Inference rules: Różnice pomiędzy wersjami

Z Lem
Skocz do: nawigacji, wyszukiwania
(Inference rules of algorithmic logic)
Linia 1: Linia 1:
 
== Inference rules of algorithmic logic ==
 
== Inference rules of algorithmic logic ==
  
<math>\tag{R_1}<span style="color: Blue">\dfrac{\alpha ,(\alpha \Rightarrow \beta )}{\beta } </span> </math>
+
<span style="color: Blue"><math>\tag{R_1}\dfrac{\alpha ,(\alpha \Rightarrow \beta )}{\beta } </math></span>
 
<math>\tag{R_2}<span style="color: Blue"> \dfrac{(\alpha \Rightarrow \beta )}{(K\alpha \Rightarrow K\beta )} </span> </math>
 
<math>\tag{R_2}<span style="color: Blue"> \dfrac{(\alpha \Rightarrow \beta )}{(K\alpha \Rightarrow K\beta )} </span> </math>
 
<math>\tag{R_3}<span style="color: Blue"> \dfrac{\{s({\bf if}\ \gamma \ {\bf then}\ K\ {\bf fi})^{i}(\lnot
 
<math>\tag{R_3}<span style="color: Blue"> \dfrac{\{s({\bf if}\ \gamma \ {\bf then}\ K\ {\bf fi})^{i}(\lnot

Wersja z 09:52, 19 lis 2015

Inference rules of algorithmic logic

[math]\tag{R_1}\dfrac{\alpha ,(\alpha \Rightarrow \beta )}{\beta } [/math] [math]\tag{R_2}\ltspan style="color: Blue"\gt \dfrac{(\alpha \Rightarrow \beta )}{(K\alpha \Rightarrow K\beta )} \lt/span\gt [/math] [math]\tag{R_3}\ltspan style="color: Blue"\gt \dfrac{\{s({\bf if}\ \gamma \ {\bf then}\ K\ {\bf fi})^{i}(\lnot \gamma \wedge \alpha )\Longrightarrow \beta \}_{i\in N}}{(s({\bf while}\ \gamma \ {\bf do}\ K\ {\bf od}\ \alpha )\Longrightarrow \beta )} \lt/span\gt [/math] [math]\tag{R_4}\ltspan style="color: Blue"\gt \dfrac{\{(K^i\alpha \Longrightarrow \beta )\}_{i\in N}}{(\bigcup K\alpha \Longrightarrow \beta )} \lt/span\gt [/math] [math]\tag{R_5}\ltspan style="color: Blue"\gt \dfrac{\{(\alpha \Longrightarrow K^i\beta )\}_{i\in N}}{(\alpha \Longrightarrow \bigcap K\beta )} \lt/span\gt [/math] [math]\tag{R_6}\ltspan style="color: Blue"\gt \dfrac{(\alpha (x)~\Longrightarrow ~\beta )}{((\exists x)\alpha (x)~\Longrightarrow ~\beta )} \lt/span\gt [/math] [math]\tag{R_7}\ltspan style="color: Blue"\gt \dfrac{(\beta ~\Longrightarrow ~\alpha (x))}{(\beta \Longrightarrow (\forall )\alpha (x))} \lt/span\gt [/math]


In rules $R_6$ and $R_7$, it is assumed that $x$ is a variable which is not free in $ \beta $, i.e. $x \notin FV(\beta )$. The rules are known as the rule for introducing an existential quantifier into the antecedent of an implication and the rule for introducing a universal quantifier into the suc\-ces\-sor of an implication. The rules $R_4$ and $R_5$ are algorithmic counterparts of rules $R_6$ and $R_7$. They are of a different character, however, since their sets of premises are in\-finite. The rule $R_3$ for introducing a \textbf{while} into the antecedent of an implicationis of a similar nature. These three rules are called $\omega $-rules.

The rule $R_{1}$ is known as \textit{modus ponens}, or the \textit{cut} rule.

In all the above schemes of axioms and inference rules, $\alpha $, $\beta $, $\delta $ are arbi\-trary for\-mulas, $\gamma $ and $\gamma ^{\prime }$ are arbitrary open formulas, $\tau $ is an arbitrary term, $s$ is a finite se\-quence of assignment instructions, and $K$ and $M$ are arbitrary programs.