Arytmetyka Algorytmiczna
Z Lem
Wersja AndrzejSalwicki (dyskusja | edycje) z dnia 22:49, 20 lut 2013
Aksjomaty algorytmicznej teorii liczb naturalnych:
- (N1) [math]\color{blue} (\forall n) (n+1 \neq 0 ) [/math]
- (N2) [math]\color{blue} (\forall n)(\forall m)(n+1=m+1 \Rightarrow n=m)[/math]
- (N3) [math]\color{blue} (\forall n)[m:=0; \mathbf{while}\ m \neq n\ \mathbf{do}\ n:=n+1\ \mathbf{od}](m=n)[/math]
Niektóre fakty
Operacje dodawania i mnożenia są programowalne
- Jego własność stop nie wynika z aksjomatów Peano, ponieważ algorytm zapętla się w modelu (niestandardowym) arytmetyki liczb naturalnych z dodawaniem.
- Natomiast daje się wyprowadzić z aksjomatów algorytmicznej arytmetyki, zob. analiza algorytmu Euklidesa.
Algorytmiczny aspekt ostatniego twierdzenia Fermata