Collatz

Z Lem
Skocz do: nawigacji, wyszukiwania

Nareszcie!
Praca nad problemem trwała 83 lata.


Udało się zmienić statut z hipoteza Collatza na twierdzenie Collatza.
Argumenty znajdziesz tu.

Wprowadzenie

Rozpatrzmy zdanie
dla każdej liczby naturalnej [math]n[/math], poniższy program ma obliczenie sończone

while n<> 0 do
if nieparzyste(n) then n:=3n+1 else n:=n/2 fi
od

Zaczynamy od uwagi, że prawdziwośc powyższego zdania pociaga za sobą prawdzowość tezy Collatza. Ale w r.1937 nie istniały komputery ani języki programowania.

Spostrzeżenie z r. 2004

  • algorytm nie potrzebuje operacji mnożenia,
  • w strukturze algebraicznej, która jest niestandardowym modelem elementarnej teorii dodawania liczb naturalnychnasz algorytm ma obliczenie nieskończone.
  • Tezy Collatza nie można udowodnić na podstawie aksjomatów elementarnej teorii dodawania liczb naturalnych.

Poprawiamy sformułowanie tezy

W standardowej strukturze liczb naturalnych z operacją dodawania nasz program ma obliczenie skończone, dla każdego argumentu n..

Formuła stopu

Należy zatem sformułować formułę ,math>\theta</math> (wyrażenie logiczne) taką, że przyjmuje ona wrtośc prawda wtedy i tylko wtedy gdy obliczenie programu [math]Cl[/math] jest skończone. Takich formuł jest wiele w języku urachunku programów, tj. logiki algorytmicznej.<be/> ,math> \theta:\,\left \begin{tabular}{l} \mathbf{while}\ n<> 0 \ \mathbf{do} \\ \quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbff{fi} \\ \mathbf{od} \end{tabular} \right (n=1) </math>
Można też rozważać inne formuły.
Druga część zadania jest znacznie trudniejsza: przeprowadzić dowód formuły stopu posiłkując się aksjomatami rachunku programów i aksjomatami algorytmicznej teorii liczb naturalnych.