Algorithmic theory of rational numbers: Różnice pomiędzy wersjami

Z Lem
Skocz do: nawigacji, wyszukiwania
 
Linia 1: Linia 1:
 
'''Theorem'''. Axioms of ordered field and algorithmic formula saying for all n and m the Euclid's algorithm terminates uniquely determine the structure of rational numbers. <br />
 
'''Theorem'''. Axioms of ordered field and algorithmic formula saying for all n and m the Euclid's algorithm terminates uniquely determine the structure of rational numbers. <br />
For the proof consult [AK1] [[Media:Kreczmar-Program-Fields.pdf| {{Cytuj pismo |odn=a | imię=Antoni | nazwisko=Kreczmar |tytuł=Programmability in Fields |czasopismo=Fundamenta Informaticae |strony=195-230 |rok=1977}}]]
+
For the proof consult [[Media:Kreczmar-Program-Fields.pdf| {{Cytuj pismo |odn=a | imię=Antoni | nazwisko=Kreczmar |tytuł=Programmability in Fields |czasopismo=Fundamenta Informaticae |strony=195-230 |rok=1977}}]]

Aktualna wersja na dzień 12:12, 2 paź 2018

Theorem. Axioms of ordered field and algorithmic formula saying for all n and m the Euclid's algorithm terminates uniquely determine the structure of rational numbers.
For the proof consult Antoni Kreczmar. Programmability in Fields. „Fundamenta Informaticae”, s. 195-230, 1977.