Niestandardowy model liczb naturalnych: Różnice pomiędzy wersjami
Z Lem
Linia 1: | Linia 1: | ||
− | Klasa NSN przytoczona poniżej spełnia aksjomaty | + | Klasa NSN przytoczona poniżej spełnia aksjomaty liczb naturalnych z operacją dodawania, ale wykonywanie algorytmu Euklidesa w środowisku zdefiniowanym przez tę klasę nie zawsze kończy się po skończonej liczbie kroków. |
------ | ------ | ||
Linia 46: | Linia 46: | ||
:: (* Tw. Te dwie specyfikacje są równoważne i zupełne *) | :: (* Tw. Te dwie specyfikacje są równoważne i zupełne *) | ||
− | : var (* final *) zero, one: Nat; | + | : '''var''' (* final *) zero, one: Nat; |
− | begin (* main *) | + | '''begin''' (* main *) |
− | : zero := new NSN(0, 0,1); | + | : zero := '''new''' NSN(0, 0,1); |
− | : one := new NSN(1,0,1); | + | : one := '''new''' NSN(1,0,1); |
− | end | + | '''end''' |
Wersja z 11:39, 20 lut 2013
Klasa NSN przytoczona poniżej spełnia aksjomaty liczb naturalnych z operacją dodawania, ale wykonywanie algorytmu Euklidesa w środowisku zdefiniowanym przez tę klasę nie zawsze kończy się po skończonej liczbie kroków.
program NonstandardNaturalNumbers;
- unit NSN: Nat class(cecha,licznik, mianownik: integer);
- unit virtual add: function(m: NSN) : NSN;
- begin
- result:= new NSN(cecha+m.cecha, licznik*m.mianownik+mianownik*m.licznik)
- end add;
- unit virtual isequal: function(n: NSN): Boolean;
- begin
- result := (cecha=m.cecha) and (licznik*m.mianownik=mianownik*m.licznik)
- end isequal;
- begin
- if licznik=0 and cecha <0 then raise Exception fi;
- if licznik < 0 then raise Exception fi;
- if mianownik =0 then raise Exception fi
- end NSN;
- unit Nat: class; (* specyfikacja 1sza *)
- unit virtual add: function(x:Nat): Nat; end add;
- unit virtual isequal: function(x:Nat): Boolean; end isequal;
- (* -------------------------------------------------------- *)
- (* forall n in Nat, not( n.add(one).isequal(zero)
- forall n,m in Nat not n.isequal(m) implies not n.add(one).isequal(m.add(one))
- dla kazdej formuły alpha(x)
- {alpha(x/zero) and forall n [alpha(n) implies alpha(n.add(one))]} implies forall n alpha(n)
- *)
- end Nat;
- unit Nat2: class; (* specyfikacja 2sza *)
- unit virtual add: function(x:Nat): Nat; end add;
- unit virtual isequal: function(x:Nat): Boolean; end isequal;
- (* INVARIANTS *)
- (* -------------------------------------------------------- *)
- (* forall n in Nat, not( n.add(one).isequal(zero)
- forall n,m in Nat not n.isequal(m) implies not n.add(one).isequal(m.add(one))
- INNY SCHEMAT zob. A. Grzegorczyk Zarys Arytmetyki Teoretycznej, PWN, Warszawa, 1971, str.239
- *)
- end Nat2;
- (* Tw. Te dwie specyfikacje są równoważne i zupełne *)
- var (* final *) zero, one: Nat;
begin (* main *)
- zero := new NSN(0, 0,1);
- one := new NSN(1,0,1);
end