Algorithmic logic: Różnice pomiędzy wersjami
Z Lem
Linia 9: | Linia 9: | ||
----------------- | ----------------- | ||
class Node | class Node | ||
− | { | + | { |
Node l,r; | Node l,r; | ||
Key k; | Key k; | ||
− | |||
Node( Key _k ) : k(_k) {} | Node( Key _k ) : k(_k) {} | ||
− | } | + | } |
− | + | ||
− | void insert( Node n, Key k ) | + | void insert( Node n, Key k ) |
− | { | + | { |
loop | loop | ||
{ | { | ||
Linia 40: | Linia 39: | ||
return; | return; | ||
} | } | ||
− | } | + | } |
− | + | ||
− | bool contains( Node n, Key k ) | + | bool contains( Node n, Key k ) |
− | { | + | { |
while( n ) | while( n ) | ||
{ | { | ||
Linia 55: | Linia 54: | ||
} | } | ||
return false; | return false; | ||
− | } | + | } |
+ | ----------------- |
Wersja z 21:43, 7 sty 2015
Algorithmic logic is a logical calculus. More than this it is also a calculus of programs.
We begin with an example ot its usefulness.
Are you ready?
A challenge
Given the piece of software NIC consisting of a class Node and two functions insert and contains (see below) prove or disprove the following formula
[math] NIC \vdash \forall_{n_0 \in Node} \forall_{e \in T}\,[\textbf{call } insert(n_0,e)]contains(n_0,e) [/math]
i.e. it is a logical consequence of admitting declarations of class Node and functions insert and contains, that for every object [math]n_0 [/math], and for every element [math]e [/math] of type [math]T [/math], after execution of command [math]insert(n_),e) [/math] holds [math]contains(n_0,e) [/math].
class Node { Node l,r; Key k; Node( Key _k ) : k(_k) {} } void insert( Node n, Key k ) { loop { if( k < n.k ) if( n.l ) n := n.l; else { n.l := new Node( k ); return; } else if( n.k < k ) if( n.r ) n := n.r; else { n.r := new Node( k ); return; } else return; } } bool contains( Node n, Key k ) { while( n ) { if( k < n.k ) n := n.l; else if( n.k < k ) n := n.r; else return true; } return false; }