
Some methodological remarks inspired by the

paper ”On inner classes” by A. Igarashi and B.

Pierce

Hans Langmaack

Institut für Informatik, Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4, D-24098 Kiel, Germany

Andrzej Salwicki

National Institute of Telecommunication, Warsaw
Szachowa 1, 04-894 Warszawa, Poland

Marek Warpechowski

Institute of Informatics, Warsaw University
Banacha 2, 02-092 Warszawa, Poland

Running title:
Some methodological remarks

Address for correspondence:
Andrzej Salwicki
salwicki@mimuw.edu.pl
National Institute of Telecommunication
Szachowa 1,
04-894 Warszawa, POLAND
tel. 00 48 22-512-83-62
fax 00 48 22-512-84-00

1

Abstract
In [IP02] an axiomatic approach towards the semantics of FJI,

essentially a subset of the Java-programming language is presented.

At a first glance the approach of reducing Java’s semantics to that

of FJI seems promising. We are going to show that many questions

were left unanswered. It turns out that the theory how to elaborate

or bind types and thus to determine direct superclasses proposed in

[IP02] has different models. Therefore the suggestion that the formal

system of [IP02] defines the (exactly one) semantics of Java is not

justified. It is popular in informatics to propose a set of inference rules

and to claim that a semantics is defined in this way. Sometimes such a

system contains a rule with a premise which reads: there is no proof of

something. One should note that this is a metatheoretic property. It

seems strange to accept a metatheorem as a premise, especially if such

a system does not offer any other inference rules which would enable

a proof of the premise. We are going to study the system in [IP02] to

display its features.

Key words: object oriented programming, semantics, inheri-
tance, inner classes, direct superclass, static semantics analysis,
static binding, derivation calculus, model, minimal resp. least
model

2

1 Introduction

The Java-programming language is one of a few languages which
allow inheritance and inner classes. The combination of these
two features makes the language interesting for software engi-
neers. On the other hand, to define its semantics is a challenge.
In [IP02] Igarashi and Pierce presented an axiomatic approach
towards the semantics of the language FJI (Featherweight Java
with Inner classes, essentially a subset of Java) and they reduced
Java’s semantics to that of FJI. In this paper we shall analyze one
important subgoal: how to identify the direct superclasses in view
of results in [IP02]. We are going to demonstrate flaws in their
approach. Our remarks may apply as well to a wider collection
of papers. Namely inference rule systems are popular in infor-
matics, but due to their more or less informal presentations they
sometimes conceal the serious problem of having a metatheoretic
property as a premise, especially if such a system does not offer
any inference rules which would enable a proof of the premise.

A declaration of a class may contain the keyword extends fol-
lowed by the type X naming the direct superclass. An example
declaration may look like this: class A extends B.C { . . . }.
Now, since classes may be declared inside classes (and methods)
it may happen that there are several classes named B resp. C in
one program. Which of the classes named C is the direct super-
class of class A? Which of the classes named B should be used in
the process of identification of the direct superclass of class A?
Notice, it may happen that no correct direct superclass exists,
even if there are many candidates.

Subsection 5.2.1 of section 5 of [IP02] is devoted to the elabo-
ration of types which shall make the identification of direct su-
perclasses possible. Table Fig. 14 of paper [IP02, section 5.2.1]
cites six inference rules. The authors define a calculus; we name
it IPET-calculus and analyze it. The calculus’ aim is to help
in identifying the direct superclasses in any Java-program. We

3

present some observations:

(1) The calculus is not determinate. It means that it is possible
to derive two or more different classes as a direct superclass
of a certain class. One may say the calculus is inconsistent.

(2) Moreover, there exist at least two different models ?) of the
calculus.

(3) Moreover, the models do not enjoy properties of this kind:
the intersection of two models is a model; or there is a least
model; or there is at most one minimal model. Therefore it
is difficult to say what the meaning of the calculus is.

The authors of [IP02] are aware of the non-determinacy. They
say the calculus plus a metatheoretic hint “apply the rules from
bottom up” may be called an algorithm. They have chosen an
inadequate word. Their so called algorithm is not an algorithm.
For it does not enjoy the termination property, c.f. [IP02, section
5.2.1]. Therefore we propose to call it a method. Furtheron the
method may lead towards different answers. We shall show that
the method can be specified in at least two different manners. The
IPET-calculus may be used to define the inheritance function inh
from classes to classes. We can go another approach and ask: has
the IPET-calculus one or more models? It turns out that it has
several non-isomorphic models. Let us remark that every model
can be constructed by a corresponding algorithm. Hence it is
necessary to add some hint of metatheoretical nature. Frequently,
a calculus (or a theory) is accompanied by the metatheoretical
hint: choose the least model. We are going to show that this will
not work. For the intersection of two models needs not be a model
and there are at least two different minimal models.

It seems that the source of the problems is in admitting a special
inference rule (ET-SimpEncl). One of the premises of this rule is
a metatheorem: P ` X.D ⇑. This formula expresses the follow-
ing property: for every class T there is no proof of the formula
P ` X.D ⇒ T which says: Type X.D in (resp. directly enclosed

? The word model is used informally here

4

by the body of) class occurrence P elaborates (is bound) to class
occurrence T. One remedy would be to eliminate the rule and
to replace it by some rules that do not introduce metatheoretic
premises and such that the premises are positive formulas. An-
other approach would consist in extending the language of the
theory such that the expression P ` X.D ⇑ were a well-formed
expression of the language and adding some inference rules to
deduce formulas of this kind. Nothing of this kind happens in
[IP02].

We are stressing the fact that there exist several papers of various
authors where the reader discovers a metatheorem as a premise
of an inference rule. Therefore our remarks are of general char-
acter. A further most important motivation to write an article
like the present one is: Since 1996 Java [GJS96] has turned out
to be a most successful and very widely spread programming lan-
guage used in academic institutions and above all in industrial
practice. So computer science is severely obliged to prevent pro-
liferation of errors and erroneous beliefs which are due to unclear
interpretations of Java’s language specification.

Igarashi’s and Pierce’s paper [IP02] is, in a sense, in the same tra-
dition where software researchers have tried to understand and
implement nested program structures. Implementation engineer-
ing witnessed serious set-backs because even renowned computer
scientists had too naive views at or were too wishfully think-
ing about static binding and because practitioners were following
blindly.

In 1960 Dijkstra [Dij60] has claimed that the so called static
pointer in an Algol-runtime stack always points (has to point) to
the most recently stacked activation record of the not yet com-
pleted activation of the first procedure body that lexicographi-
cally (textually) encloses the body of the procedure called. Dijk-
stra’s advice does not correctly implement all Algol60-programs
(a first counterexample is in [GHL67]), but only those programs
which are so called “most recent”-correct [McG72] or satisfy the

5

so called “most recent”-property [Kan74] and therefore have so
called regular call trees [Old81].

In 1965 McCarthy et al. [McC+65] presented Lisp-interpreters
written in Lisp itself in order to define the semantics of this lan-
guage. The interpreters had errors so that all Lisp-programs were
treated in a way as if their call trees were regular. The authors
did not intend that program property because Lisp was designed
to be an extension of the applied lambda calculus where there
are call trees which are not regular in general.

Papers like [Dij60,McC+65] have caused severe set-backs to good
language implementation engineering for about two decades. The
evoked discrepancies in language implementations have led to
regrettable decisions of designers: Procedures and functions as
parameters and thus formal procedure and function calls were
disallowed in Ada [Ich80]. Languages like Smalltalk [GoRo89]
and original Java 1996 [GJS96] allow only flat programs with
non-nested classes and methods and so avoide irregular call trees
by force. But embedded software design which leading computer
scientists are advocating, see [Bjo09], has to comply with static
scoping, especially because static scoping is constitutive for ac-
companying predicate logic formulas. Programs do not become
better intelligible by artifcially enforced restriction to programs
with regular call trees or by dynamic binding of names instead
of static binding. Quite contrary, programs in Lisp and similar
languages were more difficult to analyze. For dynamic binding
may change the meaning of one and the same identier during a
programs execution what is hard to pursue mentally.

In order to move Java into a direction where object orientation is
in concordance with nesting of program structures, static scop-
ing and embedded software design and thus to follow the lines
of Simula67 [DaNy67], Loglan82/88 [Bar+82,KSW88] and Beta
[MMPN93] the authors of Java have created their new Java Lan-
guage Specification in 2000 [GJSB00]. Igarashi and Pierce sup-
ported this development by their article [IP02] and former con-

6

tributions.

The structure of our paper is as follows: Section 2 presents the
calculus of Igarashi and Pierce. Examples are given showing that
the calculus is inconsistent. We are giving a first simple remedy
to it. In Section 3 we translate the inference rules of the IPET-
calculus in such a way that the phrase “the meaning of type X
in environment P is class T ” is now expressed by the formula
bind(X in P) = T and we show that the function bindinh0

cal-
culated by the algorithm LSWA of [LSW09] is a model of the
IPET-calculus. Next section shows that there is another concept
BindinhB0

of binding function and that BindinhB0
is modeling the

IPET-calculus uniformly for all programs as well. In the fifth sec-
tion we show that the intersection of two models needs not be a
model. So the hope is shrinking that by adding the – metatheo-
retic – phrase “take the least model of the models of the IPET-
calculus” the task of identifying the direct superclasses of classes
of a Java-program can be completed by the IPET-calculus. In-
deed: Investigations on minimal models assure that there are at
least two minimal models and there is no least model. Section 6
shows how to define IPET in a way conform to logics.

2 Igarashi’s and Pierce’s calculus IPET for elaboration of types

Igarashi and Pierce [IP02, 5.2.1] are presenting a calculus IPET
of derivation rules for a so called elaboration relation of types.
The formulae of the calculus have the form (are written as)

P ` X⇒ T to be read: The simple or qualified class type X (i.e.

a non-empty sequence of class identifiers separated by periods)
occurring inside the directly enclosing body of class declaration
occurrence P is elaborated to (resp. is bound to) class declara-
tion occurrence T. In other words: the meaning of type X in class
P is class T. For clarification: we have to differentiate between
a syntactical entity and its occurrences, see the Algol68-report
[Wij+68], because one and the same class declaration text (class

7

for short) may occur several times at different places in a given
program .

Observe that there is a bijection between class occurrences like P

(or T) and their so called absolute types (paths) C1. · · · .Cn where
Cn is the name of class P, Cn−1, · · · ,C1 are the names of the suc-
cessive class occurrences which enclose class occurrence P and
C1 names a top-level class. To understand this phenomenon one
should notice that the classes of a program form a tree. The root
of the tree is a fictitious class Root which directly encloses all the
top level classes of the program. Let n be an internal node of the
tree. It can be identified with the path leading from the root to
it. Such a path consists of the names of classes. All direct inner
classes declared in the class which is node n are the sons of node
n. Therefore we are entitled to identify an occurrence of a class
declaration and the absolute path of it. FJI requires that the ex-
tends clause has an extends type which is the absolute path of
the denoted class occurrence whereas Java allows extends types
which are not necssarily absolute paths. Beside the user declared
class occurrences in a Java-program there are two implicit, ficti-
tious class occurrences:

(1) Root = {· · · }, which is enclosing all top level classes (and
implicitly all other class occurrences) of the Java-program
and which has no name nor extends clause. The authors of
[IP02] represent Root by its fictitious name ? which users are
not allowed to write. ?.C1. · · · .Cn is identified with C1. · · · .Cn.

(2) Object = class Object {· · · } the name of which is Object,
which is directly enclosed by Root and which has no extends
clause also. Without loss of generality we may assume that
there are no classes declared inside the body of Object.

Let us explain the meaning of some premises in the inference
rules. In three rules one finds a premise of the form CT (P.C) =
class C extends X {· · · }. In this way the authors Igarashi and
Pierce express the fact that user declared class P.C extends type
X, i.e. the class which is the meaning of type X in that place

8

where the declaration of class P.C occurs. Formulas of the form
P.C ∈ Dom(CT) mean: the program contains the class named
C in its directly enclosing class which is identified with path P .
Obviously, the formula of the form P.C.D /∈ dom(CT) expresses
the fact that the class to be identified with the path P.C does not
contain any class named D. In Table 1 we present Igarashi’s and
Pierce’s calculus IPET for elaboration of types. Below we collect
some observations and comments.
Table 1
Igarashi’s & Pierce’s rules of elaboration

I. (ET-Object) P ` Object⇒ Object

II. (ET - In CT) P.C ∈ dom(CT)
P ` C⇒ P.C

III. (ET-SimpEncl)
P.C.D /∈ dom(CT) P ` D ⇒ T

CT (P.C) = class C extends X {· · · } P ` X.D ⇑
P.C ` D ⇒ T

IV. (ET-SimpSup)
P.C.D /∈ dom(CT) CT (P.C) = class C extends X{· · · }
P ` X.D ⇒ T

P.C ` D ⇒ T

V. (ET-Long) P ` X ⇒ T T.C ∈ dom(CT)
P ` X.C ⇒ T.C

VI. (ET-LongSup)

P ` X ⇒ P ′.D P ′.D.C /∈ dom(CT)
CT (P ′.D) = class D extends Y{· · · } P ′ ` Y.C ⇒ U

P ` X.C ⇒ U

(1) The system IPET is inconsistent! Consider a Java-program
with a user declared class Object named Object. From axiom
I. (ET-Object) one obtains that the meaning of the name
Object is Object (or ?.Object). From rule II. (ET-InCT)
one obtains P.Object where P is the class containing the
user declared class Object named Object. Imagine what will
happen when there are several user declared classes Object
in a program.

9

Remedy: The authors of the present paper are aware of this
and require that a program cannot contain a user declared
class named Object. Note that the remedy is inconsistent
with the Java Lanaguage Specification [GJSB05] which al-
lows to declare many user declared classes named Object.
(A good reformulation of IPET calculus should liberate from
this restriction).

(2) Rule III. (ET-SimpEnc) has four premises. The fourth premise

of the form P ` X ⇑ is in fact a metatheorem “there is no

class T such that the triplet P ` X ⇒ T has a formal proof ”.
This rule is a source of severe problems as we shall see below.

(3) There is no definition of the notion of proof in the system
IPET of inference rules. Should one accept the classical defi-
nition of the notion of formal proof then the lack of possibili-
ties to derive premises of the form P ` X ⇑ becomes evident.
We know, the standard answer to this remark is: “but every-
thing is finite and therefore one can control the situation”.
Is this one person added to the definition of proof? What
instructions are given to her/him making the task possible
to recognize the impossibility of any proof?

(4) A reader may hesitate to perceive what the following sen-
tence is meaning: “A straightforward elaboration algorithm
obtained by reading the rules in a bottom-up manner might
diverge.” [IP02, 5.2.1, p.82]. Two questions appear immedi-
ately. Is there an implicitly defined elaboration algorithm?
What does it mean “reading the rules in a bottom-up man-
ner”?
Our first guess is that the authors think of Gentzen-style
proofs. The textbook on mathematical logic [RS63] describes
an algorithm constructing a formal proof of a logical formula.
The system of inference rules must enjoy some properties and
the algorithm must precisely describe which rule is to be ap-
plied in every step of the algorithm.
Our second guess is as follows: Subcase 1. Consider an open

question P ` X ⇒? and apply the rules trying to construct

10

the formal proof of some triplet P ` X ⇒ T . Depending on
the rule applied we create some new open questions. In this
way a tree is constructed with the nodes decorated by open
questions or axioms. Once an inner node has all its sons dec-
orated by closed triplets, one can close an open question by
application of the rule which constructed the sons of the cur-
rent node. Should we come back to the root with an answer
the formal proof is constructed and the searched class T is
found. Subcase 2. As previously consider an open triplet
and build a formal proof of some triplet P ` X ⇒ T apply-
ing the rules from the sixth to the first one.
Which guess is a proper one?

(5) The authors of [IP02] are aware that proof construction is
not always possible. They make evident that the algorithm
we guessed may loop without exit [IP02, 5.2.1, p.82].

(6) In fact the task of type elaboration is divided in two subtasks:
a) to find whether the program is a well-formed one, b) to
define a function inh which for every user declared class C
returns the direct superclass of C. It is evident that IPET
does not help detecting the possible errors in typing.

(7) Seeing the incompleteness of the IPET-calculus (c.f. rule III.)
one may ask a slightly different question: is it true that IPET
has exactly one model? We shall see that there are several
models.

(8) The next question arises: Is it possible to equip the calculus
with an extra hint of the kind: consider the least one of all
models as THE model of the IPET-calculus?

(9) This hope should be abandoned in the light of Section 5.

3 Langmaack’s, Salwicki’s and Warpechowski’s binding functions
bindinh compared with IPET

In [LSW08,LSW09] Langmaack, Salwicki and Warpechowski stud-
ied structures of Java’s programs and developed the family of
binding functions. Let π be a Java program. By Cπ we denote the

11

set of all user declared class occurrences of program π. By CT π we
denote the set of class types and by SCT π the set of simple class
types of the program π. For every program π of Java, bindπinh is
a function

bindπinh : CT π × (Cπ ∪ {Root, Object})→ (Cπ ∪ {Object, null})

which for given class type X and class occurrence P determines
class occurrence T - the meaning of class type occurrence X di-
rectly enclosed by the class occurrence P . Our notation exhibits
the fact that binding function bind depends on a given inheri-
tance (i.e. direct superclassing) functions inh. The notation

bindπinh(X in P) = T .

reads:Let P be a class occurrence of program π, X a class type.
Class T is the meaning of class type X inside the class P - where
T is a class occurrence or null. The value null signals that no
correct meaning of class type X may be found inside the class
occurrence P . (In the sequel we shall omit the superscript π as
always at most one program will be discussed.)

Above that the authors developed an algorithm LSWA which uni-
formly with respect to programs determines superclassing func-
tion inh0 which is the least fixed point of the continuous func-
tional Bdfl′(inh) see [LSW09]

inh0 = Bdfl′(inh0) = µBdfl′

and is totally defined for all (finitely many) user declared classes
P in a given well-formed Java-program. Especially: inh0 satisfies
the so called inheritance condition I1, i.e. for all user declared
classes P (their set is denoted C) inh0(P) is defined and the
equation

inh0(P) = bindinh0
(X in P ′)

is holding where X is the type ext(P) in the extends clause of
P and P ′ is that class occurrence decl(P) which directly encloses
P . Because both theories of [IP02] and of [LSW08,LSW09] ought

12

to agree the ternary relation

bindinh0
(X in P) = T

should comply with all six rules of the types elaboration relation

P ` X⇒ T

in calculus IPET. Both theories would agree perfectly iff there
were exactly one distinguished satisfying binding function for
a well-formed Java-program such that the set of all derivable
triplets (X, P, T) is exactly the binding function bindinh0

. In order
to have an easier way of comparison we translate the rules to
the mode of expression in [LSW08,LSW09] what is yielding the
formulation of Definition 1.
Let π be a syntactically correct program in Java. We recall that
the structure of classes of the program has the following proper-
ties:

• the set of classes considered with the relation decl such that
class decl(B) is the least class enclosing class B is a tree,
• each class has a name,
• each class has an extends clause which is a simple or qualified

type, i.e. a finite sequence of class names.

Here the empty extends clause is disallowed; the classes of pro-
grams considered in [LSW09] allow empty extends clauses. Names
of classes are identifiers.

Definition 1 The calculus BIPET is defined by the rules of Table
2.

The calculus is not a formalized theory for it lacks a precise defi-
nition of the language used and the logical tools used. Therefore
we can not use the term model of theory. Instead we shall say
that a function f complies with the rules of BIPET if whenever
the premises of one of inference rules of BIPET calculus are sat-
isfied by the function f , the conclusion of the rule is satisfied too.

13

Table 2
Rules of calculus IPET are translated into calculus BIPET

I. (BET-Object) bind(Object in P) = Object

II. (BET - InCT)
class P has a direct inner class named C

bind(C in P) = P.C

III. (BET-SimpEncl)

bind(D in P) = T

class P.C has no direct inner class named D

bind(ext(P.C).D in P) = null

bind(D in P.C) = T

IV. (BET-SimpSup)
bind(ext(P.C).D in P) = T

class P.C has no direct inner class named D

bind(D in P.C) = T

V. (BET-Long)
bind(X in P) = T

class T has a direct inner class named C

bind(X.C in P) = T.C

VI. (BET-LongSup)

bind(X in P) = P ′.D

class P ′.D has no direct inner class named C

bind(ext(P ′.D).C in P ′) = U

bind(X.C in P) = U

Variables P, P ′ range over CRO, T,U over CO,
X over CT and C,D over simple types

Theorem 2 If the given Java-program π is well-formed then the
function bindπinh0

complies with all six rules of the BIPET-(and
hence with the IPET-)calculus.

Proof. Are these six rules (implications) really holding? We shall
check them and find that the answer is: Yes.
I. (BET-Object)
As Object is the only class named Object and is directly en-
closed by Root the required equation is holding independently of
all possible inheritance (direct superclassing) functions inh which

14

parameterize bindinh.
II. (BET-InCT)
If class P contains a direct inner class named C, i.e. P.C is de-
fined, P.C ∈ Dom(CT), then the conclusion the meaning of name
C in class P is class P.C is holding independently of all possible
inheritance functions inh.
III. (BET-SimpEncl)
Let P.C be a user declared class. From the first premise
bindinh0

(D in P) = T we have that there exist natural numbers
i ≥ 0, j ≥ 0 such that T = inhi0(decl

j(P)).D where the pair 〈j, i〉
is the least in the lexicographic order such that the right hand
side expression is defined. The third premise
“bindinh0

(ext(P.C).D in P) = null” says that for every l ≥ 0 the
expression inhl0(bindinh0

(ext(P.C) in P)).D is undefined, and so

inhl0(inh0(P.C)).D is undefined, (1)

because function inh0 enjoys property

I ′1 : inh0(P.C) = bindinh0
(ext(P.C) in P)

or both sides are undefined. We claim that the pair 〈j+1, i〉 is the
least pair in the lexicographic order such that inhi0(decl

j+1(P.C)).D
is defined. Suppose that there exists a pair 〈k, l〉 such that the
expression inhl0(decl

k(P.C)).D has a defined value and that the
pair 〈k, l〉 precedes or is equal the pair 〈j+1, i〉. From the second
premise and the property (1) we know that k 6= 0. In other words:
the path inhl0(decl

k(P.C)).D goes from class P.C through class
P further on. From the previous considerations we know the pair
〈j, i〉 is the least in the lexicographic order such that the expres-
sion inhi0(decl

j(P)).D is defined. Hence k = j + 1 and l = i.
IV. (BET-SimpSup)
Let P.C be a user declared class. From the first premise
bindinh0

(ext(P.C).D in P) = T we have that there exists a natu-
ral number i ≥ 0 such that the right hand side of
T = inhi0(bindinh0

(ext(P.C) in P)).D is defined. Since function
inh0 enjoys property I ′1 we know that the expression
inhi0(inh0(P.C)).D has a value T . Hence

15

T = inhi+1(decl0(P.C)).D = bindinh0
(D in P.C) because the pair

〈0, i+ 1〉 is the least pair such that the value of
inhi+1(decl0(P.C)).D is defined. The only critical candidate pair
〈0, 0〉 which is less than those pairs considered is excluded by the
second premise.
V. (BET-Long)
The conclusion is holding due to definition of bindinh0

.
VI. (BET.LongSup)
In case P ′.D is user declared we begin with the third premise
bindinh0

(ext(P ′.D).C in P ′) = U . This means that there exists a
natural number l ≥ 0 such that
inhl0(bindinh0

(ext(P ′.D) in P ′)).C = U and l is the least one such
that the left hand side is defined. Making use of the first premise
and condition I ′1 for P ′.D we obtain inhl+1

0 (P ′.D).C = U . From
the second premise we conclude that the exponent is the least
one such that the left hand side is defined. The satisfaction of
rule VI. follows from the definition of function bindinh0

[LSW09]
and from the first premise.
Reading carefully the proof we observe the following

Fact 1 (A strengthening of Theorem 2) The function bindinh
complies with the six rules of BIPET even if only the inheritance
condition I1 for inh0 holds, but not necessarily the non-cycling
condition I2 for depinh0

. Moreover, the condition I1 may be weak-
ened towards I ′1: For all classes P ∈ C : inh0(P) =
bindinh0

(ext(P) in decl(P)) or both sides are undefined, i.e. if
inh0 is a fixed point of the so called natural functional Bdfl
[LSW09].

Hence if I ′1 holds for inh0 then the binding function bindinh0
sat-

isfies all six rules of IPET, i.e. is a model of IPET, especially if
the given Java-program is well-formed, i.e. inh0 satisfies I1 and I2

[GJSB05,LSW04,LSW09]. Our next question is: is IPET defining
a unique model? Are there other binding functions which satisfy
all rules of IPET? Is there a distinguished model of IPET? In
what sense does IPET define a distinguished model? Or, per-
haps, is there no reasonable way to distinguish a good inheri-

16

tance function? We have already seen that IPET does not allow
straightforward, constructive top-down application.

4 On another binding function BindinhB0
which complies with all

rules of IPET

It is astounding that there is a way to define a family of binding
functions Bindinh(X in P) which are different from
bindinh(X in P) and which leads to Theorem 19 analogous to
Theorem 2 on satisfaction of BIPET’s rules, by a function
BindinhB0

analogous to function bindinh0
. As previously, we as-

sume that every user declared class has an explicit extends clause
with a type of length ≥ 1 as the authors of [IP02] and their cal-
culus are requiring. Bindinh is to become a mapping

Bindinh : Types × CRO −→ (CO ∪ {null})
where C = Classes is the set of user declared class occurrences
in a given Java-program with inner classes, CO is C ∪ {Object}
and CRO is CO ∪ {Root}. Types = CT is the set of simple or
qualified types over the set SCT of class identifiers occurring in
program π. The function Bindinh is parameterized by a given
partially defined inheritance function (direct superclassing func-

tion) inh : C part−→ CO as bindinh is. The values of inh(Root) and
inh(Object) are undefined.
Consider the ordered alphabet A of the two operators inh and
decl, where we define inh to be less than decl, inh ≺ decl. This
order is inducing a lexicographical (from the right) order in the
set A∗ of all words or paths over A . For example, the words
inh ≺ declainh ≺ decl ≺ inhadecl are in this order. Notice, this
order is total, but not well-founded!
Let w = ida

1 id
a
2 · · ·a idn, w ∈ A∗, n ≥ 0. Let P be a class. The

word w applied to the class P is the class w(P) =
id1(id2(· · · (idn(P)) · · ·)) or the result is undefined. Clear, the
empty word λ yields λ(P) = P .
For a class P ∈ CRO we have the set of admissible paths: A path
w is called admissible in P if either w is empty or in case of non-

17

emptiness w(P) is defined ∈ CRO and all intermediate results, P
included, w(P) excepted, must be ∈ dominh∪{Object} = domO

inh.
So maximal admissible paths end up in CRO \ dominh.
Now, we have the following

Definition 3 Let X be a type of length ≥ 1 , P ∈ CRO and

inh ∈ C part−→ CO. Then

Bindinh(X in P)
df
=

µw(P).X if length(X) = 1 and there exists the

least word µw ∈ A∗ such that

µw(P).X ∈ CO is defined and there

are no repeated classes on this path µw

from P to µw(P)

µαw(P ′).C else if X = X ′.C and length(X ′) ≥ 1

and P ′ = Bindinh(X ′ in P) ∈ CO

is defined and there exists a least

admissible word µαw ∈ A∗ such that

µαw(P ′).C ∈ COis defined

and there are no repeated classes

on this path from P ′to µαw(P ′)

null otherwise

Remark 4 It is worthwhile to observe that the Bindinh-function
defined in this way differs from the bindinh-function defined ear-
lier. Namely, in the definition of bind we consider only words of
the form inhiadeclj, where i, j ≥ 0 and in the induction step we
restrict to words of the form inhi where i ≥ 0; this latter restric-
tion guarantees admissibility implicitly. So, if we replace the first
occurrence of A∗ in the induction beginning by inh∗adecl∗ and
the second occurrence of A∗ in the induction step by inh∗ then
we have exactly the definition of bindinh(X in P). The following
deliberations until Theorem 19 inclusive hold also for bindinh in-
stead of Bindinh, mutatis mutandis.
Further properly chosen subsets of A? lead to binding functions
which are also uniformly defined for all programs. 2

18

Now we are going to look for a specific inheritance function inhB0

such that BindinhB0
satisfies all rules of BIPET. We go an anal-

ogous way as in [LSW09] and look for an appropriate functional
BDfl′ such that inhB0 is the least fixed point. The natural func-
tional

BDfl(inh)(P)
df
= Bindinh(ext(P) in decl(P))

is, unfortunately, not monotone and continuous in

(C part−→ CO)
tot−→ (C part−→ CO)

where C part−→ CO is a cpo completely partially ordered by the set
theoretic inclusion ⊆ of partially defined inheritance functions
with bottom function inh⊥ = ∅.

Example 5 Let us consider the following (structure of a) Java-
program:

class A extends Object {
class E extends Object { }
class C extends Object { }

}
class B extends A {

class E extends Object { }
class D extends C {

class F extends E { }
}

}
We have
∅ = inh⊥ ⊂ BDfl(inh⊥) ⊂ BDfl2(inh⊥) 6⊆ BDfl3(inh⊥)

because
BDfl(inh⊥)(B) = A, BDfl(inh⊥)(D) = ⊥, BDfl(inh⊥)(F) = B$E

BDfl2(inh⊥)(B) = A, BDfl2(inh⊥)(D) =A$C, BDfl2(inh⊥)(F) =B$E

BDfl3(inh⊥)(B) = A, BDfl3(inh⊥)(D) =A$C, BDfl3(inh⊥)(F) =A$E

6=B$E 2

Example 5 convinces us to replace the functional BDfl by an-
other functional BDfl′. But first we introduce the notion of

19

State.

Definition 6 An inheritance function inh ∈ (C part−→ CO) is
called a State iff
for all classes K ∈ dominh the following two relations

inh(K) ∈ domO
inh, where domO

inh
df
= dominh ∪ {Object},

decl(K) ∈ domR
inh, where domR

inh
df
= dominh ∪ {Root},

and the equation
inh(K) = Bindinh(ext(K) in decl(K))

are holding. 2

Definition 6 is saying that domRO
inh = dominh ∪ {Root, Object}

is an initial tree of the whole decl-tree CRO, and that for all K
the inheritance chain {inhi(K) : i = 0, 1, · · · } is remaining inside
domRO

inh (i.e. either has a cycle or ends up in Object or Root) and
condition IB1 is satisfied, restricted to dominh as a subset of C.
inh and/or its dependency relation Depinh may have cycles:

Definition 7 The dependency relation Depinh associated to inh
is

Depinh
def
= {〈K,Bindinh(ext(K) |i in decl(K))〉 :

K ∈ dominh, 1 ≤ i ≤ length(ext(K))}
where ext(K) |i is the initial segment of length i of type ext(K). 2

To remind the reader(c.f. [LSW09]):

Definition 8 A Java-program is called Well-Formed iff there ex-
ists an inheritance function inhWF which satisfies the following
two conditions
IB1) the function inhWF is defined for all classes K ∈ C and the
equation

inhWF (K) = BindinhWF
(ext(K) in decl(K))

is holding for them;
IB2) the induced dependency relation DepinhWF

has no cycles in
CRO. 2

20

We consider the sub-cpo

C State−→ CO of C part−→ CO
of inheritance functions which are States. The word “State” is
chosen because our algorithm LSWAB (defined quite analogously
to LSWA in [LSW04,LSW09], see also Appendix) which deter-
mines the least fixed point inhB0 is running through computation
states which can be represented by the above mentioned special
inheritance functions which are States.

Let’s come to the desired functional BDfl′. Let us introduce
an abbreviation αBinh(A) denoting the following logical formula:

αBinh(A) : decl(A) ∈ domR
inh ∧ A 6= Root ∧ A 6= Object

∧Bindinh(ext(A) in decl(A)) ∈ domO
inh.

The desired functional is

BDfl′(inh)(A)
df
=

Bindinh(ext(A) in decl(A)) if αBinh(A)

undefined otherwise.

Theorem 9 BDfl′ is a monotonous functional (and consequently

is continuous because C State−→ CO is finite).

We need four Lemmas 10 to 14 for a proof of Theorem 9.

Lemma 10 For every State inh, for every class K ∈ domRO
inh

and for every type X: If decl(Bindinh(X in K)) ∈ domRO
inh then

Bindinh(X|i in K) ∈ domRO
inh for 1 ≤ i < length(X).

Proof. Assume the thesis of the Lemma is wrong. Then there is
a smallest i0 with 1 ≤ i0 < length(X) and Bindinh(X|i0 in K) /∈
domRO

inh. Then this class C i0 is such that decl(Ci0) ∈ domR
inh be-

cause inh is a State. Then inh(C i0) is undefined and
Bindinh(X in K) is, due to definition of admissibility, a nested
class Cl inside or equal C i0 with decll−i0(Cl) = C i0 , l = length(X),
and Cl is necessarily /∈ domRO

inh. Contradiction! 2

Lemma 11 Let inh0 be a State. Let inheritance function inh be

21

an arbitrary extension of function inh0 on a subset of C.
A) For every class K ∈ domRO

inh0
and every word w0 ∈ A∗0 =

{decl, inh0}∗ and analogous word w ∈ A∗ = {decl, inh}∗ :
w0(K) = w(K) ∈ domRO

inh0
or both sides are undefined.

B) For every class K ∈ domRO
inh0

and for every type X :
If for every 1 ≤ i < length(X) Bindinh0

(X|i in K) ∈ domRO
inh0

then for all 1 ≤ i < length(X)
Bindinh0

(X|i in K) = Bindinh(X|i in K)
and either

Bindinh0
(X in K) = Bindinh(X in K) = M ∈ CO

with decl(M) ∈ domR
inh0

or both sides are undefined.

Proof. Proof of A)
Two cases are to be discussed: A1) w0(K) = Kn ∈ domRO

inh0
resp.

A2) w0(K) is undefined.
A1) Because inh0 ⊆ inh we have w(K) = Kn as well.
A2) Let Kn ∈ domRO

inh0
be the final class in the chain of classes

K = K0, K1, · · · , Kn ∈ domRO
inh0

with n < m which
w0 = id0m

_ · · ·_ id01 and K are inducing, id0i ∈ A0. Then
id0,n+1(Kn) is undefined. Kn is Object or Root because inh0 is
a State. Because inh0 ⊆ inh and inh(Root) and inh(Object) are
undefined we have for the analogous word w = idm

_ · · ·_ id1,

idi ∈ A: Either Kn = Root and id0,n+1 = idn+1 = decl or
Kn ∈ {Root, Object} and ido,n+1 = inh0, idn+1 = inh. So w(K)
is undefined.
Proof of B)
(Base of induction length(X) = 1)
Due to A) the A0- resp. A-chains of classes starting in K coin-
cide. So Definition 3 does not differentiate between inh0 and inh
which the definition is based on.
(Induction step length(X) > 1)
Let for every 1 ≤ i < length(X)

Bindinh0
(X|i in K) ∈ domRO

inh0
(?).

Due to induction hypothesis and assumption (?) we have for all
1 ≤ i < length(X)− 1
Bindinh0

(X|i in K) = Bindinh(X|i in K) ∈ domRO
inh0

22

and
Bindinh0

(X|length(X)−1 in K) =
Bindinh(X|length(X)−1 in K) = M ′ ∈ domO

inh0
.

with decl(M ′) ∈ domR
inh0

. So we find a quite analogous situation
as in the induction base and Definition 3 does not differentiate
between inh0 and inh. 2

Lemma 12 If inh is a State then the inheritance function
inh′ = BDfl′(inh) is an extension of inh.

Proof. LetA ∈ dominh. ThenA 6= Root, A 6= Object, decl(A) ∈
domR

inh, inh(A) ∈ domO
inh, inh(A) = Bindinh(ext(A) in decl(A))

because inh is a State. So αBinh(A) is holding and inh′(A) =
Bindinh(ext(A) in decl(A)) by definition. So inh′(A) = inh(A),
i.e. inh′ is an extension of inh. 2

Remark 13 Let inh be a State and A ∈ C\dominh with decl(A) ∈
domR

inh (i.e. A is a so called candidate) and
Bindinh(ext(A) in decl(A)) ∈ domO

inh (i.e. A is a so called gen-
erating candidate). Then let us denote the extension

inh ∪ {〈A,Bindinh(ext(A) in decl(A))〉}
of inh by inhA.

Lemma 14 If inh is a State then inh′ = BDfl′(inh) is also a
State.

Proof. Let A ∈ dominh′. We have to show that inh′(A) ∈ domO
inh′

and decl(A) ∈ domR
inh′ and that inh′(A) =

Bindinh′(ext(A) in decl(A)) is holding. We have two subcases
A) A ∈ dominh and
B) A ∈ dominh′ \ dominh.
Subcase A) is straightforward by help of Lemma 10, 11 and 12.
Proof of the subcase B): Because inh′(A) is defined, αBinh(A) is
holding and inh′(A) = Bindinh(ext(A) in decl(A)). Since inh′(A)
∈ domO

inh and inh′ is an extension of inh we have inh′(A) ∈
domO

inh′. Since decl(A) ∈ domR
inh we have decl(A) ∈ domR

inh′. The
last fact to prove for subcase B) is: inh′(A) =
Bindinh′(ext(A) in decl(A)). As decl(A) ∈ domR

inh, inh
′ is an

23

extension of inh and Bindinh(ext(A) in decl(A)) ∈ domO
inh then

we have due to Lemma 10 and Lemma 11 B)
Bindinh(ext(A) in decl(A)) = Bindinh′(ext(A) in decl(A)).

The left side is exactly inh′(A) by definition of BDfl′. 2

Remark 15 on direct and indirect successors of States:
If in this proof of Lemma 14 we replace inh′ by inhA then we have
a proof for: inhA is a State. We call inhA a direct successor State
of inh and write inh ≺DS inhA with the transitive closure ≺S
of ≺DS which is an irreflexive partial order in the set of States
C State−→ CO. 2

Proof. Of Theorem 9 on monotonicity of BDfl′:
Let inh1 ⊆ inh2 be two States and BDfl′(inh1)(A) = inh′1(A) =
M be defined. We claim BDfl′(inh2)(A) = inh′2(A) = M .
Due to definition of BDfl′ we have that

αBinh1
(A) ∧ M = Bindinh1

(ext(A) in decl(A))
is holding.
Case 1: A ∈ dominh1

. Then A ∈ dominh2
and M = inh′1(A) =

inh1(A) = inh2(A) = inh′2(A).
Case 2: A ∈ dominh′1\ dominh1

. Then M =
Bindinh1

(ext(A) in decl(A)) ∈ domO
inh1

. Lemma 10 and Lemma
11 B) are ensuring

Bindinh1
(ext(A) in decl(A)) = Bindinh2

(ext(A) in decl(A)).
So M ∈ domO

inh2
. Furtheron, due to αBinh1

(A): A 6= Root, A 6=
Object, decl(A) ∈ domR

inh1
⊆ domR

inh2
. So αBinh2

(A) is holding and
M = inh′2(A).

2

The following remark shows modular confluence of the direct suc-
cessorship relation ≺DS.

Remark 16 (on modular confluence)
The relation ≺DS is modularly confluent, i.e. if inh ≺DS inhA
and inh ≺DS inhB and inhA 6= inhB then there is a common

24

direct successor State sst with inhA ≺DS sst and inhB ≺DS sst.

inh
≺DS

−−→ inhA

≺DS

y y≺DS

inhB −−→
≺DS

sst

Notice, sst = inhAB = inhBA

(due to an easy calculation using Lemma 14).
If a ≺DS-chain

inh0 = sst0 ≺DS sst1 ≺DS sst2 ≺DS · · · ≺DS sstn, n ≥ 0,

ends up in a maximal State sstn then sstn is uniquely determined
by inh0. Every State inh0 has such a uniquely determined maxi-
mal successor State inhmax0 . Obviously

BDfl′(inh) = inh ∪
⋃

inh≺DS sst

sst

is holding. Therefore a State inh is maximal w.r.t. ≺S if and only
if inh is a fixed point of BDfl′. The maximal successor State
inhmax⊥ is the least fixed point of BDfl′.
If inh has no cycle then inhA has none as well, since A /∈ domO

inh.
If Depinh has no cycle then so it is for DepinhA, because we may
easily deduce by Lemma 10 and 11 B)

DepinhA = Depinh ∪ {〈A, Bindinh(ext(A) |i in decl(A))〉 :

1 ≤ i ≤ length(ext(A))}

where A ∈ C \ dominh with decl(A) ∈ domR
inh ⊂ CR is the gene-

rating candidate for inhA.

2

From Theorem 9 and Remark 16 follows

Corollary 17 The functional BDfl′ in

(C state−→ CO)
tot,cont−→ (C state−→ CO)

25

has exactly one least fixed point (κ = card(C))

inhB0 = µBDfl′ =
⋃

i∈Nat0
BDfl′ i(inh⊥) = BDfl′ κ(inh⊥)

which is

=
⋃

inh⊥
≺S
= inh

inh = inhmax⊥ .

If inhB0 is total on C then inhB0 makes the program Well-Formed.

Theorem 18 If a program is Well-Formed then inhWF and the
least fixed point inhB0 are identical. Especially inhWF is uniquely
determined.

Proof. inhWF is a fixed point totally defined on C due to IB1

in Definition 8 and is enclosing the least fixed point inhB0. If
both were different then there were candidate classes A ∈ C \
dominhB0

of inhB0 and no one were generating a direct successor
State of inhB0. As decl(A) ∈ domR

inhB0
there were a candidate

class M of inhB0 such that 〈A,M〉 ∈ DepinhWF
due to Lemma

11 (Especially: In inhB0 is no permanent lack of a class to be
inherited, compare [LSW09]). So DepinhWF

had a cycle inside the
finite set of candidates contrary to assumption IB2 in Definition
8. 2

Theorem 19 If the given Java-program is Well-Formed then the
function BindinhB0

complies with all six rules of BIPET.

Proof. Due to construction of the least fixed point inhB0 =
inhmax⊥ = inhWF by repeated successor States (algorithm LSWAB)
all paths w from P ∈ CRO to w(P) ∈ CRO are admissible ones in
P and there are no repeated classes occurring. So µw(P) is equal
µαw(P), and µαw(P ′) in Definition 3 can be replaced by
Bindinh(C in P ′) (inh is inhB0 in our present situation).
Verification of the rules I. and II. is the same as earlier in the
proof of Theorem 2.
III. (BET-SimpEncl)
Consider a user declared class P.C. From the first premise

26

BindinhB0
(D in P) = T we have that there exists a word µw0 –

the least word such that µw0(P).D = T . From the definition of
BindinhB0

BindinhB0
(ext(P.C).D in P) =
BindinhB0

(D in BindinhB0
(ext(P.C) in P)).

Since inhB0 satisfies property IB1 we can simplify the right-hand
side of the equation to BindinhB0

(D in inhB0(P.C)).
The third premise reads: BindinhB0

(ext(P.C).D in P) = null.
From this premise we conclude that for every word w′′ of the form
w′ainh the value of the expression (w′ainh)(P.C).D is undefined.
From the second premise follows that the value of λ(P.C).D is
undefined. Now consider BindinhB0

(D in P.C). Notice that the
equality (µwa

0 decl)(P.C).D = T holds. Making use of the obser-
vations based on the second and third premises we conclude that
the word µwa

0 decl is the least word µw such that the expression
µw(P.C).D is defined. Hence, BindinhB0

(D in P.C) = T .
IV. (BET-SimpSup)
inhB0(P.C) = BindinhB0

(ext(P.C) in P) is valid if P.C is a user
declared class because condition IB1 is holding. Due to defini-
tion of BindinhB0

we have T = BindinhB0
(ext(P.C).D in P) =

BindinhB0
(D in inhB0(P)) and T is µw(inhB0(P.C)).D. Because

P.C.D is undefined µwainhB0 is the least path, denoted µw̃, such
that µw̃(P.C).D = T = BindinhB0

(D in P.C).
V. (BET-Long)
The conclusion is holding due to definition of BindinhB0

.
VI. (BET.LongSup)
inhB0(P

′.D) = BindinhB0
(ext(P ′.D) in P ′) is valid if P ′.D is a

user declared class because condition IB1 is holding. Due to defi-
nition of BindinhB0

we have U = BindinhB0
(ext(P ′.D).C in P ′) =

BindinhB0
(C in inhB0(P

′.D)) and U is µw(inhB0(P
′.D)).C. Be-

cause P ′.D.C is undefined µwainhB0 is the least path, denoted
µw̃, such that µw̃(P ′.D).C = U = BindinhB0

(C in P ′.D) =
BindinhB0

(X.C in P). 2

Remark 20 : An addition like the one to Theorem 2 cannot be
proved due to the extra requirement of non-repeated classes on

27

paths. In Theorem 2 the extra requirement is fulfilled implicitly.

Theorems 2 and 19 motivate to generalize the notion of well-
formedness of a Java-program.

Definition 21 If a binding function Bindfn is such that its as-
sociated inheritance function

inh(A)
df
= Bindfn(ext(A) in decl(A)) for A ∈ C

satisfies condition IB1 and IB2 of Definition 8 (replace BindinhWF

by Bindfn) then the program is called well-formed w.r.t. Bindfn.

We may observe that the model BindinhB0
can be calculated by

an algorithm LSWAB (compare our motivation of the concept
“State” behind Definition 8, Remark 16, Proof of Theorem 19 and
Appendix). Hence we have two different algorithms to construct
models of the IPET-calculus. Now we see that the statement “a
straigthforward algorithm ...[IP02, 5.2.1, p.82]” is not justified at
all. First of all the authors of [IP02] did not give any descrip-
tion of the algorithm. Second, there exist at least two algorithms
with different results. The cited statement does not answer the
question which one of the algorithms is the proper one.

5 The dilemma with IPET’s rule III. (ET-SimpEncl)

The dilemma with IPET does not end with the statement that
IPET allows at least two different binding functions bindinh0

resp.
BindinhB0

which satisfy all six rules of IPET and which yield two
different notions of well-formedness of (the structure of) a Java-
program. If there were a clear criterion for the calculus how to
elect the distinguished inheritance function resp. binding func-
tion everything would be fine. Let us remark that, in case all
premises and conclusions are positive logical formulas, then the
intersection of any two satisfying functions is satisfying as well.
Moreover, the distinguished binding function can be defined in a
constructive manner by successive top-down applications of the
rules.

28

We have already seen that rule III. (ET-SimpEncl) has a premise
which is a negative, a metatheoretic formula such that clear
application of the rule is a great problem. It is even so that
there is a program, namely Example 5, which is well-formed
w.r.t. bindinh0

and w.r.t. BindinhB0
, but the intersection function

extension(bindinh0
∩BindinhB0

) does not comply with the rule III.
(ET-SimpEncl), especially is different from bindinh0

which Java
Language Specification JLS [GJSB05] has prescribed to be the
appropriate binding function.

Lemma 22 Program P of Example 5 has the following properties

(i) Program P is well-formed w.r.t. bindPinh0
and program P is

Well-Formed w.r.t. BindPinhB0
.

(ii) Both binding functions bindPinh0
and BindPinhB0

comply with all
six rules of the system BIPET.

(iii) The binding functions are not equal

bindPinh0
6= BindPinhB0

.

(iv) The intersection Int of two binding functions does not comply
with the rules of BIPET system.

Proof. The proof of the lemma consists in exhibiting an example
program of the previous section.
Example 5 continued :
We have

inh0(B) = inhB0(B) = A

inh0(B$D) = inhB0(B$D) = A$C
inh0(BDF) = B$E
inhB0(BDF) = A$E 6= B$E !

Let us calculate the binding functions:
bindinh0

(A in Root) = BindinhB0
(A in Root) = A

bindinh0
(C in B) = BindinhB0

(C in B) = A$C
bindinh0

(E in B) = BindinhB0
(E in B) = B$E

Now bindinh0
(E in B$D) = B$E

because path decl from B$D to B is lexicographically less (from
the right) than path inhadecl from B$D to A.

29

E C E D ext C

B ext AA

F ext E

inh: bind

inh: Bind

Fig. 1. according to function inh0 the class BDF inherits from the class B$E,
according to function inhB0 the class BDF inherits from the class A$E

But BindinhB0
(E in B$D) = A$E 6= B$E !

because path declainh from B$D to A is lexicographically less
(from the right) than path decl from B$D to B.
Let us define the intersection relation (function)

Int
df
= extension(bindinh0

∩BindinhB0
).

extension is the function which extends a partial function by
null. Note that Int(E in B$D) is null (*).
We shall prove that the Int-relation does not satisfy rule III.(ET-
SimpEncl). From the facts gathered till now we deduce (using rule
III.) that the value of Int(E in B$D) should be B$E:

B = decl(B$D)

30

C = ext(B$D)
B$D.E is undefined
Int(E in B) = B$E
Int(C.E in B) = null

because
bindinh0

(C.E in B) = null
as bindinh0

(C in B) = A$C has no attribute class named E
and

BindinhB0
(C.E in B)

= BindinhB0
(E in BindinhB0

(C in B))
= BindinhB0

(E in A$C)
= A$E.

So due to the assumed rule III. for Int
Int(E in B$D) = B$E

what is contradicting (*).
Hence Int is not a model of IPET.
2

So we have unexpectedly seen two different models of the BIPET-
calculus such that their intersection is not a model of BIPET.
Therefore BIPET cannot be treated as a direct or implicit defi-
nition of THE binding function.

Remark 23 One might think that program presented in Example
22 of [LSW09] demonstrates this phenomenon already so that de-
velopment of BindinhB0

with its high expenditures might be super-
fluous. But that is not true. Sure, Example 22 has two different
inheritance functions inh1 and inh2 which satisfy condition I1.
However condition I2 is not satisfied. So bindinh1

and bindinh2
are

two different models of BIPET due to the Addition to Theorem
2. But the program is not well-formed and the intersection prop-
erty holds: This statement is true because extension(bindinh1

∩
bindinh2

) is bindinh0
and inh0 = inh1 ∩ inh2 is the least fixed

point of binding functional Bdfl′ resp. is algorithm LSWA’s re-
sult. bindinh0

is a model of BIPET because inh0 satisfies condi-
tion I ′1 of the Addition to Theorem 2. So bindinh1

and bindinh2

of Example 22 do not satisfy those intriguing properties which

31

the binding functions pair bindinh0
and BindinhB0

of Example 5
satisfy.

Remark 24 Our second remark stresses that one can imagine
two compilers C1 and C2. One compiler is using the algorithm
that computes the function bindinh0

and the second compiler uses
the algorithm that computes the function BindinhB0

. Now, one
can provide a program (an easy modification of the Example 5)
such that two compilers give different results. Which result is a
correct one? The IPET calculus will not provide an answer.

We conclude that the immediate instinct to enrich BIPET by a
(metatheoretic!) clause: “choose the least of all BIPET’s comply-
ing binding functions” might not lead to any positive solution.

But we might conjecture that BIPET has at most one minimal
complying solution instead of at most one least complying solu-
tion. A closer investigation of minimal complying binding func-
tions shows: Confined to program Example 5 we can demonstrate
that bindinh0

is minimal. BindinhB0
is not minimal, but there is

a minimal complying binding function BINDFN ′ contained in
BindinhB0

which is different from the minimal bindinh0
. So the

conjecture above is wrong.

On the other hand: If there is exactly one minimal complying
binding function then this is the least one. A lemma of this kind
does not hold for a general partial order instead of the set of com-
plying binding functions. A more thorough investigation finds
out that bindinh0

is minimal for all well-formed programs. It is
open whether there are other uniformly defined complying bind-
ing functions with this property.
Till now we have learned two families of binding functions. Both
are defined uniformly with respect to Java programs. Below we
show that there are infinitely many functions bind – each tailored
with respect to a program such that they comply with respect
to the rules of BIPET and differ from earlier defined binding
functions bindinh0

and BindinhB0
.

32

Paradoxical models

• Remark, that there exists a program π and corresponding func-
tion bindπ such that the function complies with the rules of
BIPET and differs from bind and Bind.

Example 25 Program π consists of three top level classes.
class A extends Object {}
class B extends Object {}
class C extends Object {}

The function bindπ is defined on the base of the function bindinh0

bindπ(X in P) =

Root.C if X = A.B, P = Root

bindinh0
(X in P) otherwise

We leave as an exercise the task of verification that the function
bindπ complies with the rules of BIPET.
Hint. Verify whether the equality bind(A.B in Root) = Root.C may appear as a

conclusion or as a premise in any rule of BIPET. 2

• Observe, that the value of bindπ(A.B in Root) = Root.C and
the name of resulting class is C and paradoxically is not equal
B as one would expect.
• It is more or less obvious that there are infinitely many para-

doxical examples with their wild functions bind.

6 Problem – how to define IPET in a correct way

In earlier sections we have seen that the calculus IPET can not be
treated as a definition of function bind for it has many mutually
contradicting ”models“. In this section we define criteria that a
correct version of the system IPET should satisfy.
Let Π be the set of syntactically correct Java codes π ∈ Π, i.e.
the codes that passed the syntacical analysis. Some of them are

33

correct static semantically or well-formed Java programs, some
of them are not.

The task is to construct a uniform family {Tπ}π∈Π of theories.
Each theory {Tπ} = 〈L, Cons,Axiomπ〉 has the same language
L and the same operation Cons of logical consequence.

The theories are to define for each program π the binding function
bindπ. We did it earlier in [LSW08], [LSW09] in terms of algebraic
structure S of classes of program π. Now we need to reformulate
the description of structure of classes.

Structures of Classes
Each program π ∈ Π determines an algebraic structure Sπ of
classes of the program. Program π is finite. It determines the
following sets:

• Id - the set of identifiers found in program π,
• Classes - the set of class declarations in program π,
• ClassTypes - the set of class types occurring in program π

and a function extends

extends : Classes→ ClassTypes

the diagram of this function is distributed through the declara-
tions of classes.
For many reasons one can identify an occurrence of class dec-
laration with the absolute path leading to the class declaration
occurence, i.e. a finite sequence c1, . . . , ck, k > 1 of identifiers
such that

(1) c1 is the identifier of a top-level class of the program,
(2) for each 1 < i ≤ k the identifier ci denotes a class declared

as an inner class of the class c1, . . . , ci−1

(3) ck is the identifier of the class being declared.

Hence the set Classes can be conceived as a finite set of sequences
of identifiers closed with respect to prefixes, the empty sequence

34

is to be identified with the fictious class Root enclosing all top
level classes.
It means that the set of classes forms a tree.

The set ClassTypes is the set of finite sequences of identifiers
separated by dots. Note, the phrase extends in a Java program
allows to write a sequence of any length, repetitions of identifiers
are allowed. Class types may appear after the keyword extends
or in declarations of local fields of classes. Looking at three rules
of calculus IPET we see that apart of class types appearing in the
program the task of elaborating may need some class types that
do not occur in the program. For all these reasons the set CT of
class types is an infinite set of all finite sequences of identifiers
separated by dots.

Remark 26 For the readers who probably noted the difference between this defini-
tion of the structure of classes and the definition of structure of classes in [LSW09]
we explain:

(1) One can define the missing function decl as follows

decl(c1, . . . , ck)
df
= c1, . . . , ck−1, k > 1, decl(c1)

df
= Root.

(2) the partial function P.D is defined as follows: Let P be a class, D an identifier,
the value of P.D is defined iff P.D is a class in the program.

(3) In the rules of IPET one does not need the function decl.

The goal is to give an axiomatic description of an extension of
each structure Sπ of classes by the function bindπ

bindπ : ClassTypes× ClassesRO → (ClassesO ∪ {null})

in such a way that program fulfills criteria of being well-formed
(in terms of [IP02], one says the program fulfills the sanity con-
ditions) or to signal that no such function exists.

Theories

The language L = 〈A,F〉 of each theory has the same alphabetA
and the same set F of formulas. The alphabet contains variables
of following sorts:

- VCT – the set of variables of class types,
- VC – the set of variables of type classes,

35

- VI – the set of variables of class identifiers

and constants

- null - the exceptional pseudoobject value signalling error in
program’s structure,

- Id - the set of all identifiers

moreover the alphabet contains predicates bind, is class and one
functor ext and
auxiliary signs such as parentheses(), colon, and the separator
in.

The set F of formulas of theory Tπ admits expressions of the form

- bind(X in P) = T - the meaning of class type variable X inside
class P is class T or null,

- is class(X) - the value of class type argument X is a class,
- ext(P) = X - the class type X is declared as an extension of

class P .

The theory Tπ is the union of the proto-theory T0 and the dia-
gram of the structure of classes of program π.

Diagram ∆π of the structure of classes of program π consists of

• finite set of formulas is class(X), where X is a class type,
• a finite set of formulas ext(P) = Y , where P is a class and Y

is a class type.

which constitute the full description of the structure of classes of
program π.

The proto-theory T0 may resemble the set of inference rules BIPET
or IPET. It will be useful in the definition of consequence oper-
ation (proof).

The axioms Axiomπ of theory Tπ are the formulas of diagram of
the structure of classes of program π.

36

Let α be a formula bind(X in P) = T where X is a class type
of program π, X ∈ ClassTypes, P, T ∈ Classes. A proof of the
formula α is a sequence of formulas β1, β2, . . . , βm, m > 0 such
that

• formula βm is α,
• for each 1 ≤ i ≤ m the formula βi is
· either an axiom or
· it is the conclusion in one of inference rules given by proto-

theory T0 and all premises of the inference rule occur (earlier)
in the sequence β1, β2, . . . , βi−1.

The theorems of theory Tπ are exactly these formulas of the form
bind(X in P) = T which possess a proof in theory Tπ.

A model Mπ of theory Tπ is a pair 〈∆π, bind
π〉 consisting of the

diagram ∆π of program π and a function bindπ such that all
theorems of theory Tπ are valid in Mπ. Since the validity of axioms
is assured by the definition it remains to be checked that for each
inference rule if the premises are valid then the conclusion of the
rule is valid too.

A uniform model MΠ of the family {Tπ}π∈Π of theories with re-
spect to the diagrams of programs π ∈ Π is a function bindΠ,
shortly bind,

bind : Π× ClassTypes× ClassesRO → {ClassesO ∪ {null}}

such that for every π ∈ Π function bindπ, defined on the base of
function bind by the following equality

bindπ(X,P) = bind(π,X, P) for every X ∈ CT and P ∈ CRO ,

together with the diagram ∆π of program π makes a model of
theory Tπ.

Each theory Tπ should enjoy a few metamathematical properties:

(1) (categoricity) the theory possesses one model (up to isomor-
phisms), moreover the function bindinh0

is the model,

37

(2) (decidability) the theory is decidable,
(3) (low complexity) the complexity of the algorithm deciding on

the truth of a formula should not be higher than the com-
plexity of the bindinh0

algorithm.

Every theory {Tπ}π∈Π must be decidable. This requirement is
very strong, however indispensable. It seems reasonable to add
the requirement that the algorithm deciding of the validity of
formulas bind(X in P) = T is of complexity comparable to the
complexity of the algorithm for calculating function bindinh0

.

7 Concluding remarks

The identification of a declarative occurrence T of a class which is
binding an applied occurrence of a (class) type X within a class P
is basic for the understanding how a program works. The paper
[IP02] offers the IPET-calculus for deducing the values of the
function bind(X in P) = T , in the original paper it is written
P ` X ⇒ T . It turned out that the formal system of IPET
has many models, hence, the system does not define the binding
function.

The discussion of the present paper shows how important it is to
state a few questions known already in metamathematics:

(1) (determinacy or consistency) It is obvious that a formal sys-
tem may allow to prove a sentence in many alternative ways.
However, a sound system may not allow to deduce mutu-
ally negating answers. In this case the question should be:
is it true that for every class P and for every type X if cal-
culus IPET allows to deduce two triplets P ` X ⇒ T and
P ` X ⇒ U then T = U? We should be sure that the re-
lation P ` X ⇒ T is a function, which binds an applicative
occurrence of type X inside class P to the declaration T of a
class.

(2) (categoricity or completeness) How many models has a pro-

38

posed formal system? In our case the question is: are there
different functions bindfn which are models of the IPET-
calculus? The positive answer tells us that something im-
portant has escaped our attention, in our case the existence
of the different models bindinh0

and BindinhB0
.

(3) (repairing an incomplete system) If there are several models,
one should try to repair the formal specification either by
adding and changing axioms and inference rules (this way,
we believe, is the correct one; so we have presented calculus
BIPET’ in a forthcoming article) or by adding some metathe-
oretic rule like, for example, among all possible models choose
the least one. Or better, among all possible models choose the
one calculated by a certain algorithm.

These questions were not addressed in paper [IP02].

A few words on the problem formulated in the previous section

We suspect that these metamathematical requirements (cate-
goricity and decidability) imposed on the goal of constructing a
simple theory of binding identifiers are contradicting themselves.
For the requirement that the theory must be decidable contra-
dicts the fact that every first-order decidable theory that has
infinite model has also non-standard models c.f. [MSST2001].

We stop here with one additional remark: one should consider
the requirement that the formal theory of binding should allow
to distinguish between well-formed programs and these which
are not well-formed. The present authors do not know how to
formulate an appropriate condition in terms of metamathemat-
ics. A candidate formulation like: “if there exists a type X and
class P such that the formula pbindπ(X,P) = nullq has a proof
then the program π is not well-formed (does not satisfy the san-
ity conditions)” is far from being satisfactory. History of imple-
mentations of programming languages since 1960 has shown that
decent understanding of the meanings of nested program struc-

39

tures is a great problem, not only for users, but even for lan-
guage designers and compiler builders who are expected to have
a higher education in informatics than users. A thorough perva-
sion of static binding of names, most natural since the origins of
predicate logic and lambda calculus, by concepts of theoretical
informatics, mathematics and mathematical logics is an absolute
must. The more theoretical knowledges of binding we have the
higher is the chance that both – users and compilers – conceive
program semantics in the same manner. Strong theoretical con-
nections assure that ideas of programming language designers
and practicioners will achieve lasting importance.

Acknowledgement. We would like to thank the anonymous re-
viewers of article [LSW09] who have encouraged us to write a full
paper on our observations of types elaboration in Java with inner
classes in Igarashi’s and Pierce’s article [IP02].

Appendix: An algorithm for binding function Bindinh

In order to assure that LSWAB is really an algorithm it is suf-
ficient to present a subalgorithm which for all arguments X ∈
Types and P ∈ domRO

inh either terminates successfully (regularly)
with result Bindinh(X in P) ∈ domO

inh or otherwise terminates
with an error report. That is correct because for every candidate
class K its father class decl(K) is from domR

inh. So we name the
restricted binding function to be computed Bindrestrinh :

Bindrestrinh (X in P) =
var CROUP ′, int i;
i := 0; P ′ := P ;
while i < length(X)
do i := i+ 1;

P ′ := Bindsimpleinh (Xi in P
′);

if P ′ /∈ domO
inh

40

then error
fi

endwhile ;
result :=P ′

end Bindrestrinh

Bindsimpleinh (C in P) =
var CROn T ; // CROn = CRO ∪ {null}
if P.C is defined ∈ CO, i.e. 6= null
then P.C
else if P ∈ dominh

then T := Bindsimpleinh (C in inh(P));
if T is defined ∈ CO, i.e. 6= null
then T

else Bindsimpleinh (C in decl(P))
fi

else
if P = Object

then Bindsimpleinh (C in Root)
else null
fi

fi
fi

end Bindsimpleinh

References

[Bar+82] W. M. Bartol et al.. The Report on the Loglan’82 Programming
Language. PWN, Warszawa, 1984

[Bjo09] D.Bjoerner. Domain Engineering – Technology Management,
Research and Engineering. COE Research Monograph Series, Vol.
4, JAIST Japan, 2009

[DaNy67] O.-J.Dahl, K.Nygaard. Class and Subclass Declarations. In:
J.N.Buxton (ed.). Simulation Programming Languages. Proc. IFIP
Work. Conf. Oslo 1967, North Holland, Amsterdam, 158-174, 1968

41

[Dij60] E.W. Dijkstra. Recursive Programming. Numerische Mathematik 2,
312-318, 1960

[GHL67] A.Grau, U.Hill, H.Langmaack. Translation of ALGOL60. Handbook
for Automatic Computation, Vol. I, Part b (chief ed. K.Samelson),
Springer 1967

[GJS96] J. Gosling, B. Joy, G. Steele. The Java Language Specification. First
edition, Addison-Wesley 1996

[GJSB00] J. Gosling, B. Joy, G. Steele. The Java Language Specification.
Second edition, Addison-Wesley 2000

[GJSB05] J. Gosling, B. Joy, G. Steele, G. Bracha. The Java Language
Specification. Third edition, Addison-Wesley 2005

[GoRo89] A.Goldberg, D.Robson. Smalltalk-80 – The Language. Addison-
Wesley 1989

[Her65] H. Hermes. Enumerability, Decidability, Computability. Academic
Press & Springer, NewYork & Berlin, Heidelberg, 1965

[Ich80] J.D. Ichbiah. Ada Reference Manual. LNCS 106, Springer-Verlag,
Berlin, Heidelberg, New York 1980

[IP02] A. Igarashi, B. Pierce. On inner classes. Information and
Computation 177, 56-89, 2002

[JeWi75] K.Jensen, N.Wirth. Pascal, User Manual and Report, 2nd ed..
Springer 1975

[Kan74] P.Kandzia. On the “most recent”-property of ALGOL-like programs.
In Proc. 2nd Coll. Automata Languages and Programming (J.Loeckx,
ed.). LNCS 14, 97-111. Berlin, Heidelberg, New York, Springer 1974

[KSW88] A.Kreczmar, A.Salwicki, M.Warpechowski. Loglan’88 - Report on the
Programming Language. LNCS 414, Springer, Berlin 1990

[Lan73] H.Langmaack. On Correct Procedure Parameter Transmission in
Higher Programming Languages. Acta Informatica 2, 2, 110-142,
1973

[LoSi84] J. Loeckx, K. Sieber. The Foundation of Program Verification. Wiley-
Teubner 1984

[LSW04] H.Langmaack, A. Salwicki, M.Warpechowski. On correctness and
completeness of an algorithm determining inherited classes and on
uniqueness of solutions. In: G.Lindemann et al., Proc. CS&P’2004,
Caputh Sept. 24-26, Vol. 2, 319-329, Informatik-Berichte, Humboldt
Univ. Berlin, 2004

[LSW08] H.Langmaack, A.Salwicki, M.Warpechowski. On an deterministic
algorithm identifying direct superclasses in Java, Fundamenta
Informaticae 85, 343-357, 2008

42

[LSW09] H.Langmaack, A.Salwicki, M.Warpechowski. On an algorithm
determining direct superclasses in Java-like languages with inner
classes – its correctness, completeness and uniqueness of solutions.
Information and Computation 207, 389-410, 2009

[McC+65] J.McCarthy et al.. LISP 1.5 Programmer’s Manual. The M.I.T.Press,
Cambridge, Mass., 1965

[McG72] C.L.McGowan. The “most recent”-error: its causes and correction. In:
Proc. ACM Conf. on Proving assertions about programs. SIGPLAN
Notices 7, No.1, 191-202, 1972

[MMPN93] O.L.Madsen, B.Moeller-Pedersen, K.Nygaard. Object Oriented
Programming in the BETA Programming Language. Addison Wesley
/ ACM Presss, 1993, see also: Beta Programming Language, 2001,
available from: http://www.daimi.au.dk/∼beta/

[MSST2001] G.Mirkowska, A.Salwicki, M. Srebrny, A. Tarlecki. First-order
Specifications of Programmable Data Types, SIAM Journal on
Computing, 30, pp. 2084-2096, 2001

[Nau63] P.Naur (ed.) et al.. Revised Report on the Algorithmic Language
ALGOL60. Num. Math. 4, 420-453, 1963

[Old81] E.R.Olderog. Charakterisierung Hoarescher Systeme für ALGOL-
ähnliche Programmiersprachen. Dissertation, Inst. F. Informatik u.
Prakt. Math., Univ. Kiel, Bericht 5/81, 1981

[Plo77] G.D.Plotkin. LCF Considered as a Programming Language.
Theoretical Computer Science 5, 223-255, 1977

[RS63] H. Rasiowa, R. Sikorski, Mathematics of metamathematics, PWN
Publ., Warsaw, 1963

[Ste84] G.L.Steele jr.. Common LISP - The Language. Digital Press 1984

[Wij+68] A.van Wijngaarden et al. (eds.). Report on the Algorithmic Language
ALGOL68. Numerische Mathematik 14, 79-218, 1969

43

