Inference rules: Różnice pomiędzy wersjami

Z Lem
Skocz do: nawigacji, wyszukiwania
(Inference rules of algorithmic logic)
Linia 1: Linia 1:
 
== Inference rules of algorithmic logic ==
 
== Inference rules of algorithmic logic ==
  
<math>\tag{R1}\dfrac{\alpha ,(\alpha \Rightarrow \beta )}{\beta } </math>
+
<math>\tag{R_1}<span style="color: Blue">\dfrac{\alpha ,(\alpha \Rightarrow \beta )}{\beta } </span> </math>
 
+
<math>\tag{R_2}<span style="color: Blue"> \dfrac{(\alpha \Rightarrow \beta )}{(K\alpha \Rightarrow K\beta )} </span> </math>
\item[$R_{2}$]\qquad $\dfrac{
+
<math>\tag{R_3}<span style="color: Blue"> \dfrac{\{s({\bf if}\ \gamma \ {\bf then}\ K\ {\bf fi})^{i}(\lnot
(\alpha \Rightarrow \beta )}{(K\alpha \Rightarrow K\beta )
+
}$
+
\item[$R_{3}$]\qquad  $\dfrac{\{s({\bf if}\ \gamma \ {\bf then}\ K\ {\bf fi})^{i}(\lnot
+
 
\gamma \wedge \alpha )\Longrightarrow \beta \}_{i\in N}}{(s({\bf while}\
 
\gamma \wedge \alpha )\Longrightarrow \beta \}_{i\in N}}{(s({\bf while}\
\gamma \ {\bf do}\ K\ {\bf od}\ \alpha )\Longrightarrow \beta )}$
+
\gamma \ {\bf do}\ K\ {\bf od}\ \alpha )\Longrightarrow \beta )} </span> </math>
\item[$R_{4}$]\qquad  $\dfrac{\{(K^i\alpha \Longrightarrow \beta )\}_{i\in N}}{(\bigcup
+
<math>\tag{R_4}<span style="color: Blue"> \dfrac{\{(K^i\alpha \Longrightarrow \beta )\}_{i\in N}}{(\bigcup
K\alpha \Longrightarrow \beta )}$
+
K\alpha \Longrightarrow \beta )} </span> </math>
\item[$R_{5}$]\qquad $\dfrac{\{(\alpha \Longrightarrow K^i\beta )\}_{i\in N}}{(\alpha
+
<math>\tag{R_5}<span style="color: Blue"> \dfrac{\{(\alpha \Longrightarrow K^i\beta )\}_{i\in N}}{(\alpha
\Longrightarrow \bigcap K\beta )}$
+
\Longrightarrow \bigcap K\beta )} </span> </math>
\item[$R_{6}$]\qquad $\dfrac{(\alpha (x)~\Longrightarrow ~\beta )}{((\exists
+
<math>\tag{R_6}<span style="color: Blue"> \dfrac{(\alpha (x)~\Longrightarrow ~\beta )}{((\exists
x)\alpha (x)~\Longrightarrow ~\beta )}$
+
x)\alpha (x)~\Longrightarrow ~\beta )} </span> </math>
\item[$R_{7}$]\qquad $\dfrac{(\beta ~\Longrightarrow ~\alpha (x))}{(\beta
+
<math>\tag{R_7}<span style="color: Blue"> \dfrac{(\beta ~\Longrightarrow ~\alpha (x))}{(\beta
\Longrightarrow (\forall )\alpha (x))}$
+
\Longrightarrow (\forall )\alpha (x))} </span> </math>
\end{trivlist}
+
 
 +
 
 
In rules $R_6$ and $R_7$, it is assumed that $x$ is a variable which is not free in $
 
In rules $R_6$ and $R_7$, it is assumed that $x$ is a variable which is not free in $
 
\beta $, i.e. $x \notin  FV(\beta )$. The rules are known as the rule for
 
\beta $, i.e. $x \notin  FV(\beta )$. The rules are known as the rule for

Wersja z 10:49, 19 lis 2015

Inference rules of algorithmic logic

[math]\tag{R_1}\ltspan style="color: Blue"\gt\dfrac{\alpha ,(\alpha \Rightarrow \beta )}{\beta } \lt/span\gt [/math] [math]\tag{R_2}\ltspan style="color: Blue"\gt \dfrac{(\alpha \Rightarrow \beta )}{(K\alpha \Rightarrow K\beta )} \lt/span\gt [/math] [math]\tag{R_3}\ltspan style="color: Blue"\gt \dfrac{\{s({\bf if}\ \gamma \ {\bf then}\ K\ {\bf fi})^{i}(\lnot \gamma \wedge \alpha )\Longrightarrow \beta \}_{i\in N}}{(s({\bf while}\ \gamma \ {\bf do}\ K\ {\bf od}\ \alpha )\Longrightarrow \beta )} \lt/span\gt [/math] [math]\tag{R_4}\ltspan style="color: Blue"\gt \dfrac{\{(K^i\alpha \Longrightarrow \beta )\}_{i\in N}}{(\bigcup K\alpha \Longrightarrow \beta )} \lt/span\gt [/math] [math]\tag{R_5}\ltspan style="color: Blue"\gt \dfrac{\{(\alpha \Longrightarrow K^i\beta )\}_{i\in N}}{(\alpha \Longrightarrow \bigcap K\beta )} \lt/span\gt [/math] [math]\tag{R_6}\ltspan style="color: Blue"\gt \dfrac{(\alpha (x)~\Longrightarrow ~\beta )}{((\exists x)\alpha (x)~\Longrightarrow ~\beta )} \lt/span\gt [/math] [math]\tag{R_7}\ltspan style="color: Blue"\gt \dfrac{(\beta ~\Longrightarrow ~\alpha (x))}{(\beta \Longrightarrow (\forall )\alpha (x))} \lt/span\gt [/math]


In rules $R_6$ and $R_7$, it is assumed that $x$ is a variable which is not free in $ \beta $, i.e. $x \notin FV(\beta )$. The rules are known as the rule for introducing an existential quantifier into the antecedent of an implication and the rule for introducing a universal quantifier into the suc\-ces\-sor of an implication. The rules $R_4$ and $R_5$ are algorithmic counterparts of rules $R_6$ and $R_7$. They are of a different character, however, since their sets of premises are in\-finite. The rule $R_3$ for introducing a \textbf{while} into the antecedent of an implicationis of a similar nature. These three rules are called $\omega $-rules.

The rule $R_{1}$ is known as \textit{modus ponens}, or the \textit{cut} rule.

In all the above schemes of axioms and inference rules, $\alpha $, $\beta $, $\delta $ are arbi\-trary for\-mulas, $\gamma $ and $\gamma ^{\prime }$ are arbitrary open formulas, $\tau $ is an arbitrary term, $s$ is a finite se\-quence of assignment instructions, and $K$ and $M$ are arbitrary programs.