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1 Introduction

In the last ten years new high level programrning languages have been developed,
for instance, PASCAL [14], ADA [1], CLU [10] and EDISON [7]. Some of these
languages allow a dynamic storage management for the data and subprogram-
units, generally they are then called dynamic languages. If such languages are
to be used for real-time applications, the implementation of their run-time sys-
tem has to guarantee total security, without any loss of efficiency. The main
goal of this paper is to discuss this general security-with-efficiency problem and,
in particular, to present a new, secure approach to storage management with
interesting properties in terms of computing cost. Every high level program-
ming language allocates memory blocks to unit instances. Instances of the so
called non-addressable units, like procedures and functions in PASCAL, can
be allocated and automatically deallocated using a stack. On the other hand,
a stack implementation is not suitable for languages which admit addressable
units, like access-type in ADA. For instance, in PASCAL non-addressable units
are allocated in a stack, while addressable units are allocated in a heap. In the
early ’60s, the programmer was fully responsible for the deallocation of unit in-
stances [12]. Then this technique was found to be unsafe and therefore rejected.
Afterwards two other strategies have been proposed: the so-called retention and
deletion strategy [2]. In a pure retention strategy, all instances (addressable and
non-addressable) are kept in the memory until the available space runs out. At
this point a garbage collection procedure is triggered to remove all non-accessible
instances. It is well known that this strategy can be very time consuming, be-
cause of the frequent calls on the garbage collector. However, this problem has
been deeply analyzed in the literature, and, even if interesting solutions have
been found [6,13], many open problems remain [3]. In the deletion strategy, the
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no-longer-needed instances are removed as soon as possible, and the run-time
system is made responsible for the efficient detection of sueh instances. Unfor-
tunately, a significant execution time overhead could result also in this case [9].
More recently, in the implementation of some languages, a new strategy: pro-
grammed deallocation by specific commands, has been introduced (e.g., dispose
of PASCAL, free of ADA, kill of LOGLAN [11]). However, also this technique
has a great disadvantage, known as the dangling reference problem. In fact,
when a pointer refers to a deallocated instance, the run-time system cannot
discover such an incorrect reference and unpredictable results could tum out.
In this paper we follow the programmed deallocation strategy, and, in order
to avoid the mentioned dangling reference problem, we introduce one general
data structure to manage all instances, both addressable and non-addressable,
in a unique, unified environment. We also define algorithms for allocation and
deallocation of unit instances and analyze their complexity.

2 General data structure

Let us first assume that a program, after being loaded, obtains a contiguous
frame of the memory space for its run-time data. Let M [0], ...,M [N ] (see Fig.
1) denote this frame. In the proposed data structure the memory M , available
for run-time data and units, is divided in two areas which are allowed to grow
from opposite ends. The area where instances are allocated, denoted by INS
(INstance Space), grows from M [0]. The other area, denoted by IAT (Indirect
Address Table) grows backwards from M [N ] and contains the so-called indi-
rect addresses. Two system pointers, Lastused and Lastitem, indicate the last
word of the area INS and the first word of the table IAT , i.e., the last indirect
address, respectively. Let M [d],M [d + 1], ...,M [d + s − l] denote the s con-
tiguous locations of the area INS, where a given instance of size s is allocated
(starting from the relative address d). Every component of the given instance
is addressed relatively to its base address d. We assume that each instance is
characterized by its size, represented as its first component, namely the content
of the location M [d], i.e., M [d] =s. Therefore all. algorithms operating on in-
stances treat them as logically similar objects, without any specific assumption
about their physical structure. According to these assumptions we can write
INS[d], ..., INS[d + s− l] instead of M [d], ...,M [d + s− l], and INS[d] instead
of s. The table IAT is an auxiliary array used for checking if a referenced in-
stance is not deallocated and, if necessary, to access it. The entries of IAT are
of constant size since they have only two components: d (the base address of
an instance) and guard counter (an integer value). Guard counter is used for
checking whether a given pointer variable points at a non-deallocated instance
or has the value none which represents undefined reference. If b is the address
of an entry of IAT , IAT [b].d and IAT [b].guard counter denote these two com-
ponents respectively. In order to have a unique notation, we shall denote the
size of an instance INS[d], ..., INS[d + s − l] by INS[d].size. Consider now a
pointer variable x. In our data structure its value will be always an ordered pair
(b, counter), where b is the address of lAT entry pointed at by x, and counter
is an integer value, manipulated according to the rules described in the next
sections. The general invariant of the data structure is the following:

(i) x 6= none iff counter = IAT [b].guard counter.
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In order to check if x 6= none and to obtain the base address of an instance
referenced by x, we should perform the actions defined by the following function
member. The description of this function, and of all other programs in this
paper, follows a Pascal-Iike syntax (with some slight changes). In particular we
note that the elements of memory space M [0], ...,M [N ] are of type address.

function member( input b : address, counter: integer;
output d : address) : boolean;

begin
if counter 6= lAT[b]. guard counter
then

member :=false
else

member := true;
d := IAT[b].d

fi
end member

It is clear that by virtue of invariant (i), the function member is correct, i.e.,
(b, counter) refers to a non-deallocated instance iff member(b, counter, d) = true
and then the value of d yields the physical address of an instance. Thus, to prove
the correctness of other procedures presented in the following sections it will be
sufficient to establish that the invariant (i) always holds.

3 Instance deallocation

Let x be a pointer variable, with (b, counter) as its value, and let us suppose
that a deallocation operation (called Free) for an instance referred to by x
is to be performed. First of alI, x is checked: - if x = none, then no other
actions have to be undertaken; - otherwise the corresponding instance should be
deallocated. In order to preserve the general invariant, IAT [b].guard counter is
increased by one. This is the critical step of the algorithm. In fact, after this step
all reference variabies, with (b, counter) as values, have now the value counter
different from the fresh (increased) value of IAT [b].guard counter. Of course,
in this case the value IAT [b].d does not point at any instance and, consequently,
it may be used for other purposes. Therefore, the entry IAT [b], with the new
guard counter value may be added to a list of available IAT entries. This
list will be structured as a FIFO queue, with IAT [Head] as its first element
and IAT [Tail] as its last one, while the corresponding IAT [b].d’s serve as list
pointers. The last step of the algorithm releases the frame previously allocated
to an instance in the memory space: - if such a frame is bordering upon the
free space between the two pointers LastUsed and LastItem, we can simply
decrease LastUsed, - otherwise that frame may be inserted into the set of free
frames. The management of this set (insertion of released frames and search
for free frames of a given size) must be performed in a very efficient way. .
This problem has been deeply analyzed [3,7,8]. However, for our purpose in the
present paper it will be sufficient to describe two main operations: insert(s, d)
which inserts a free frame INS[d], ..., INS[d+ s− I] into the set of free frames,
search(s, d) which looks for a free frame of size s, and returns the physical
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Figure 1: A variable x and its value: object o

address of a frame via output parameter d (if such a frame is found, then search
is true, otherwise search is false and d is undefined). Below we present procedure
Free.
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procedure Free (input b: address, counter: integer);
var d : address;

begin
if counter 6= IAT[b].guard counter then return fi;
IAT[b].guard counter := IAT[b].guard counter + l;
d := IAT[b].d;
lAT[Tail].d := b; IAT[b ].d := 0; Tail := b; {put on FIFO}
if d + INS[d].size = LastUsed + l {bordering upon Free Space}
then

LastUsed := LastUsed - INS[d].size
else

call insert(INS[ d].size, d)
fi

end Free

To prove the correctness of the procedure Free, it is sufficient to show that
the invariant (i) always holds. For this purpose we first have to introduce three
more invariants:

(ii) 0 ≤ LastUsed < LastItem,

(iii) if x = 〈b, counter〉, then Lastltem ≤ b ≤ N , counter ≤ IAT [b].guard counter
and (i) holds,

(iv) IAT [b] belongs to the FIFO structure if there is no x = 〈b, counter〉 such
that x 6= none.

The invariant (ii) guarantees that the arrays lAT and INS do not overlap, so
that we do not have to consider any influence of table INS modifications on
the tab le lAT , and vice versa. Moreover, the invariant (iii) is stronger than
(i). Therefore, in order to guarantee the validity of (i) it will be sufficient to
prove (iii). FinaIly, the invariant (iv) tells that only released entries of the lAT
table are stored in FIFO. This invariant will be used in the correctness proof
of the instance allocation procedure. In order to prove (ii), we observe that
LastUsed may be decreased by the size of an existing instance only, therefore
0 ≤ LastUsed < LastItem. Let us consider an arbitrary pointer variable
x′ with (b′, counter′) as its value. In order to prove (iii) we observe that if
b = b′, then (iii) holds before lAT [b].guard counter is advanced, by the inductive
assumption. Then:

counter′ < IAT [b].guard counter < IAT [b].guard counter + 1

. This shows that x′ = none and that (i) holds. It is clear that the conditions

Lastltem ≤ b′ ≤ N and counter′ ≤ IAT [b′].guard counter

are also satisfied. On the other hand, if b 6= b′, then (iii) immediately foIlows
from the inductive assumption. Finally, (iv) is also satisfied, because lAT[b]
is put on the FIFO structure when an instance is deallocated and, by (iii), we
immediately obtain (iv).
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4 Instance allocation

Let us consider now the problem of allocating a new instance of size s. First
of all, a free indirect address entry has to be found: - if FIFO is not empty, a
free address is taken from FIFO, - otherwise LastItem is decreased, if possible,
and a new entry is initialized, i.e., its guard Jounter is set to 0, - when there
is no enough space (LastUsed + 2 ≥ LastItem), the compacting algorithm is
triggered. When a new indirect address entry lAT [b] is found, its guard counter
value is correct. In fact, either IAT [b].guardJounter is at least greater by 1
than the counter of any other pointer value (b, counter), or the address nb has
not bee used because LastItem is decreased. At this point, to obtain a new
frame of size s, the searching procedure is activated: - first we try simply to
push LastUsed, - if this is not possible, the function search is applied, - if this
application yields false, then the compacting procedure is caIled, - if, after the
compaction, there is no sufficient free space, the computation, of course, will be
stopped. Let us present the allocation procedure (called new):

procedure new (input s: integer; output b: address, counter: integer);
var c : boolean d : address;

begin
c := false;
if Head = 0 {FIFO empty}
then

if LastItem - LastUsed ≤ 2 {no space for lAT entry}
then

c := true; call compactor
fi;
if LastItem - LastUsed ≤ 2 then {end of computation} fi;
LastItem := LastItem - 2; b := LastItem;
IAT[b].guard counter := 0; {initialize new lAT entry}

else {take from FIFO}
b := Head; Head := IAT[b].d

fi;
if Lastltem - LastUsed ≤ s {Free Space too small}
then

if search(s, d) frame found
then

IAT[b].d := d; counter := lAT[b+1]. guard counter; return
fi;
if c then {end of computation} else call compactor fi;
if LastItem - LastUsed ≤ s then {end of computation} fi;

fi;
d := LastUsed + 1; INS[d].size := s; LastUsed := LastUsed + s;
IAT[b].d := d; counter := IAT[b].guard counter

end new

We shall prove the correctness of this procedure by proving again the invari-
ants (ii)-(iv), assurning, of course, the correctness of procedures compactor and
search. If an entry IAT [b] is found in FIFO (Head 6= 0), then, by (iv) and
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(iii), lAT [b].guard counter ≥ counter′ for any x′ = (b′, counter′). Thus a pair
(b, counter), returned via output parameters, yields a unique reference. Sirni-
larly, if an IAT [b] entry is obtained from M by decreasing Lastltem, then the
pair (LastItem − 2, 0) is unique, because b′ can be equal to LastItem − 2
for any x′ = (b′, counter′). So for our x = (b, counter), we have (iii) since
x 6= none, Lastltem ≤ b ≤ N and counter ≤ IAT [b].guard counter. For any
other x′ = (b′, counter′) and b′ = b, (iii) holds by the inductive assumption.
Invariant (ii) holds because LastItem > LastUsed − 2 when LastItem is de-
creased by 2, and LastItem > LastUsed+ s, when LastUsed is increased by s.
Invariant (iv) holds since no new IAT [b] entry is inserted into FIFO.

5 Time and space cost

First of all, let us consider the question of extra space cost. The values of
guard counters and counters may be quite small, e.g., one byte for each may be
sufficient. To protect the system against a quick overloading of guard counters,
the list of free entries from lAT is arranged as FIFO. Then during the phases
where the storage management works in FIFO fashion, these free entries are
taken from the other end, in order to decrease the probability of using the
same entry several times. However, if a guard counter reaches its maximal
value, the corresponding entry cannot be put on the list of free entries and
should remain unchanged until the compactor is applied. This causes the general
invariant of the data structure to be satisfied. The space for direct and indirect
addresses must be large enough to hold any reasonable address. Thus this extra
space cost depends strongly on the computer. On some computers the pair
(b, counter) may be packed into a single word; sirnilarly we may compact the
pair (d, guard counter). Then, the pointer variables do not need extra space,
although each instance needs one extra word for its indirect address (allocated
at the indirect address table). The time cost of the function member is, of
course, constant. This operation is called whenever a remote access is needed,
therefore it should be extremely efficient. If the pair (b, counter) is packed into a
single word, then by storing in IAT the pairs (b−d, guard counter) rather than
pairs (d, guard counter), we can obtain the direct address d and the difference
counter−guard counter by a single subtraction. Thus the whole operation may
be performed in two or three machine instructions, depending on the computer.
As far as operations Free and new are concerned, their costs depend on the
internal representation of the set of free frames. If we are able to perform the
operations insert and search in a constant time, then the operations Free and
new also have constant execution times.

6 Parallelism

When several processors proceed in parallel on a common data structure, some
special security measures should be taken [13]. If we want to design a secure run-
time system, none of the possible parallei calls of new, Free and member should
be able to destroy the data structure invariants. For each processor it will be
assumed that the examination of M [i], assignment to M [i], advancing M [i] by 1
etc. are indivisible operations (with respect to the other processors actions). A
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direct analysis of the operations new, Free and member indicates that new and
Free should be mutually exclusive, while member may be active simultaneously
with any of the other two operations. Then Free(x) may be performed iff all
the calls of member(x) have been terminated. These constraints are collected
in Table 1.

Table 1: Constraints among new, Free and member
new(s) Free(x) member(x) member(y)

new(s) C C
Free(x) C C C
member(x) C
member(y)

x6= y, C for collision

It is quite evident that the synchronization between Free(x) and member(x)
is similar to the readers-writers problem [4]. But in our case only one writer (i.e.,
Free(x) is to be considered, since the mutual exclusion of the operations Free
and new guarantees that at most one Free call waits to enter the corresponding
critical region. Let now extent each entry IAT [b] with three new components:
two boolean semaphores r and w, and one integer m. Moreover, let g be a global
boolean semaphore which synchronizes the calls of Free and new. We propose
the following solution to the problem (in our proposal, one can find elements
of the standard solution to the readers-writers problem; P and V denote usual
semaphore operations).

function member(x); procedure Free(x); procedure new(s);
begin begin begin

P(IAT[b].r); P(g); P(g);
IAT[b].m := IAT[b].m + 1; P(IAT[b].r)] .
if IAT[b].m = 1 P(IAT[b].w); .
then . .

P(IAT[b].w) . V(g)
fi; . end new
V(IAT[b].r); V(IAT[b].w);
. . . V(IAT[b ].r);
lAT[b ].m := lAT[b ].m - 1; V(g)
if IAT[b].m = 0 end free
then

V(IAT[b].w)
fi

end member

Semaphore IAT [b].r guarantees that when free(x) passes through P (IAT [b].r)
no member(x) may enter the corresponding critical region, hence no free(x)
waiting on P (IAT [b].w) ever suffers an infinite wait. Semaphore IAT [b].w syn-
chronizes the calls of free(x) and member(x). Semaphore g synchronizes the
calls of new(s) and free(x). On the other hand, member(x) may proceed in par-
allel with another member(x) (only a small critical region guarded by lAT [b].r
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is common to many member(x)’s), as well as with another member(y). Simi-
larly, there is no critical region for new(s) and member(x), and for free(x) and
member(y). In this way we fulfilled all conditions displayed in Table l. It must
be observed that in the readers-writers problem a proper implementation has
to guarantee the priority of writers over readers. The collision problem between
free(x) and member(x) is somewhat different. In fact, the user wanting to
release a frame, while simultaneously also trying to access the same frame an
infinite number of times, generates a problem which is not a run-time problem.
In this case, the user program is incorrect (as in the case of infinite loop). There-
fore, assuming that the primitive statements are indivisible, we can significantly
simplify the previous procedures as follows:

function member(x); procedure Free(x); procedure new(s);
begin begin begin

P(IAT[b].r); P(g); P(g);
IAT[b].m := IAT[b].m + 1; P(IAT[b].r)] .
if IAT[b].m = 1 P(IAT[b].w); .
then ... .

P(IAT[b].w) V(IAT[b].w); V(g)
fi; V(IAT[b ].r); end new
V(IAT[b].r); ... V(g)
lAT[b ].m := lAT[b ].m - 1; end Free
if IAT[b].m = 0
then

V(IAT[b].w)
fi

end member

This solution does not require the semaphore IAT [b].r. When the semaphore
IAT [b].w is accessed by free(x) and many member(x)’s, the correctness di-
rectly follows from indivisibility of primitive operations on IAT [b].m and from
the assumption that the value IAT [b].m becomes 0 after a finite period of time.
However, we would prefer the first solution. In fact, we also want to prevent
incorrectness actions undertaken by the programmer, as we have already men-
tioned above.

7 Conclusion

We have presented a new algorithmic approach to the storage management
problem for run-time systems, in line with the programmed deallocation strat-
egy, without dangling reference. The proposed data structure with its related
algorithms turns out to be completely secure, and therefore immediately usable
in every run-time system for dynamie languages, even for parallel computation.
The specific problem of finding a good free frames structure to perform search-
ing in constant time is still open. Recent results [6] which guarantee constant
time searching are, in fact, relevant only for completely static structures, while
the need to manipulate free frames in a run-time system is typically dynamic.
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