Axiomatic definitions of sublanguages of Loglan'82: Różnice pomiędzy wersjami
(→Characters) |
(→Characters) |
||
Linia 82: | Linia 82: | ||
'''Proof''' uses two axioms of algorithmic logic: <br /> | '''Proof''' uses two axioms of algorithmic logic: <br /> | ||
− | <math>\begin{ | + | <math>\begin{equation}\tag{Ax:=}[x:=\tau]\alpha \Leftrightarrow \alpha(x/\tau) \end{equation} </math> <br /> |
− | this axiom of assignment instruction reads: ''after execution of instruction '' <math>x:=\tau</math> ''formula ''<math>\alpha</math> '' holds | + | this axiom of assignment instruction reads: ''formula '' <math>\alpha(x/\tau)</math> '' holds iff after execution of instruction '' <math>x:=\tau</math> ''formula ''<math>\alpha</math> '' holds.''<br /> |
+ | <math>\begin{equation}\tag{Ax ;}[K; M]\alpha \Leftrigtharrow [K][M]\alpha \end{equation} </math> | ||
<math>\begin{align*} | <math>\begin{align*} | ||
& (c_1 =a \land c_2=b \land c_1=a) & \\ | & (c_1 =a \land c_2=b \land c_1=a) & \\ | ||
− | \Leftrightarrow & [c_3 :=c_1](c_3 =a \land c_2=b \land c_3=a) & by | + | \Leftrightarrow & [c_3 :=c_1](c_3 =a \land c_2=b \land c_3=a) & by Axiom :=\\ |
− | \Leftrightarrow & [c_3 :=c_1][c_1:=c_2](c_3 =a \land c_1=b \land c_3=a) & by | + | \Leftrightarrow & [c_3 :=c_1][c_1:=c_2](c_3 =a \land c_1=b \land c_3=a) & by Axiom := \\ |
− | \Leftrightarrow & [c_3 :=c_1; c_1:=c_2](c_3 =a \land c_1=b \land c_3=a) & by | + | \Leftrightarrow & [c_3 :=c_1; c_1:=c_2](c_3 =a \land c_1=b \land c_3=a) & by Axiom ;\\ |
− | \Leftrightarrow & [c_3 :=c_1; c_1:=c_2][c_2:=c_3](c_3 =a \land c_1=b \land c_3=a) & by | + | \Leftrightarrow & [c_3 :=c_1; c_1:=c_2][c_2:=c_3](c_3 =a \land c_1=b \land c_3=a) & by Axiom := \\ |
− | \Leftrightarrow & [c_3 :=c_1; c_1:=c_2;c_2:=c_3](c_3 =a \land c_1=b \land c_3=a) & by | + | \Leftrightarrow & [c_3 :=c_1; c_1:=c_2;c_2:=c_3](c_3 =a \land c_1=b \land c_3=a) & by Axiom ; \\ |
\end{align*} </math> | \end{align*} </math> | ||
Wersja z 10:30, 27 lis 2014
On these pages we shall attempt to develop a sequence of algorithmic theories that correspond to a sequence of sublanguages of of Loglan'82 language.
Here we shall present an increasing sequence of sublanguages [math]\mathcal{L}_0\subset\mathcal{L}_1\subset\mathcal{L}_2\subset \mathcal{L}_3\subset\mathcal{L}_4\subset \dots[/math]Loglan'82. For each language [math]\mathcal{L}_i[/math] we shall present its grammar and some axioms and inference rules that define its semantics.
Spis treści
Program
Program in Loglan'82 has the following structure
definiendum | definiens |
---|---|
program | program <name>;
begin
end |
where name is any identifier, i.e. a finite sequence of letters and digits beginning with a letter.
The declarations and instructions are finite sequences of declarations and instructions respectively, empty squence included.
This allow us to define the first sublanguage [math]\mathcal{L}_0[/math] of Loglan'82.
[math]\mathcal{L}_0 \stackrel{df}{=}\{p\in \mathcal{A}^*: p=\textbf{program}\ \textit{id}; \textbf{begin end} \}[/math]
Programs of the language [math]\mathcal{L}_0[/math] are empty programs, they posses just a name. Their list of instructions as well as list of declarations are empty. The effect of execution of such program is do nothing.
Now we shall define a new language [math]\mathcal{L}_{0.1}[/math]. First, we say that any expression of the form:
writeln;
write(integer);
write("here your text");
is an output instruction.
[math]\mathcal{L}_{0.1} \stackrel{df}{=}\{p\in \mathcal{A}^*: p=\textbf{program} \textit{ id}; \textbf{begin} \lt\textit{output instructions}\gt \textbf{end} \}[/math]
program print; begin
end |
Primitive types
Characters
The type char is a finite set of characters. No operation is defined on charcters. However one can compare two characters.
'a' = 'a'
'a' =/= 'c'
The language [math]\mathcal{L}_{1.1} [/math] allows to declare variables of type char and to assign values to the variables. Assignments
Example
program characters;
- var c1,c2,c3:char
begin
- c1:='p';
- c2:='d';
- writeln(c1,c2);
- c3:=c1;
- c1:=c2;
- c2:=c3;
- writeln(c1,c2)
end
Exercise
Guess what will print this program.
Lemma
[math](c1=a \land c2=b)\Rightarrow [c3:=c1; c1:=c2; c2:=c3](c1=b \land c2=a) [/math]
Proof uses two axioms of algorithmic logic:
[math]\begin{equation}\tag{Ax:=}[x:=\tau]\alpha \Leftrightarrow \alpha(x/\tau) \end{equation} [/math]
this axiom of assignment instruction reads: formula [math]\alpha(x/\tau)[/math] holds iff after execution of instruction [math]x:=\tau[/math] formula [math]\alpha[/math] holds.
[math]\begin{equation}\tag{Ax ;}[K; M]\alpha \Leftrigtharrow [K][M]\alpha \end{equation} [/math]
[math]\begin{align*}
& (c_1 =a \land c_2=b \land c_1=a) & \\
\Leftrightarrow & [c_3 :=c_1](c_3 =a \land c_2=b \land c_3=a) & by Axiom :=\\
\Leftrightarrow & [c_3 :=c_1][c_1:=c_2](c_3 =a \land c_1=b \land c_3=a) & by Axiom := \\
\Leftrightarrow & [c_3 :=c_1; c_1:=c_2](c_3 =a \land c_1=b \land c_3=a) & by Axiom ;\\
\Leftrightarrow & [c_3 :=c_1; c_1:=c_2][c_2:=c_3](c_3 =a \land c_1=b \land c_3=a) & by Axiom := \\
\Leftrightarrow & [c_3 :=c_1; c_1:=c_2;c_2:=c_3](c_3 =a \land c_1=b \land c_3=a) & by Axiom ; \\
\end{align*} [/math]
Boolean
Syntax
Axioms
Example
program Boole;
- var a, b, c, b1, b2:Boolean
begin
- b1:=a or b;
- b2:=b1 and c;
- writeln(b1, b2)
end
Declarations of variables. Assignment instructions
Example
program P2 ;
- var x,y: integer;
begin
- y:=74;
- x:= y+ 8;
end
Grammar
Context free grammar
Well formed expressions
Axiom
[math]\{x:=\tau\}( \alpha ) \Leftrightarrow \alpha(x/\tau)[/math]