Collatz
Nareszcie!
Praca nad problemem trwała 83 lata.
Udało się zmienić statut z hipoteza Collatza na twierdzenie Collatza.
Argumenty znajdziesz tu.
Spis treści
Wprowadzenie
Rozpatrzmy zdanie
dla każdej liczby naturalnej [math]n[/math], poniższy program [math]Cl [/math] ma obliczenie sończone
[math]\color{blue}\qquad Cl:\,\left\{\begin{array}{l} \mathbf{while}\ n \neq 0 \ \mathbf{do} \\
\quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbf{fi} \\
\mathbf{od} \end{array}\right\} [/math]
Zaczynamy od uwagi, że prawdziwośc powyższego zdania pociaga za sobą prawdzowość tezy Collatza, tak jak ona została sformułowana przed II wojną światową.
Ale w r.1937 nie istniały komputery ani języki programowania.
Spostrzeżenie z r. 2004
- algorytm nie potrzebuje operacji mnożenia ani dzielenia przez 2,
- w strukturze algebraicznej, która jest niestandardowym modelem elementarnej teorii dodawania liczb naturalnych (jest taka) algorytm [math]Cl[/math]ma dle pewnych argumentów obliczenie nieskończone.
- a więc tezy Collatza nie można udowodnić na podstawie aksjomatów elementarnej teorii dodawania liczb naturalnych.
Poprawiamy sformułowanie tezy
W standardowej strukturze liczb naturalnych z operacją dodawania nasz program ma obliczenie skończone, dla każdego argumentu n..
Formuła stopu
Należy zatem stworzyć formułę [math]\theta[/math] (wyrażenie logiczne) taką, że przyjmuje ona wrtośc prawda wtedy i tylko wtedy gdy obliczenie programu [math]Cl[/math] jest skończone. Takich formuł jest wiele w języku urachunku programów, tj. logiki algorytmicznej.
,[math]\qquad \theta:\,\left\{\begin{array}{l} \mathbf{while}\ n \neq 0 \ \mathbf{do} \\
\quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbf{fi} \\
\mathbf{od} \end{array}\right\} (n=1) [/math]
Można też rozważać inne formuły, np,
,[math]\qquad \xi:\,\bigcup \left\{K:\,\begin{array}{l} \mathbf{if}\ n \neq 0 \ \mathbf{then} \\
\quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbf{fi} \\
\mathbf{fi} \end{array}\right\} (n=1) [/math]
{co się czyta: istnieje taka iteracja ,[math]K^i[/math] programu [math]K[/math], że po wykonaniu [math]K^i[/math] zachodzi równość [math]n=1[/math] .}
Druga część zadania jest znacznie trudniejsza: nalezy przeprowadzić dowód formuły stopu posiłkując się aksjomatami rachunku programów i aksjomatami algorytmicznej teorii liczb naturalnych.
Elementarna teoria dodawania liczb naturalnych
Teoria ta jest wyznaczona przez podanie trzech składników: języka, logiki czyli operacji konsekencji oraz aksjomatów specyficznych dla tej teorii.
Język. Wyrażenia języka zbudowane są z następujących symboli: symbole zmiennych np. x,y,n, symbou + dwuargumentoweji operacji, symbolu = dwuargumentowej relacji, symboli 0,1 stałych i symboli funktorów logicznych oraz symboli pomocniczych np. nawiasy
.
Przykładami wyrażeń są ...
Logika. Operacja konsekwencji (wnioskowania) jest wyznaczona przez podanie aksjomatów logiki pierwszego rzędu i reguł wnioskowania.
Aksjomaty.