Algorithmic logic
Algorithmic logic is a logical calculus. More than this it is also a calculus of programs.
We begin with an example ot its usefulness.
Are you ready?
A challenge
Given the piece of software NIC consisting of a class Node and two functions insert and contains (see below) prove or disprove the following formula
[math] NIC \vdash \forall_{n_0 \in Node} \forall_{e \in T}\,[\textbf{call } insert(n_0,e)]contains(n_0,e) [/math]
i.e. it is a logical consequence of admitting declarations of class Node and functions insert and contains, that for every object [math]n_0 [/math], and for every element [math]e [/math] of type [math]T [/math], after execution of command [math]insert(n_),e) [/math] holds [math]contains(n_0,e) [/math].
class Node
{
Node l,r; Key k;
Node( Key _k ) : k(_k) {}
}
void insert( Node n, Key k ) {
loop { if( k < n.k ) if( n.l ) n := n.l; else { n.l := new Node( k ); return; } else if( n.k < k ) if( n.r ) n := n.r; else { n.r := new Node( k ); return; } else return; }
}
bool contains( Node n, Key k ) {
while( n ) { if( k < n.k ) n := n.l; else if( n.k < k ) n := n.r; else return true; } return false;
}