Algorithmic logic
Algorithmic logic is a logical calculus. More than this it is also a calculus of programs.
We begin with an example ot its usefulness.
Are you ready?
A challenge
Given the piece of software Nic consisting of a class Node and two functions insert and contains (see below) prove or disprove the following formula
[math] \mathrm{Nic} \vdash \forall_{n_0 \in Node} \forall_{k \in Key}\,[\textbf{call } insert(n_0,k)]contains(n_0,k) [/math]
i.e. it is a logical consequence of admitting declarations of class Node and functions insert and contains, that for every object [math]n_0 [/math], and for every element [math]k [/math] of type [math]Key [/math], after execution of command [math]insert(n_),k) [/math] holds [math]contains(n_0,k) [/math].
The listing of Nic follows:
class Node { Node l,r; Key k; Node( Key _k ) : k(_k) {} } void insert( Node n, Key k ) { loop { if( k < n.k ) if( n.l ) n := n.l; else { n.l := new Node( k ); return; } else if( n.k < k ) if( n.r ) n := n.r; else { n.r := new Node( k ); return; } else return; } } bool contains( Node n, Key k ) { while( n ) { if( k < n.k ) n := n.l; else if( n.k < k ) n := n.r; else return true; } return false; }