Ułamek piętrowy: Różnice pomiędzy wersjami

Z Lem
Skocz do: nawigacji, wyszukiwania
Linia 7: Linia 7:
 
<math>  \dfrac{\dfrac{\dfrac{2^{k_{x}}-1}{3}\cdot {2^{k_{x-1}}-1}}{3}\cdot 2^{k_{x-2}}-1 }{3}  =n?</math><br />
 
<math>  \dfrac{\dfrac{\dfrac{2^{k_{x}}-1}{3}\cdot {2^{k_{x-1}}-1}}{3}\cdot 2^{k_{x-2}}-1 }{3}  =n?</math><br />
 
lub <br />
 
lub <br />
 +
 +
Wróć na stronę [[ hhh]]

Wersja z 21:03, 3 cze 2024

Czy każdą liczbę naturalną można przedstawić jako ułamek piętrowy następującej postaci?

[math]\dfrac{2^{k_{x}}-1}{3} =n?[/math]
lub
[math]\dfrac{\dfrac{2^{k_{x}}-1}{3} \cdot {2^{k_{x-1}}-1}}{3} =n?[/math]
lub
[math] \dfrac{\dfrac{\dfrac{2^{k_{x}}-1}{3}\cdot {2^{k_{x-1}}-1}}{3}\cdot 2^{k_{x-2}}-1 }{3} =n?[/math]
lub

Wróć na stronę hhh