= piE

SEMANTICS AND IMPLEMENTATION OF PREFIXING AT MANY LEVELS™

W.M, Bartoel

A. EKreczmar
A.I. TLitwiniuk
H. Oktaba

Institute of Informatics
University of Warsaw
Q0-901 Warsaw, P.K.,i N, Poland

Abstract

A generalization of Bimula’s prefixing of classes is presented,
The notion of one-level prefixing is first introduced by means of
the example of Simula 67; the semantics of a programming language
with prefixing at many levels is then discussed and analyzed,

The principles for efficiently implementing programming languages
with prefixing of classes at many levels are described, A genera-

lized display mechanism is introduced and the correctness of a dis-
play update algorithm is proved, A new data structure for efficient

identification of dynemic objects is also presented,

Ke¥gords= block structured programming languages, classes, prefixing,

methods of implementation, Simula 67,

*This research was Bupported in part by "Zjednoczenies MERA"™ of Poland,

46

1., Introduction

The prefixing of classes ig one of the most attractive and power-
ful mechanisms incorporsted into the programming language Simula 67
(cf [4]]. This tool allows a programmer to design a program in
a structural, sbestract way. To present briefly the main ideas of pre-
fixing we start with the notion of a class.

Let us congider the following scheme of class declaration:

¢lass A;
attributes aq,...,an;
11;...;Ip; inner; Ip+1""‘Ir
end Aj;

where Bqse.038y are attributes (variables or, perhaps, other synta-
ctic units like classes, procedures, functions etc.)and Iq,...,Ip,
Ip+1""'1r are instructions of the class A. With the help of an
object generator ("new A") one can create an object of the class 4,
i,e. create a frame (activation record) in the memory for attributes
Byseesarly and execute the instruction list Iqi-'-!IvaP+1"'-vIr'
When control returns to the object where the expression "mew A" has
been execubed, the freme is not deallocated and a reference o that
frame is trensmitted as the velue of the expression "new A", Hence,
a reference to the object may be retained in a reference variable
(e.g,X:—new A, where X ig a peference variable qualified by the class
).

The attributes of objects are aceemsible from outside as well as
from inside the object. Remote acceasing (e.g.x.ai] allows one Ho uwse
the attributes a s..« 8, from outside. Internal access occurs wnile
executing the jnstructions of the object of A and any unit nested
within 1t or during calls of the class's procedure attributes.

Congider now declaration scheme of a class B:

9
4 class B

attributes b1,...,bm;
Jq;...;J ipner; Js+1"";Jt
and B;

gl

47

Class B is prefixed by A, i.e, B has attributes aq,...,an,b1,...,
bm and the instruction list 11""’Ip’J1""’Js'Js+1""’Jt'Ip+1""’
I, and B is called a subclass of 4, One can create an object of class
B in a similar way as was done for 4, i.e. by Y:-pew B, Here Y may be
a reference variable qualified by class B as well as by class A {for
the general rules of this kind of assignment statement see [4]) .

The following class C is a subclass of the classes B and A:

B class C;
attributes CqsesesCpi
Kq;...;Ku; inner; Ku+,|;...;Kv
end C;

and it has the attributes a,l,...,an,b,,,...,bm,c,l,...,ck and the in-
struction list I1""’Ip’J1’""Js'K1""’Ku'Ku+1""'Kv'Js+1’""Jt'
Ip+1""'Ir' The sequence of classes A,B,C is called the prefix
sequence of the class C, Class C may in turn be used as & prefix of
some other class, and so forth, but no class can oceur in its own
prefix sequence. Hence prefixing has a tree structure,

Blocks may alsc be prefixed, For instance, a block:

A begin
attributes CqrensyCyi
K'i;"'iKu.

end

ls prefixed by the class A, i.e. it has the attributes BqsevepBly,
CqreresCy and the instruction 1list I1""’Ip'Kﬂ!""Ku’Ip+1""’Ir'

In Simula 67, perhaps because of the method chosen for the origi-
nal implementation, there is an important restriction on prefixing;
namely, & class may be used s a prefix only at the block level at
which 1t has been dsclared. Before we explain the reasens for this
restriction and possible ways of abolishing it, let us look at some
examples which illustrate the difficulties arising from this restri-
ctien,

Suppose we have a declaration of a class PQ which provides the
data structure of a priowrity gueue of integers with maximal capacity
defined by an input paramstr n:

class PQ{n); integer n;
begin

48

integer procedure deletemin;

end deletemin;
procedure insert(x); integer Xi
end insert;
end PQ;
In the following program:i
begin
class PQ(n); integer n;
end PQj

begin integer nj
read(n};
PQ(n)begin
end
end
end

the declaration of PG is not at the same level as the prefixed block,
hence this conatruction is incorrect in Simula 67.

If the class PQ were translated separately and treated as being
declared in the block at level O, it would never be possible to use
this detsa structure as a prefix in other block except the outermost
one.

In Simila 67 this problem has been partially solved, because &y-
stem classes like SIMSET and SIMULATION mey be used at any level.
But the user is not able to extend the library of system classes,
which still forces him to rewrite the declarations at relevant block
levels.

Thisg situation becomes even mora cumbersome if we want to meke
use of-two data structures simultaneously and both of them are sub-
classes of one class. Congider for instance, the data&ﬂructures A
and B using lists as an auxiliary data system. Fence they ought to
be subclasses of a class 1L.IST. We have the following declarations:

class LISTj

49

end LIST;

LIST class 4;
end A;

LIST class B;

end B;

and now we would like to open two prefixed blocks:

4 begin
B begin
end
end

Because of the restriction ome must redeclare classes B and LIST at
the level where B is used as prefix, Thus, redundancy is unavoidable.

Observe that with the possibility of separate translation and allo-
wing prefixing at many levels we can develop software ia a structural
way. Any system or wser class may be easily extended by the user and
attached to the catelog of system ¢lagses without the necessity of re-
compiling already compiled units and without the redundancy of the
program text, Moreover, as we showed before, the user is eble to make
use of arbitrary data structures simultaneously by weans of a prefi-
¥ing mechanism ingtead of remote accessing (what speeds-up run-time
of a program and clarifies its source code).

To conclude, we emphasize that prefixing at many levels is not me-
raly a sophisticated technical problem in progremming languages, butb
an esgential step forward in developing an effective software metho—
dology.

The structure of the peper is the followlng. In section 2 we give
an Informal insight, illustrated by examples, into some important se—
mantic questions concerning many-level prefixing, Section 3 contains
definitions and facts concerning the block structured programming lan-—
guages, which are well knmown but necessary. Section 4 contains the
formal definition of access to attributes in one-level prefixing
(Simula 6?). In section 5 we prove that the proposed semantics of the
rules for many-level prefixing is correct. Section 6 gives a descri-
ption of addressing algorithms for many-level prefixing. In particu-

AT
Ry

50

lar, a generalized display mechanism is iantroduced, a mecharism which
realizes an efficient access to attributes. In section 7 we discuss
the various strategies of storage management and their impact on the
semantics of the proposed consbtruct.

2, Many-level prefixing (informal presentatiunl

The prefixing in Simula-67 1is subject to an important restriction:
a clags may be used as a prefix only st the syntactic level of its
declavation. Hereafter we shall call this prefixing "at one level”,

In this paper we consider a Simula-like language, in which there
is no such restriction and "many-level" prefixing is possible il.e.
a class may be used as a prefix whenever its declaration is visible.
To speak about such a language we must be able first to determine its
gemantics. One might think that prefixing gt many levels® is a tri-
viel generalization of prefizing "at one level", but this is not the
case. ‘

The semantics of such a language is not obvious: in particular the
rules defining access to object ettributes cannct be deduced from the

analogous Simula rules,
Consider the followlng program scheme (we foliow Simula syntax):

L1: begin
class A; begin real Xx;

\

end
12: A begin r
class Bi D

@ |

3
al yi

HI=TH

@
=
e

new Bj

