Axiomatic definition of Loglan'82: Różnice pomiędzy wersjami
(Utworzono nową stronę "On these pages we are sketching, in an incremental way, an axiomatic semantics of Loglan'82. == Part II Axiomatic definitions of sublanguages of Loglan'82 == Here we sha...") |
(→Part II Axiomatic definitions of sublanguages of Loglan'82) |
||
Linia 1: | Linia 1: | ||
On these pages we are sketching, in an incremental way, an axiomatic semantics of Loglan'82. | On these pages we are sketching, in an incremental way, an axiomatic semantics of Loglan'82. | ||
− | == | + | == Axiomatic definitions of sublanguages of Loglan'82 == |
Here we shall present an increasing sequence of sublanguages <math>\mathcal{L}_0\subset\mathcal{L}_1\subset\mathcal{L}_2\subset \mathcal{L}_3\subset\mathcal{L}_4\subset \dots</math>Loglan'82. For each language <math>\mathcal{L}_i</math> we shall present its grammar and some axioms and inference rules that define its semantics. | Here we shall present an increasing sequence of sublanguages <math>\mathcal{L}_0\subset\mathcal{L}_1\subset\mathcal{L}_2\subset \mathcal{L}_3\subset\mathcal{L}_4\subset \dots</math>Loglan'82. For each language <math>\mathcal{L}_i</math> we shall present its grammar and some axioms and inference rules that define its semantics. | ||
=== Program === | === Program === |
Wersja z 11:04, 16 paź 2015
On these pages we are sketching, in an incremental way, an axiomatic semantics of Loglan'82.
Axiomatic definitions of sublanguages of Loglan'82
Here we shall present an increasing sequence of sublanguages [math]\mathcal{L}_0\subset\mathcal{L}_1\subset\mathcal{L}_2\subset \mathcal{L}_3\subset\mathcal{L}_4\subset \dots[/math]Loglan'82. For each language [math]\mathcal{L}_i[/math] we shall present its grammar and some axioms and inference rules that define its semantics.
Program
Program in Loglan'82 has the following structure
definiendum | definiens |
---|---|
program | program <name>;
begin
end |
where name is any identifier, i.e. a finite sequence of letters and digits beginning with a letter.
The declarations and instructions are finite sequences of declarations and instructions respectively, empty squence included.
This allow us to define the first sublanguage [math]\mathcal{L}_0[/math] of Loglan'82.
[math]\mathcal{L}_0 \stackrel{df}{=}\{p\in \mathcal{A}^*: p=\textbf{program}\ \textit{id}; \textbf{begin end} \}[/math]
Programs of the language [math]\mathcal{L}_0[/math] are empty programs, they posses just a name. Their list of instructions as well as list of declarations are empty. The effect of execution of such program is do nothing.
Now we shall define a new language [math]\mathcal{L}_{0.1}[/math]. First, we say that any expression of the form:
writeln;
write(integer);
write("here your text");
is an output instruction.
[math]\mathcal{L}_{0.1} \stackrel{df}{=}\{p\in \mathcal{A}^*: p=\textbf{program} \textit{ id}; \textbf{begin} \lt\textit{output instructions}\gt \textbf{end} \}[/math]
program print; begin
end |
Declarations of variables. Assignment instructions
Example
program P2 ;
- var x,y: integer;
begin
- y:=74;
- x:= y+ 8;
end
Grammar
Context free grammar
Well formed expressions
Axiom
[math]\{x:=\tau\}( \alpha ) \Leftrightarrow \alpha(x/\tau)[/math]