Algorithmic logic: Różnice pomiędzy wersjami
m |
|||
(Nie pokazano 7 pośrednich wersji utworzonych przez tego samego użytkownika) | |||
Linia 3: | Linia 3: | ||
Are you ready?<br /> | Are you ready?<br /> | ||
− | '''A challenge'''<br /> | + | '''A challenge''' (presented by Pawel Susicki) <br /> |
− | Given the piece of software | + | Given the piece of software <math> \mathrm{Nic}</math> consisting of a class Node and two functions insert and contains (see below) ''prove or disprove'' the following formula<br /> |
− | <math> | + | ::<math> \mathrm{Nic} \vdash \forall_{n_0 \in Node} \forall_{k \in Key}\,[\textbf{call } insert(n_0,k)]contains(n_0,k) </math><br /> |
− | i.e. it is a logical consequence of admitting declarations of class Node and functions insert and contains, that for every object <math>n_0 </math>, and for every element <math> | + | i.e. it is a logical consequence of admitting declarations of class Node and functions insert and contains, that for every object <math>n_0 </math>, and for every element <math>k </math> of type <math>Key </math>, after execution of command <math>insert(n_),k) </math> holds <math>contains(n_0,k) </math>. <br /> |
+ | The listing of Nic follows: | ||
----------------- | ----------------- | ||
+ | <small> | ||
class Node | class Node | ||
− | { | + | { |
Node l,r; | Node l,r; | ||
Key k; | Key k; | ||
− | |||
Node( Key _k ) : k(_k) {} | Node( Key _k ) : k(_k) {} | ||
− | } | + | } |
− | + | ||
− | void insert( Node n, Key k ) | + | void insert( Node n, Key k ) |
− | { | + | { |
loop | loop | ||
{ | { | ||
Linia 40: | Linia 41: | ||
return; | return; | ||
} | } | ||
− | } | + | } |
− | + | ||
− | bool contains( Node n, Key k ) | + | bool contains( Node n, Key k ) |
− | { | + | { |
while( n ) | while( n ) | ||
{ | { | ||
Linia 55: | Linia 56: | ||
} | } | ||
return false; | return false; | ||
− | } | + | } |
+ | </small> | ||
+ | ----------------- | ||
+ | A piece of cake? Not so easy. Your answer should be written in the format close to a formal proof. It means, it should be easy to verify the correctness of your proof in an automated way. Therefore, the proof should be a sequence of steps. You are not allowed to explain how the program is executed, no hands waving. Instead you are limited to use these declarations and some inference rules and axioms. |
Aktualna wersja na dzień 20:19, 16 paź 2015
Algorithmic logic is a logical calculus. More than this it is also a calculus of programs.
We begin with an example ot its usefulness.
Are you ready?
A challenge (presented by Pawel Susicki)
Given the piece of software [math] \mathrm{Nic}[/math] consisting of a class Node and two functions insert and contains (see below) prove or disprove the following formula
- [math] \mathrm{Nic} \vdash \forall_{n_0 \in Node} \forall_{k \in Key}\,[\textbf{call } insert(n_0,k)]contains(n_0,k) [/math]
- [math] \mathrm{Nic} \vdash \forall_{n_0 \in Node} \forall_{k \in Key}\,[\textbf{call } insert(n_0,k)]contains(n_0,k) [/math]
i.e. it is a logical consequence of admitting declarations of class Node and functions insert and contains, that for every object [math]n_0 [/math], and for every element [math]k [/math] of type [math]Key [/math], after execution of command [math]insert(n_),k) [/math] holds [math]contains(n_0,k) [/math].
The listing of Nic follows:
class Node { Node l,r; Key k; Node( Key _k ) : k(_k) {} } void insert( Node n, Key k ) { loop { if( k < n.k ) if( n.l ) n := n.l; else { n.l := new Node( k ); return; } else if( n.k < k ) if( n.r ) n := n.r; else { n.r := new Node( k ); return; } else return; } } bool contains( Node n, Key k ) { while( n ) { if( k < n.k ) n := n.l; else if( n.k < k ) n := n.r; else return true; } return false; }
A piece of cake? Not so easy. Your answer should be written in the format close to a formal proof. It means, it should be easy to verify the correctness of your proof in an automated way. Therefore, the proof should be a sequence of steps. You are not allowed to explain how the program is executed, no hands waving. Instead you are limited to use these declarations and some inference rules and axioms.