
SpecVer & LEM’12 projects XX (2015) 1–20 1

Dombrova Research

Verifying a Class: combining Testing and Proving

Grażyna Mirkowska
Faculty of Mathematics and Natural Sciences
University Cardinal Stefan Wyszyński
Wóycickiego 1/3, 01-938 Warszawa, Poland
mirkowska@uksw.edu.pl

Andrzej Salwicki
National Institute of Telecomunication
Szachowa 1, 04-894 Warszawa, Poland
salwicki@mimuw.edu.pl
and
Faculty of Mathematics and Natural Sciences
University Cardinal Stefan Wyszyński
Wóycickiego 1/3, 01-938 Warszawa, Poland

Oskar Świda
Białystok University of Technology
Department of Computer Science
Wiejska 45A, 15-351 Białystok, Poland
Oskar.Swida@gmail.com

Abstract. The problem of correctness of a class C w.r.t. a specification S is discussed. A formal
counterpart of the problem is the question well known in metamathematics, whether an algebraic
structure is a model of a given theory. Now, this metamathematical problem has to be adapted to
the context of software engineering. As a theory we consider the (algorithmic) specification S. The
algebraic structure AC induced by the class C is our candidate for a model of S. Remark, that this
problem differs from the correctness’ problem of an algorithm w.r.t. a pre- and a post-conditions. In
the paper we consider the specification ATPQ of priority queues and the class PQS, and we verify
the correctness of this class with respect to the specification ATPQ.

Programmers and software companies prefer to test software instead of proving it. Surely, proving
is more difficult, testing is easier. In this article we combine these two approaches. Hence, the
following actions appear in our method of verification: experiment, observe, formulate hypotheses,
prove. It is our hope that this method is of general use and adapts well to many practical cases of
verification of object-oriented software.

1. Introduction

This paper presents a proof that the class PQS is a correct implementation of priority queues data struc-
ture. The class (see Appendix) is written in an object-oriented programming language. The specification



2 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

(see Table 1) consists of a few algorithmic formulas. Formally, the proof of correctnes of the class w.r.t.
the specification resembles a proof that a given algebraic structure A is a model of some axiomatic the-
ory T . Literature knows many examples of the proofs of correctnes of algorithms with respect to their
pre- and post-conditions. However, the union of proofs of a class’ methods (i.e. algorithms) does not
result in the proof of the class correctness.

Each class can be considered as a description of an algebraic structure (a data structure). The universe
of the structure is the set of all potential objects of the class, its functions and relations are defined by
class methods.

Dealing with a class we are confronted with several properties, sometimes called invariants of the
class (B. Meyer in Eiffel [4]), that must be valid for all objects of the class. Moreover, an external char-
acterization of the class requires some properties that express corellations between different methods.
All these properties will be called a specification of a class.

Our message has several layers:

• first, we offer a discussion of the methods of software’s verification.

• second, we propose to think what a software’s verification is,

• finally, we need to know what a class specification looks like?

Two views and two practices are colliding in production of software. One view is that programs should
be accompanied by solid arguments demonstrating the correctness and the completeness of software.
The practice associated with this view consist in proving properties of software. At present, we observe
that there are more and more cases when the industry demands the proofs of correctness of programs.
It is especially true of these cases where security must be guaranteed. Another view is followed by the
majority of the individual programmers and the big software companies. They are of the opinion that
testing of programs is the sufficient activity before the software is delivered to clients. Hence we have
two practices that seem to exclude one another: testing or proving. In the presented paper we argue1

that the two approaches may be synthesized to a completely different scheme of practice. We propose to
replace the term testing by another word experimenting. Testing limits itself to the execution of program
and the comparison of its effects with the predicted, supposedly correct results. For the majority of
people testing is the practice of searching bugs in software. Experimenting has larger horizons, it covers
not only searching of errors (aka counter-examples) but also gathering the positive evidence. Sometimes
during experiments we begin to believe that objects obey certain rules and later we try to find more
evidence confirming our beliefs. During experiments one is going to execute program with different
data, to collect results and to present them in graphical mode, in tables, in data bases, etc. It is suggested
that the experiments were done with some plan. Next, one should analyze the gathered experience and
search some regularities. This process should lead to the formulation of lemmas and propositions. After
this is done, there is the time of proving the hypotheses. Obviously, the process sketched above may need
to be iterated for different reasons, e.g. when our program is modified. We consider the method given
below

experiment→ observe→ formulate hypotheses→ prove.

1following to some extent the ideas of Georg Hegel who used to say that from a pair: thesis and antithesis we should make a
synthesis



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 3

as a proper approach to the production of the high integrity software [6], [2], [3], [1].
How to define the goals of software’s verification? Assuming that a specification of a class is given

in the form of a set of formulas, the verifier agent should prove that every object of the analyzed class
will satisfy every formula of the set, whenever any method of the class has been completed.

We are proposing the methodology which consists of algorithmic logic AL and an environment
SpecVer – a plugin into the Eclipse IDE. A SpecVer project can be developed from its initial phase
of specifying algorithms and classes, through implementing them in an object programming language,
to the phase of verification of implementation against its specification.

We present an almost complete case study which consists of a specification ATPQ of priority
queues, a class PQS, and the verification of the thesis that the class PQS correctly implements the specifi-
cation ATPQ.

Class PQS may be used in several applications. For example, it is a part of a bigger program Simu-
lation of a Bank Department. The structure of the simulation program is shown in Figure 1. The program
contains 6 external classes, 13 innner classes and 20 methods. The relation between inner classes and
the containing them external classes are shown on the diagram. The relation of inheritance is also shown
on the diagram. The arrows lead from one class to its direct superclass. The thick arrows start at ex-
ternal classes. The thin arrows lead from an inner class K to inner class I inherited by the class K.
We conceive the five external classes as implementations of data structures: Class BankDepartment

extends the structure of Office. Class Office is based on the class Simulation, it uses also the data
structure of FIFOQueues. The class Simulation relies on the class PriorityQueues. These relations
are shown on the diagram by thick arrows. (As no one class may inherit two classes, we decided to
make the class FIFOQueues the base class of the class PriorityQueues.) The diagram shows also the
inheritance relation between inner classes. This allows us to introduce more subtle relations between
classes. For example, any object of class Customer is queueable since the class Customer inherits from
the class Simprocess which in turn inherits from the class ElemFIFO. An object of class Customer

may be activated and made passive several times since the class SimProcess is a coroutine. The value
of unique variable ExperimPlan is a set of EventNotices. During the execution of our simulation
experiment the variable ExperimPlan has various sets of EventNotices as its value. An object of
the class EventNotice is a pair: 〈s.t〉, where s is a SimProcess object and t is a time. Objects of
class EventNotice are inserted and/or deleted from the set ExperimPlan. EventNotices are ordered
by a relation less. The class Simulation is to guarantee that the active object of the experiment, in
our case it will be either a customer or a teller object, will be active iff its activation time is the mini-
mum of all times of EventNotices in ExperimPlan set. Encapsulating two inner classes SimProcess
and EventNotice and the variable ExperimPlan of type PQ makes the process of coding of the class
Simulation simpler.

The term high integrity software was introduced in [2]. For us the high integrity programming means
the activity which involves specification of software modules, implementation the modules (i.e. classes
and methods) and verification of the modules against their specification. We shall use the structure shown
in Figure 1 to illustrate what has to be done.
For each external class C three documents should be produced:

• A specification S of the class C. Specification is a set of formulas which express the properties of
methods and invariants of objects of the class. Each specification should enjoy two properties:

– Consistency



4 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

FIFO_Queues

ElemFIFO
QueueFIFO

Inner Classes

Methods

put
first

tail
empty

Priority_Queues

Element_PQ
PQ

Inner classes i.e. Types

Methods

insert
delete

min
isEmpty

Simulation

SimProces
EventNotice
PQ: ExperimPlan

Types i.e. Inner classes

Methods

schedule
hold
run
cancel
currentProcess
currentTime

Office

Service
Customer
Queue of Customers

Types

Methods
customerArrives

Bank

Bank Customer
Teller
Cashier

Types

Methods

pays

Bank_Simulation
Uses
   notions & methods
   defined in BANK
   module and above

Structure of class Simulation An example of application

inheritance

Figure 1. Modules of bank simulation program

There is no implementation of an inconsistent specification. An inconsistent specification
has no sense.

– Completeness
An incomplete specification allows various models. Not all of them are desired. A complete
specification brings enough information on properties of objects of class to distinguish be-
tween a desired and an improper implementation, and therefore can be used as a criterion of
acceptance of a class. It is sufficient to produce the proofs or verification reports.

• The file containing the class C itself. Usually this file contains all the methods and inner classes of
the class C.

• The verification report. This file should contain arguments that soothe our conscience and convince
the user of our class. The arguments used may be more formal - having form of a mathematical
proof or may recall a dialogue. Rarely a formal proof is needed. The verification report should
be rather an evidence of analysis and it should serve to convince its reader that the conclusions of



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 5

the report are sound. A verification report is of good quality if it is an intersubjective experience.
Surely, a formal proof of a correctnes has this quality, but frequently it is not readable by a human
being. A balance between two extremities is needed.

In earlier papers we have presented the work on specifications of classes [6]. Specifications are subjects
of studies and analyses. In other words, one should visualize a process of development and amelioration
of a specification.

This paper illustrates the process of verification of a class C against a specification S. In the most
cases implementation of a class precedes the process of verification. Sometimes, the verification can
be done simultaneously with the production of the needed class. In another paper we shall exemplify
the (rare) case when a class, the Simulation class, is systematically elaborated together with the proof
of its correctness. For this we need only the specification of the base class PQS and the target class
Simulation.

We propose to make an experiment. The reader will look at the appendix and try to give arguments
that the class PQS correctly implements a priority queues system. Those who forgot what a priority
queue is, may find its axiomatic definition in Table 1 below. We ask the reader how much of time he/she
needs to convince someone that the class PQS implements the abstract data type of priority queues.
We did the following:

1. Experiments - we executed methods of the class by hand and have drawn some pictures.

2. Observations - we analyzed the pictures and searched for some regularities.

3. Conclusions - we formulated several hypotheses (lemmas) and propositions.

4. Proving - we proved the lemmas.

5. Finally - putting together the facts, we proved the correctness theorem.

2. Priority Queues Specification

Before implementing a data structure one should write down its specification. The first part of the
specification – the signature – enlists the sorts, the operations and the relations. The second part enlists
the properties, also called the axioms, Table 1 contains the specification of the abstract data type of
priority queues [5, p.154]. Remark that besides the formulas of first-order logic we use algorithmic
formulas [5]. An example of algorithmic formula is the axiom (a2). Its structure is as follow:

〈program P 〉〈formula α〉.

The meaning of the whole formula is ”after execution of program P the formula α is valid”. In our ex-
ample the formula (a2) takes value true if and only if the program halts. Hence, including such formula
among the axioms of our specification, means ”the program P always terminates”. The semantic mean-
ing of the axiom (a2) is the set q is finite. The axiom (a8) is in fact an explicit, algorithmic definition of
the relation member.

Algorithmic formulas allow to express the semantic properties of programs such as termination, cor-
rectness, etc. Almost 40 years ago we proved that the calculus is sound and complete [5]. It means



6 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

that we have choice between showing that some semantic property of a program is valid or proving the
formula that expresses the property. We gave several examples of specification of abstract data types as
algorithmic theories. ATPQ is one of such examples.

Table 1. Specification ATPQ of priority queues.
Signature Comments

Sorts Universe = E ∪ PQ
E set of elements
PQ set of priority queues

Operations let e ∈ E and q ∈ PQ
insert : E × PQ −→ PQ put e into q
delete : E × PQ −→ PQ delete e from q

min : PQ −→ E find the minimum element
empty : PQ −→ {true, false} is a priority queue q empty?
member : E × PQ −→ {true, false} does e ∈ q?
≤: E × E −→ {true, false} the ordering relation

Axioms

(a1) The set E ofelements is linearly ordered by the relation ≤ .
(a2) [while not empty(q) do q := delete(min(q), q) done] true

This axiom says for all q program halts, i.e. the priority queue q is finite
(a3) [q1 := insert(e, q)]{member(e, q1) ∧ (∀e16=e member(e1, q1)⇔ member(e1, q))}
(a4) [q1 := delete(e, q)]{¬member(e, q1) ∧ (∀e16=e member(e1, q1)⇔ member(e1, q))}
(a5) empty(q)⇒ (∀e∈E ¬member(e, q))
(a6) ¬empty(q)⇒ (∀e∈E member(e, q)⇒ min(q) ≤ e))

The operation min finds the least element of the set q.
(a7) [e := min(q)]true⇔ ¬empty(q)

Axiom (a7) says the result of expression min(q) is defined iff ¬empty(q)
(a8) member(e, q)⇔ begin

s1 := q; result := false;
while not empty(s1) and not result do

if e =min(s1) then result:=true fi;
s1 := delete(min(s1),s1)

done
end result

ATPQ is an acronym of Algorithmic Theory of Priority Queues. The theorems of the theory are the
formulas provable by the calculus of algorithmic logic [5] from the axioms of ATPQ.



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 7

Remark 2.1. In the literature, the frequent choice when speaking on the abstract data type of priority
queues, is the operation deletemin, instead of the operation delete. Our choice was different and de-
liberate. With the present set of operations we are able to construct the specification which enjoys the
property of being almost complete.

It was shown in [5] that the algorithmic theory of priority queues has a metalogical property known as
the representation meta-theorem: Every model ofATPQ is isomorphic to the standard model of priority
queues. 2

Let us add a few words on the ATPQ specification. An important fact states that any implementation of
the axioms of ATPQ where a concrete set E was given, is isomorphic to the structure of finite subsets
of the set E with the operations

insert(e, s) = increase the set s by adding element e to it,

and
delete(e, s) = supprime the element e from the set s.

The consequences of the theorem are of general methodological nature:

• the specification of ATPQ is complete. If a new formula is added then either it is a logical
consequence of the axioms or it leads to contradiction, or it expresses the properties of the elements
only.

• the specification can be used as the criterion of correctness of a proposed implementation,

• the proofs of properties of programs that use this data structure may be based on axioms of priority
queues listed in Table 1. No other properties of priority queues are ever needed.

3. Experiments

Our work on verification of the class PQS began by experimenting. The experiments consisted in
executing (by hand) operations insert and delete, drawing pictures, and observing the changes in the
constellation of objects of type node. Figure 2 shows a few snapshots of our experimentation. In fact,
we did twice as much drawings. The reader may wish to continue our experiments on his own, e.g.
by inserting the element e6 or deleting the element e2 after insertion of the element e5 was done. It
is wortwhile to observe that the snapshot after execution of delete(e2) will show the picture which is
essentially the same as after insertion e1, e2, e3, e4 with following difference: Instead of e2 we find e5,
and the pair of objects 〈 e2, its companion node object 〉 is an isolated (not connected) part of the graf.
During the experiments we neglected the ordering relation between elements.

Our first impression, when looking at the drawings of Figure 2, is a complete chaos. Slowly we
commence to distinguish some parts and we begin to perceive some regularities. First, we remark that
in each of 6 pictures there is exactly one object of type PQ which has two fields: root, last. Next, we
remark that objects of type Elem and of type Node come in pairs, each pair is connected by .el and .lab
arrows. Our next observation is that the arrows .up form lists of objects of type Node (no cycles). The

2Algorithmic theories (e.g. [9], [5]) were studied since 70’s of XX century.



8 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

meaning of arrows .left and .right is less evident that it may be suggested by their names. On the
diagram some of them are solid and some of them are dotted. This comes as the result of analysis, the
arrows .left and .right pay two roles. We see that the solid arrows .left and .right go against to the
arrows .up. While the observation that there is no cycle in paths composed of .up arrows may lead to
the statement that on each diagram we have a tree of node objects, the present observation states that the
tree is a binary one.
Our observations need to be properly formulated and proved. This will be done in the next section.
Before that, one may execute further experiments, e.g. by executing the command delete(e2).

4. Observations and Lemmas

We shall study the class PQS, see the Appendix. We can assume that a usage of PQS consists in a finite
sequence of creation of newElem() objects and calls: call q.insert(e), call q.delete(e’).
Following the intuition gained from Figure 2 we shall introduce the notion of observable states. The
initial state s0 is the graph consisting of exactly one object o of type PQ, s0 = {new PQ} and no edges.

Definition 4.1. (of the observable states) The set S of observable states is the least set which contains
the initial state s0 and which is closed with respect to the operations insert and delete and creation of
new Elem() objects.

Each state consists of a set of objects and the edges connecting them. The examples of states are pre-
sented in Figure 2. The class PQS may be viewed as a definition of the relational structure PQS. The
universe U of the structure consists of the objects of the inner classes of the class PQS. The attributes of
objects of U define functions between objects. The set of objects of type Node will be denoted NODE.
analogously for the set of objects of type Elem and of type PQ:

NODE = {n : n instanceof Node},
ELEM = {e : e instanceof Elem},

PQ = {q : q instanceof PQ}.

Definition 4.2. The class PQS determines an algebraic structure

PQS = 〈U, .up, .left, .right, .el, .lab.〉,

where U is a subset of the union NODE ∪ ELEM ∪ PQ which satisfies the condition

(∀n∈NODE) (∀e∈ELEM) n.el = e⇔ e.lab = n.



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 9

el

ns

left

up

el

ns

left

right

up

0

Empty queue

el

ns

left

right

up

e1

lab

root

last root

last 0

insert(e1)

right

root

last 1

e1

label

ns

left

up

el

e2

lab

ns

left

right

up

0

insert(e2) insert(e3)

root

last 2

e1

label

ns

left

right
up

e2

lab

el

ns

left

right

up

0

right

el

ns

left

up

e3

lab

0

insert(e4)

root

last

e1

label

ns

left

right
up

2

e2

lab

el

ns

left

right

up

1
el

ns

left
right

up

e3

lab

0

e4

lab

insert(e5)

root

last 2

e1

label

ns

left

right
up

el

e2

lab

ns

left

right

up

2

e3

lab

el

ns

left
right

up

0

e4

lab

right

e5

lab

0

el

ns

left

right

up

0

Figure 2. Inserting elements e1 - e5



10 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

The functions of the structure PQS are defined as follows

.up
df
= {〈n, n′〉 : n, n′ ∈ NODE, n′ = n.up},

.left
df
= {〈n, n′〉 : n, n′ ∈ NODE, n′ = n.left},

.right
df
= {〈n, n′〉 : n, n′ ∈ NODE, n′ = n.right},

.el
df
= {〈n, e〉 : n ∈ NODE, e ∈ ELEM, e = n.el},

.lab
df
= {〈e, n〉 : e ∈ ELEM, n ∈ NODE, n = e.lab}.

Our first observation is that if we abstract from (i.e. we forget about) the arrows .left and .right then
for each state s its graph shows a tree.

Definition 4.3. Let s be an observable state, consider the objects of type Node in this state. Let Ts be the
set of these object of type Node that access the object .root object by a path composed from .up arrows
only.
Ts = {o ∈ NODE ∩ s : there is a path composed from

.up arrows only, leading from object o to object .root}

Lemma 4.1. In any observable state s the pair 〈Ts, .up〉 is a tree.

Definition 4.4. (of a son) We say that a node n is a son of a node f in the tree Ts if and only if n.up = f.
A node n is said to be a leaf of the tree Ts if and only if it has no sons.

Our next observation is

Proposition 4.1. For every o ∈ Ts, o.ns = number of sons of o.

Definition 4.5. We say that an arrow .left from the node n is solid iff n.ns > 0. We say an arrow .right
from the node n is solid iff n.ns = 2. Otherwise the arrows are said weak, or dotted.

Next, we observe that solid arrows lead against .up arrows.

Proposition 4.2. For every state s, the tree Ts with solid arrows only, forms a binary tree.

Proof: For every two nodes n and f of the tree Ts the following properties hold:

• if a solid .left arrow leads from node f to node n then n.up = f
(f.left = n ∧ f.ns > 0 )⇒ n.up = f ,

• if a solid .right arrow leads from node f to node n then n.up = f
(f.right = n ∧ f.ns = 2 ∧)⇒ n.up = f ,

• n.up = f ⇔ (f.left = n ∨ f.right = n).

Hence Ts is a binary tree. Our next observation can be stated as follows:



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 11

Proposition 4.3. There exists at most one node n in Ts such that n.ns = 1. If it is the case then last = n.

Now, we observe that the leaves of tree Ts are on two levels only.

Proposition 4.4. For every state s, there exists a natural number k(Ts) such that every leaf of the tree
Ts is on the level k(Ts) or k(Ts)− 1.

The number k(Ts) is equal the length of the path composed from .up arrows leading from the object
last.left to the root object. It is equal 0 if root = none. ut

Now we try to guess the rôle of non-solid arrows .left and .right. The following property holds:

Proposition 4.5. The object referenced by the variable last in the tree Ts is the leftmost node on the
level k(Ts)− 1 which has less than two sons.

Let us return to the Figure 1 and observe the following facts:

Remark 4.1. A) If a node n has two sons then its left brother has also two sons.
B) If a node n has one son then it is its left son.
C) If a node n has one son then its brother from the left has two sons and its brother from the right is a
leaf.

Proposition 4.6. The value of the variable last is a head of a list of leaves linked together via .right
(weak) arrows.

Proposition 4.7. The value of the variable last is a head of a cyclic list of leaves linked by (weak) .left
arrow.

We see that all leaves on the level k(Ts) are grouped to the left.

Proposition 4.8. Tree Ts is a perfect binary tree i.e. all the levels are completely filled with an eventual
exception on the deepest level, in this case all the leaves are grouped to the left.

The following four lemmas have similar form (α ⇒ Iβ), where I is either instruction insert(e) or in-
struction delete(e), α is a precondition and β is a postcondition of the instruction I .

Lemma 4.2. Let I : insert(e) and
α1 : {last = o ∧ o.left = n1 ∧ o.right = k ∧ o.ns = 0 ∧ e.lab = n ∧ n.el = e},
β1 : {last = o ∧ o.ns = 1 ∧ o.left = n ∧ o.right = k ∧ n.up = o ∧ n.left = n1}.
The instruction I is correct with respect to the precondition α1 and postcondition β1 in the structure PQS

PQS |= (α1 ⇒ Iβ1).

Proof:
How to read this lemma? It states that in any state s, if the precondition α1 is satisfied by s, then the
execution of instruction insert(e) will succesfully lead to certain state s′ and the postcondition β1 will
be satisfied by s′. What is the meaning of the precondition α1 of the instruction insert? We can draw it,
see Fig. 3.



12 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

root

last
nko

el

ns

left

right

el

ns

el

ns

e

lab

000

n1

Fig. 3 Precondition α1.

We check that the configuration of objects drawn on Fig. 3 satisfies the precondition α1, The equality
last = o is satisfied since both variables point to the same object. The variable last.left points to the
object pointed by n1. last.right point to the object pointed by k. The objects e and n are linked together,
e.lab = n and n.el = e.
Next, we can follow step by step the execution of the command q.insert(e) with the text of method
insert in hand. We start observing that the precondition α implies last.ns = 0 hence the instructions
executed by insert are:
x:=e.lab; last.ns := 1; z := last.left; last.left := x; x.up := last;
x.left := z; z.right := x;last:=z;
Now we can draw modifications to the picture following the instructions.

root

last
xko

el

ns

left

right

el

ns

el

ns

e

lab

001

n1 z

n

Fig. 4 Snapshot after 3 instructions of insert’s body

root

last
xko

el

ns

left

right

el

ns

el

ns

up

e

lab

001

n1 z

n



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 13

Fig. 5 Snapshot after 5 instructions of insert’s body

root

last
xko

el

ns

left

right

el

ns

el

ns

up

left

e

lab

001

n1 z

n

right

Fig. 6 Snapshot after completion of instruction insert.

The state shown on Fig. 6 can be described by the following formula γ : {last = o∧o.ns = 1∧o.left =
n = n1.right = e.lab ∧ o.right = k ∧ n.up = o ∧ n.left = n1 ∧ n.el = e}. It is easy to observe
that the formula γ implies the formula β1. Note that if the initial state s satisfies the precondition α1

then at the end of the execution of the instruction insert(e) in PQS we obtain the state s′ satisfying the
postcondition β1.

Lemma 4.3. Let I : insert(e) and
α2:{last=o∧o.left=n1∧o.right=n2∧o.ns=1∧e.lab=n},
β2: {last=n2∧o.ns=2∧o.left=n1∧o.right=n∧n.up=o∧n.left=n1 ∧n1.right=n}.
The instruction I : insert(e) is correct with respect to the precondition α2 and the postcondition β2.

PQS |= (α2 ⇒ Iβ2).

Proof:
One can easily verify that if last.ns = 1 then the actions executed by the method insert are those pre-
sented in Table 2 below.



14 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

Table 2. Proof of lemma 3.

Precondition:
α2:(last=o∧o.left=n1∧o.right=n2∧o.ns=1 ∧e.lab = n)

Instruction Effect

x := e.lab x=n, since precondition says e.lab=n
last.ns:=2 o.ns=2, since last=o
z := last.right z=n2, because last.right=n2
last.right:=x o.right=n, because last=o and x=n
x.right := z n.right=n2, because x=n
x.up:= last n.up=o, because last=o and x=n
z.left:=x n2.left=n, because z=n2
last.left.right:=x n1.right=n, because last.left=n1
x.left:=last.left n.left =n1, because last.left=n1 and x=n
last :=z last=n2, because z=n2

Postcondition:
β′:(o.ns=2∧o.right=n∧n.right=n2∧n.up=o∧ n2.left=n∧n1.right=n∧

n.left=n1∧last=n2∧o.left=n1∧e.lab=n )

The postcondition β′ collects the facts enlisted in the column Effect extended by the formulas e.lab=n
and o.left=n1 for they remain satisfied after execution of insert. In this way we obtained a postcondition
which is even stronger than the formula β2.

The proofs of lemmas 4.2 and 4.3 exemplify two different ways of argumenting that a semantical
property is valid. The first one, informal, consists in drawing the pictures. It may be related to drawing
Venn’s diagrams in the algebra of sets. Like diagrams of Venn it does not replace the proving but it is
helpful. The second one is nearer to the goal of mechanization of proving.
In the following two lemmas we analyze properties of algorithm delete.

Lemma 4.4. Let the formulas α3, β3, and the instruction D be defined as follows:
α3 : {last = o ∧ o.left = n1 ∧ o.right = n2 ∧ o.ns = 0 ∧ e.lab = n ∧ n1.left = n3},
β3 : {last = n1.up ∧ last.right = o ∧ last.ns = 1 ∧ o.left = last ∧ o.right = n2 ∧ n1.ns =
0 ∧ n1.up = n1.left = n1.right = none ∧ n3.right = none ∧ n1.el = e},
D : delete(e).
The instruction delete(e) is correct with respect to conditions α3 and β3, i.e.

PQS |= (α3 ⇒ Dβ3).

Now we consider another case of applying the instruction delete.

Lemma 4.5. Let the formulas α4, β4 be defined as follows:
α4 : {last = o ∧ o.left = n1 ∧ o.right = n2 ∧ o.ns = 1 ∧ e.lab = n ∧ n1.left = n3},
β4 : {last = o ∧ o.left = n3 ∧ o.ns = 0 ∧ o.right = n2 ∧ n1.el = e ∧ n1.up = n1.left =



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 15

n1.right = none ∧ n3.right = none}.
The instruction delete(e) is correct with respect to conditions α4 and β4, i.e.

PQS |= (α4 ⇒ Dβ4).

The instructions call correctUp() and call correctDown(), that end the execution of procedures insert and
delete, serve to guarantee that for each path in the tree T of nodes the elements associated to the nodes
of the path form a decreasing sequence with the minimum in the root.

Lemma 4.6. (on procedure correctUp )
Procedure instruction call correctUp(r) is correct w.r.t. the precondition γ1 and the postcondition γ2
given below
γ1 : r in elem ∧ r.less(r.lab.up.el) ∧ last.left.el = r
(The first condition r in elem is checked by compiler.) The second condition says the newly added
element is less or equal than the element associated with the father of r. The third condition says: the
companion node n of the element r is pointed by the pointer last.left.
γ2 :for every node n on the path beginning at the element r, the following condition holds n.up.less(n)∨
n.up = none.

Lemma 4.7. (on procedure correctDown)
Procedure correctDown is correct w.r.t. the precondition γ3 and the postcondition γ4 given below
γ3 : r in elem ∧ ¬r.less(r.lab.up.el
γ4 :for every node n on the path beginning at the element r, the following condition holds n.up.less(n)∨
n.up = none.

Proposition 4.9. For every two nodes x, y in the tree Ts, x.up = y ⇒ y.less(x).

Proof:
This property is invariant with respect to the operations insert and delete. At the very beginning the tree
T is empty and the property holds. Assume that the property holds for a certain tree T . Consider another
tree T ′ which is the result of operation insert or delete. After the insertion of an element the procedure
correctUp is called and the tree is going to be repaired to keep the property. The same remark may be
repeated in the case when the tree T ′ is the result of the operation delete on tree T . ut

This sequence of observations leads to the following:

Lemma 4.8. In each observable state s the tree Ts is a heap.

Before proving the corectness of the implementation we should extend the class PQ adding two methods
empty and member.

Boolean empty() { return root=none}
Boolean member(Elem e, PQ q) { the body of this method is given on the righthand side of the equiva-
lence a8 of Table 1}.

Now we are ready to verify the implementation PQS of priority queues against the specification ATPQ
given in Table 1.



16 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

Let us start with the structure consisting of elements and heaps {Ts : s ∈ S} and operations insert and
delete, min, and the relations empty and member. Consider the quotient structure PQS in which we
identify the heaps that have the same sets of elements. We claim that it is a priority queues structure,
a standard model of the theory of ATPQ. It suffices to verify that the axioms of Table 1 are formulas
valid in the structure PQS .
a2) The program while not q.empty() do q.delete(q.min()) done always terminates since each operation
delete removes one element from a heap.
a3) This follows from the lemmas 4.2 and 4.3.
a4) This follows from the lemmas 4.4 and 4.5.
The verification of the remaining axioms of ATPQ is left to the reader. We can conclude:

Theorem 4.1. The structure PQS of elements and PQ objects implemented by the class PQS is a priority
queue.

Remarks on cost:
The pessimistic cost of an operation insert or delete isO(logn), where n is the number of elements in the
priority queue. This property is very important in the application of priority queue as plan of experiment
in the class Simulation that inherits (extends) the class PriorityQueue. Imagine, in an simulation exper-
iment of a pandemia of influenza where the objects of SimProcess class count in hundreds of thousands
and the number of EventNotice objects goes in milions, any implementation with the cost worse than
O(logn) would be impractical.

5. Final remarks

We have demonstrated the work on verification of a given class K against a specification S. Aswering
the question is the class K a correct implementation of the specification S is a task completely different
than proving correctness of an algorithm with respect to a given pre- and post-conditions. This paper
shows that the formal counterpart of the task is asking whether a given class implements a set of axioms.
In this context it is natural to conceive the classK as an algorithmic definition of some algebraic structure
A and to study the question is the structure A a model of the specification S. We are stressing that high
integrity programming requires many skills and a lot of invention. The analysis of this case study shows
the wide repertoire of questions that may appear during the work on a software project. The incomplete
list contains the following kinds of subgoals:

• specification of algorithms,

• specification of classes (this work is strongly related to the goal of specification of a data structure),

• construction of a method (i.e. procedure or function),

• construction of a class,

• verification of a conjecture given class K correctly implements some specification S.

In a future paper we shall demonstrate that, in a favorable circumstances, one can construct a class
together with a proof of its correctness.



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 17

From previous sections we conclude that EOP (experiment, observe, prove) method can be success-
fully applied to software analysis. We do not claim it is a trivial task but it is at least realizable. As
a matter of fact most programmers would agree that formal methods are generally better than sophisti-
cated testing and simultaneously most of them are not using such methods at all. It seems that essential
to the problem is lack of proper tools and experience i.e., tools which can integrate specification, imple-
mentation and verification tasks into single, consistent process. Experience can be gained only through
everyday practice. Our goal is to develop integrated programming environment supporting every phase of
software construction using formal methods. EOP idea presented in this paper is a part of bigger scheme
called temporarily SpecVer programming. We assume that whole process of software production needs
preparation of:

• specification documents: formal texts along with some math analysis (is it astonishing that some
specifications are incorrect, or mor precisely they may be inconsistent or incomplete?),

• implementation code,

• verification reports: again formal texts with some proofs about implementation’s quality.

As you can remark, EOP method could be used both for specification and verification tasks as soon
as we can perform observations analogous to these made about Fig. 2. This again direct us towards
programming tools. We need some object debugger showing program memory from object perspective,
some formal support tools helping in logical theorems construction and perhaps checking if formulas are
properly written and much, much more ... Some work has already been started, but a lot of it still should
be done. For now we can present initial implementation of Eclipse plugin [10] supporting creation of
specification documents.

References
[1] Amey, P.: Logic versus Magic in Critical Systems, Reliable Software Technologies - Ada Europe 2001,

Lecture Motes in Computer Science 2043, Springer, 2001.

[2] Barnes, J.: High Integrity Software, Addison-Wesley, London, 2003.

[3] Beckert, B., Hähnle, R., Schmitt, P. H.: Verification of Object-Oriented Software, the KeY approach, LNAI
4334, Springer, Berlin, Heidelberg, 2007.

[4] Meyer, B.: Eiffel, P, W, 1987.

[5] Mirkowska, G., Salwicki, A.: Algorithmic Logic, PWN and J.Reidel, Warszawa, 1987.

[6] Mirkowska, G., Salwicki, A., Świda, O.: SpecVer - the methodology integrating specification, programming
and verification, Fundamenta Informaticae, 85, 2008, 343–357.

[7] Ratajczak-Bartol, W., Szczepańska-Wasersztrum, D.: Data Structure for Simulation Purpose in Loglan77,
Technical Report 373, Institute of Computer Science, Polish Academy of Sciences, Warszawa, 1979.

[8] Ratajczak-Bartol, W., Szczepańska-Wasersztrum, D.: Code of Simulation and other Classes,
http://duch.mimuw.edu.pl/∼salwicki/EOP/PQclass.html, October 2007.

[9] Salwicki, A.: On Algorithmic theory of Stacks, Fundamenta Informaticae, 3, 1980, 311–332.

[10] Świda, O.: SpecVer - Specification, Verification, Programming, a plugin into Eclipse,
http://aragorn.pb.bialystok.pl/∼swida/svp, April 2007.



18 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

Appendix - the class PQS

The full text of the class PQS as written by W.M. Bartol and D. Szczepańska. It is a part of bigger
program of simulation of bank department [7] [8].

unit PQS : class; (* priority queues system *)
unit PQ: class;

var last,root:node;
unit min: function: elem;
begin

if root=/= none then result:=root.el else throw new Undefined() fi;
end min;
unit insert: procedure(r:elem);

var x,z:node;
begin

x:= r.lab;
if last=none then

root:=x; root.left, last:=root
else

if last.ns=0 then
last.ns:=1; z:=last.left; last.left:=x;
x.up:=last; x.left:=z; z.right:=x;

else
last.ns:=2; z:=last.right; last.right:=x;
x.right:=z; x.up:=last; z.left:=x;
last.left.right:=x; x.left:=last.left; last:=z;

fi
fi;
call correctUp(r)

end insert;
unit delete: procedure(r: elem);

var x,y,z:node;
begin

x:=r.lab; z:=last.left;
if last.ns =0 then

y:= z.up;
if y=none then root:=none else y.right:= last fi;
last.left:=y; last:=y;

else
y:= z.left; y.right:= last; last.left:= y;

fi;
z.el.lab:=x; x.el:= z.el; last.ns:= last.ns-1;
r.lab:=z; z.el:=r;
(* the following three instructions were added during our verification *)



G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving 19

z.left.right :=none; z.ns:=0; z.left, z.right, z.up := none;
if x.less(x.up) then

call correctUp(x.el)
else

call correctDown(x.el)
fi;

end delete;
unit correctDown: procedure(r: elem);

var x,z: node, t: elem, fin, log: Boolean;
begin

z := r.lab;
while not fin
do

if z.ns = 0 then fin :=true
else

if z.ns=1 then x := z.left
else

if z.left.less(z.right) then x:= z.left else x:=z.right fi
fi;
if z.less(x)
then

fin := true
else

t:= x.el; x.el :=z.el; z.el:=t;
z.el.lab :=z; x.el.lab:=x

fi;
fi;
z:=x;

od
end correctDown;
unit correctUp: procedure(r: elem);

var x,z: node, t: elem, fin, log: Boolean;
begin

z := r.lab;
x:= z.up;
do

if x=none then log:=true else log:=x.less(z) fi;
if log then exit fi;
t:=z.el; z.el:=x.el; x.el:=t;
x.el.lab:=x; z.el.lab:=z; z:=x; x:z.up;

od
end correctUp;

end PQ;



20 G. Mirkowska, A. Salwicki, O. Świda / Experimenting, Observing, Proving

unit node: class (el:elem);
var left,right,up: node, ns:integer;
unit less: function(x:node): boolean;
begin

if x= none then
result:=false

else
result:=el.less(x.el)

fi;
end less;

end node;
unit elem: class(prior:real);

var lab: node;
unit virtual less: function(x:elem):boolean;
begin

if x=none then
result:= false

else
result:= prior ≤ x.prior

fi;
end less;

begin
lab:= new node(this elem);

end elem;
unit Undefined: Exception class;
end Undefined

end PQS (* priority queues system *);


