedness of function .C follows from the
third property listed above. Given a structure S the problem is to obtain a partial function inh which
for every given class K 6= Root,K 6= Object returns the direct superclass of class K or to assure that
such a function does not exist, signalling that the class structure S is not a correct one. In fact we are
seeking two functions inh and bind. Their definitions are mutually involved. In the following we give an
inductive definition of the partial function bind(type in class) which associates a class to a given pair
〈type, class〉. An equation bind(T in C) = D reads informally as: the meaning of type T inside the
class C is class D. Compare our definition with the text of Java Langugage Specification [2](6.3, p. 85,
and follow references 6.5.5, 8.1.3 ...). We believe that our definition of the function bind corresponds
most closely to the lengthy and scattered description of meaning of Java’s type name. In contradiction to
the Java Language Specification, the paper [3] defines the meaning of type names even for some incorrect
(non well-formed in the sense of [2]) programs. For details see section Elaboration of Types in [3].

Definition 2.1. (base of induction A) For any class K the meaning of the empty type ε is bound to Object.
We define

bind(ε in K)
df
= Object.

(base of induction B) Let K be a class. An applied occurrence of a (class) identifier C in the class K is
bound to a class named C such that

bind(C in K)
df
= (inhideclj(K)).C

where the pair (j, i), j ≥ 0, i ≥ 0, is the least pair in the lexicographic order such that the value
(inhideclj(K)).C is 6= null. The pairs are compared according to the lexicographical order, i.e. the
pair (j, i) is less than the pair (q, p) if j < q or j = q and i < p. The value of bind(C in K) is null in
the remaining cases.

(inductive step C). Let X 6= ε. For any class K the meaning of a type of the form X.C in the class K is
determined in two steps.

bind(X.C in K)
df
= (inhi(bind(X in K)).C

where i ≥ 0, is the least integer such that the inequality (inhi(bind(X in K)).C 6= null holds, the value
of bind(X.C in K) is null in the remaining cases.



4 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

The following relation dep plays an important rôle in the further considerations.

Definition 2.2. dep is a binary relation in the set of Classes such that

dep
df
= {〈K, bind(ext(K)|i in decl(K))〉 : K ∈ Classes \ {Root,Object},

0 < i ≤ length(ext(K)) for ext(K) 6= ε,

i = 0 for ext(K) = ε}

where the expression ext(K)|i denotes the initial segment, of length i, of the type ext(K).

Let ext(K) be the following type C1.C2. ... .Ci. ... .Cn . Then ext(K)|i is the type: C1.C2. ... .Ci .
Figure 1 illustrates the way of computing the value of the function inh and the relation dep. Now we are
ready to specify the problem of determining the direct superclasses.

Problem 2.1. For a given structure of classes S, determine whether there exist

• a function bind and a relation dep, defined as in the preceding definitions, and,

• a function inh : Classes \ {Root,Object} −→ Classes \ {Root},

such that the following two conditions hold:

I1) the values inh(Root) and inh(Object) are equal null and, for every class K /∈ {Root,Object}
the value inh(K) is different than null and the following equality holds

inh(K) = bind(ext(K) in decl(K)),

I2) the induced relation dep has no cycle.

and produce the function inh if it exists.

Definition 2.3. A structure of classes S is correct if function inh exists such that conditions I1 and I2

are satisfied, otherwise we say that the structure of classes is incorrect.

Hence our problem can be stated as follow: for a given structure of classes S detect if it is a correct one
and if it is the case then produce a function inh satisfying the conditions mentioned above. In [4] we
proved that this specification of the problem (refined on the base of [2]) is consistent and complete.

• (consistency) For any correct structure of classes there exists a solution, i.e. a function inh satis-
fying both conditions I1 and I2. Moreover, we gave an algorithm which decides whether a given
structure of classes is correct and for a correct class structure constructs a function inh of desired
properties I1 and I2.

• (completeness) The specification has the uniqueness property, i.e.any two solutions are equal. This
is an indispensable language semantics requirement.

In the earlier paper [4] the reader will find a non-deterministic algorithm and the analysis of its correct-
ness.



H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses 5

class C extends C
1 
... C

n
class C

n

class C
n-1

class C
2

class C
1

class C'

decl+

decl

decl

decl

decl

decl

inh

inh*

inh*

inh*

inh*

dep
dep

dep

dep

...

.C
n

.C
n-1

.C
2

.C
1

Figure 1. Downward skew inheritance.
Let K denote the class of the following header class C extends C1.C2. ... .Cn−1.Cn. The diagram can be viewed
from several angles.
First, if we delete the arrows dep and decl and keep the arrow decl+, then the diagram obtained in this way
commutes.
Second, the commutativity of the modified diagram illustrates the condition I1, i.e.

inh(K) = bind(ext(K) in decl(K)).
Third, the diagram may help to understand how to calculate the inh-arrow for the class K. In this case we assume
that all other inh-arrows appearing in the diagram were calculated earlier. We are to identify the class M1 of the
name C1, M1 = µ〈j, i〉(inhideclj(K)).C1 is defined), then the class M2 = µi(inhi(M1).C2 is defined) of the
name C2, ... the class Mn = µi(inhi(Mn−1.Cn is defined) of the name Cn, in this order. Now we can put arrow
inh leading from K to Mn.
Finally, we put arrows dep. The diagram of the structure of an entire program is not allowed to contain a cycle of
dep arrows, c.f. condition I2

.



6 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

3. A deterministic algorithm

This section presents a deterministic algorithm which elaborates direct superclasses. The algorithm
consists of a few procedures

Algorithm
DCStack := EmptyStack
Mark Root and Object White and all other classes mark Black
let inh(K)=null for every K ∈ Classes
call Preorder(Root)

end Algorithm

Preorder(Classes K)
if K is Black then

call ComputeInhFor(K)
endif
for every L in sons(K) do

{execution of this loop dpends on ordering of sons }
call Preorder(L)

endfor
end Preorder

CycleMessage(Classes K)
writeln(”Dependence cycle:”)
writeln(header(K))
writeln(”depends on class named ”, Pop(DCStack), ”which is: ”)
do

writeln(header(Pop(DCStack)))
if empty(DCStack) then exit endif
writeln(” which in turn depends on class named:”Pop(DCStack), ”which is: ”)

enddo
end CycleMessage

ComputeInhFor(Classes K)
var Class∪{null} L i.e. value of variable L is either a Class or null
{ decl(K) is White }
Mark K Gray
if length(ext(K)) =0 then

L := Object;
else

i:=1
L:=Bind(ext(K[i], decl(K))
{Invariant of the loop: L=bind(ext(K)|i in decl(K)) }
while ¬ (i=length(ext(K)) and L is White) do



H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses 7

if L=null then
writeln(“undeclared class”, ext(K)|i, “in the header of class”, K)
inh(K):=Object; Mark K White
return

endif
if L is Gray then

Push(DCStack, L); Push(DCStack, ext(K)|i)
if K=L then

call CycleMessage(K)
L := Object
exit

endif
Mark K Black; Mark L Red
return

endif
if L is Black then

call ComputeInhFor(L)
if not empty(DCStack) then

Push(DCStack, L) ; Push(DCStack, ext(K)|i)
if K is Red then

call CycleMessage(K)
L:=Object
exit

endif
Mark K Black
return

endif
endif
{Assertion1: L=bind(ext(K)|i in decl(K)) and L is White }
if i=length(ext(K)) then exit endif
i:=i+1 ; L:=BindInh(ext(K)[i], L)

endwhile
{Assertion2: L=bind(ext(K) in decl(K)) and L is White or K is Red and L=Object }

endif
{Assertion3: L=bind(ext(K) in decl(K)) and L is White or K is Red and L=Object }

inh(K):=L ; Mark K White
end ComputeInhFor

Bind(Id id, Classes K): Classes ∪ {null}
var Class∪{null} L
while K 6= null do

L :=BindInh(id,K)
if L 6= null then return L endif
K := decl(K)



8 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

endwhile
return null

end Bind

BindInh(Id id, Classses K): Classes ∪ {null}
var Class∪{null} L
while K 6= null do

L:=K.id
if L 6= null then return L endif
K :=inh(K)

endwhile
return null

end BindInh

This algorithm has several advantages over the non-deterministic one of [4]

• The algorithm is deterministic, all details necessary to implement it in practice are given,

• The algorithm is equipped with diagnostics and error recovery mechanism. It consists in colouring
the visited classes i.e. nodes of structure of classes S. The diagnostics recognizes two types of
errors: a) undeclared class or b) cycle in dependence relation. The case of cycle in dependence
relation is easy identifiable for the algorithm lists the pairs
〈 header of a class declaration, name of class on which the declared class depends on 〉

• In both cases the error recovery uses the class Object as a target of inheritance.
The error recovery makes possible to continue the static semantic analysis of Java programs.

4. Analysis of algorithm

We are going to prove that if the algorithm computes the function inh without signalling any error, then
it is a correct solution of the problem.

4.1. Experiments

We did some experimenting before proceding to wording of lemmas and proving them. Two animations
of experiments are offered at the URL: Here we quote a slide of detection of cycle in dep relation.

4.2. Proof of correctness

Lemma 4.1. The following observations are valid:

(i) Marking a node K White and assigning a value 6= null to inh(K) takes place together.

(ii) If a node is marked White then it is never marked again.

(iii) If value 6= null was assigned to inh(K) then it is never changed.



H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses 9

  

Root Object

ext B.C ext E.F.G

ext A.D

A B E

G

FCD

DCStack

K = Root
L = A                  

K = A
L =                     

K = A
i = 1
L = B                  

Stack of activation records
Algorithm

Preorder

Preorder

ComputeInhFor

K = B
i = 2
L = F                  

ComputeInhFor

K = F
i = 1
L = A                 

ComputeInhFor

ComputeInhFor(K)
   ...
if L is Gray then
    Push(DCStack, L); 
    Push(DCStack, ext(K)|i )
    if K=L then
        call CycleMessage(K)
        L := Object
        exit
    endif
    Mark K Yellow; Mark L Red
    return
endif ... A

„A”

A

Figure 2. The cycle of dep relation of dependency is: A dep B dep F dep A
Explanation of the diagram:
- in left upper corner you see the structure of classes,
- in right lower corner the content of DCStack,
- to the left the stack of activation records is shown,
- in left lower corner we exhibit a part of code of currently executed method.
Relation dep is visible in activation records of ComputeInhFor.
The node K depends on node L.



10 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

(iv) In procedure ComputeInhFor node K may get color Black. It is done if and only if instruction
Push is executed.

(v) If a node is marked Grey then the stack of activation records of ComputeInhFor contains a
record such that its parameter K points to the node.

Proof:

(i) Look at the code of ComputeInhFor and check that there only two place in the algorithm where
a node K is marked White. In both cases this instruction is accompanied by the instruction inh(K)
takes a value. These are the only two places where such an assignment is done.

(ii) Check the code of ComputeInhFor.

(iii) It follows from the previous observations.

(iv) Check the code of ComputeInhFor.

(v) Obvious.
ut

The next lemma analyzes actions taken when a node is marked Red. In order to mark a node Red
the algorithm detects that the newest activation record of ComputeInhFor has computed the value
L := Bind(ext(K[i], decl(K)) and found that L is marked Grey. It means that the stack of activation
records contains an element ... The algorithm pushes DCStack. Having this in mind we formulate therozwiń to!
following

Lemma 4.2. If during an execution of the algorithm a node B is marked Red then

• activation records of ComputeInhFor are closed one after another until the current activation
record has the object K marked Red,

• when an activation record of ComputeInhFor is going to be closed and node K is Gray then the
algorithm puts two elements onto DCStack and marks K Black then the activation recod is closed,
instruction return is executed,

• observe that these actions do not allow to reach Assertion1,

• when the current activation record of ComputeInhFor has the object K marked Red then the
instructions {call CycleMessage(K); L :=Object: exit} are executed causing that the algorithm
skips Assertion1 and reaches Assertion2.

Lemma 4.3. Whenever the algorithm reaches Assertion1 the node L is White

Proof:
It is clear that when the algorithm reaches Assertion1 then L can not be Grey nor Black nor null. From
the above lemma we know that L is not marked Red. ut



H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses 11

Lemma 4.4. The set W = {n ∈ Classes : n is White∧n 6= Root} of nodes marked White excluding
Root, together with the function inh is a tree. Object is the root of the tree.

Proof:
Proof goes by induction w.r.t. n – the number of executed instructions “Mark K White“. For n = 0 the
tree contains only its root Object. Suppose that the thesis is true for a number k . At the next execution
of instruction ”Mark K White“ we add an edge going from a non-White node K to a certain White node
and we mark K White. It follows from (ii) and (iii) of Lemma 4.1 that the new graph is a tree again. ut

Corollary 4.1. In every step of computation, if a node K is White then all nodes reachable by a path
inh∗ from K are White too.

Lemma 4.5. The following statements are invariants of every computation of the algorithm

A) If K is White then any element of the form (decl | inh)∗(K) is White.

B) If the instruction call ComputeInhFor(K) is going to be executed then K is Black and decl(K) is
White.

Proof:
Proof of B) We entered ComputeInhFor either from Preorder, and then the thesis is obvious or from
ComputeInhFor. In this case we execute the instruction call ComputeInhFor(L) and either a) L =
Bind(ext(K)[1], decl(K))
or
b) L = BindInh(ext(K)[i], L′) and L′ is White.
If a) then decl(L) ∈ (decl | inh)∗(decl(K)) therefore by inductive assumption A dec(L) is White.
If b) then decl(L) ∈ inh∗(L′) therefore decl(L) is White. It ends the proof of B).
Proof of A) From B) and the inductive assumption it follows that when K is marked White then (decl |
inh)∗(decl(K)) is White. Using corollary 4.1 we have inh∗(K) is White hence (decl | inh)∗(K) is
White which ends the proof of A). ut

Lemma 4.6. When the algorithm computes Bind or BindInh then its second argument is a White
node.

Proof:
Check the places where the instructions call Bind, respectively call BindInh, occur.Instruction call Bind
occurs once before the while statement. Its second argument, decl(K) is White, c.f. lemma 4.5. Instruc-
tion call BindInh occurs once, inside the while statement. Its second argument L is White c.f. lemma
4.3. ut

Lemma 4.7. If each element of the form (decl|inh)∗(K) is White then for every identifier id and for any
later moment in the execution of the algorithm the evaluation of expression Bind(id,K) (respectively,
BindInh(id,K) give the same result.



12 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

Lemma 4.8. In any moment of execution of the algorithm, i.e. for any function inh, and for every type
name Path, such that length(Path) > 0 and for every class M

R = bind(Path in M) ≡ L:=Bind(Path[1], M);

for i :=2 to length(Path) do
L := BindInh(Path[i], L)

done { L=R}

here Path is conceived as an array of identifiers, Path[i] denotes the i-th identifier of qualified type.

Lemma 4.9. Assume that a computation of the algorithm terminates without signalling an error. The
following formula is the invariant of the loop while in the ComputeInhFor(K)

L = bind(ext(K)|i in decl(K))

Lemma 4.10. Algorithm terminates.

Proof:
It suffices to show that the stack of activation records of ComputeInhFor is of depth limited by the
number of classes. Now, recall that when an instruction call ComputeInhFor(K) is executed then node
K is marked Black. Upon entrance to the procedure, node K is marked Gray. Its colour may change
to White or to Black, and then the computation leaves the activation record. The colour of node K may
change to Red and ComputeInhFor(K) cannot be called again. Hence it is impossible to have stack of
depth bigger then n, where n is number of classes.
Observe that the number of iterations of instruction while is limited by length(ext(K)). ut

Putting all the lemmas together we obtain the following

Theorem 4.1. If the algorithm terminates without signalling any error, then it computes function inh
such that the conditions I1 and I2 mentioned in problem 2.1 are satisfied.

The qualitative analysis of the algorithm is completed by the following theorem

Theorem 4.2. If the algorithm terminates and signals an error then no solution exists, i.e. the structure
of classes is incorrect.

Proof:
If during an execution of the algorithm a node is marked Red then a cycle in dep relation has been
detected and printed out. C.f. lemma 4.2. If during an execution of the algorithm a message was printed
”undeclared class X in the header of the class Y” then the structure of classes contains the error of lackin
a declaration of a class named X vusible in the place of declaration of the currently analysed class Y. For
the proof see [4] ut



H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses 13

As concerns the cost of the algorithm it can be estimated as follow: Each node is visited twice: once
by the procedure ComputeInhFor and second by the procedure Preorder. During this visits the while
instruction of the procedure ComputeInhFor is executed. The number of iterations is equal to the length
of path appearing after extends. To this cost one must add the cost of operations Bind exectucted. In a
pessimistic case the cost may be as high as O(n3). In real programs the paths occurring after the key
word extends are not too long. The cost of Bind can be also less then pessimistic O(n2). In practical
cases the cost of the algorithm is linear.

5. Final remarks
zmienić to!

The algorithm solves the system of two recursively defined functions. Hence, it was not obvious how to
prove its correctness and completeness. The proof of correctness of non-deterministic algorithm took 10
pages.
The method of elaborating types proposed by Igarashi & Pierce [3] is highly ineffective, for it requires
elaboration of each segment of a qualified type anew. The nondeterministic algorithm [4] stores the elab-
orated types and makes possible the further usage of earlier stored results. The deterministic algorithm
uses pebbling by pebbles of differnt colours thus making the algorithm more efficient
Here comes the list of open questions

Appendix Signalling the errors

In this appendix we present a source of programs and the diagnostic produced by our algoritm

class A extends B.C {
class D {}

}

class B extends E.F.G {}

class E {
class F extends A.D {

class G {}
}

}

Below is a message of our algorithm

Dependence cycle :
class A extends B.C {
depends on class named B which is :
class B extends E.F.G {
which in turn depends on class named E.F which is :



14 H. Langmaack, A. Salwicki, M. Warpechowski / An algorithm elaborating direct superclasses

class F extends A.D {
which in turn depends on class named A which is :
class A extends B.C {}

Observe that no existing Java compiler gives so many details on cycle in dependence relation.

References
[1] Eickel, B.: Thinking in Java, 4th edition, 2005.

[2] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edition, Addison-Wesley,
2005.

[3] Igarashi, A., Pierce, B.: On inner classes, Information and Computation, 177, 2002, 56–89.

[4] Langmaack, H., Salwicki, A., Warpechowski, M.: On an algorithm determining direct superclasses in Java-
like languages with inner classes - its correctness, completeness and uniqueness of solutions., Information and
Computation, to appear.

[5] Stärk, R., Schmid, J., Börger, E.: Java and Java Virtual Machine Definition, Validation, Specification, Springer
Verlag, Berlin, 2001.


