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Preface

This thesis is a part of a more general work concerning the problem of identifier binding in
Java. Java is concerned here as most general of languages admitting both inheritance and
inner classes. The problem of identifier binding consist in assigning the proper meaning
to the occurrences of identifiers either at compile time or at run time. At the compile
time we distinguish between defining and applied occurrences. The meaning of a defining
occurrence of an identifier is the definition which the identifier is connected with. Each
applied occurrence of an identifier must be bound to the proper defining occurrence. If we
restrict our problem to the variable identifiers then at the compile time we will be interested
in types of these variables. But at runtime we will be interested first of all in the location
of the variable in the memory, and in most cases in the value of the variable. Since a type
of the variable can be read from the declaration of this variable we can say that at compile
time each variable is bound to its declaration while at runtime each variable is bound to
the location in memory, which was reserved specially for this variable.

Now consider class identifiers. During compilation we are interested in binding each
applied occurrence of class identifier to the declaration of the corresponding class. Then
during runtime, while creating an object of a class K, we are looking for an environment
which will be used for binding the nonlocal variables occurrences within methods of the
class K.

Unexpectedly it turned out that the problem of binding class identifiers is especially
difficult during the compilation of a program. The source of the difficulty is the fact that
in Java the extended class may be denoted not only by stand alone class identifier but
also by qualified type, which is a sequence of class identifiers separated by dots. We must
deal here with the mutually recursive definition of binding. Binding of qualified types uses
the inheritance function, while the definition of this function uses the binding of qualified
type. The problem reduces to inventing the proper order of computing of the inheritance
function as it will be shown in sections 3.1 and 4.1. The additional problems are checking
of well-formedness of a program and the detection and correction of eventual errors.

The structure of the thesis is as follows. The first chapter “Introduction” exposes the
problem through a series of examples. The next chapter formulates the problem of iden-
tification of direct superclass in the language of a graph of classes of a given program.
Chapter 3 presents a non-deterministic algorithm and the proof of correctness. In the sub-
sequent chapter a deterministic algorithm is presented and analyzed. Chapter 5 analyzes
earlier work on the problem and in particular the work of A.Igarashi and B.Pierce. The
structure of the chapter is as follows: The section 5.2 presents the calculus of Igarashi
and Pierce. Examples are given showing that the calculus is inconsistent. We are giving a
simple remedy to it. In the section 5.3 we translate the inference rules of the IPET calculus
in such a way that the phrase "the meaning of the type X in the environment P is the class
T" is now expressed by the formula bind(X in P ) = T and we show that the function
bind calculated by the algorithm of the sectiion 3.1 is a model of the IPET calculus. Next
section 5.4 shows that there is another concept Bind of binding function and that Bind is
modeling the IPET calculus as well. In the section 5.5 we show that the intersection of two

v



vi Chapter 0.

models needs not be a model. In this way one should abandon the hope that by adding
the, metatheoretic, phrase, "take the least model" of the models of IPET calculus the task
of identifying the direct superclass of classes of a Java program may be completed.

The last chapter exposes the application of the results obtained above during compila-
tion and latter during the execution of programs.



Chapter 1

Introduction

1.1 Motivation
In this thesis we address the problem of determining direct superclasses. This problem
becomes hard to answer when an object-oriented programming language admits inner
classes. Inner classes of Simula67 [9], Loglan’82 [1] [3], BETA [2] and Java (Java 1.2 and
subsequent versions) [6], [7], [8] introduce block structure for class declarations. Consider
an arbitrary Java-program. The set of classes of the program together with the relation
class A is an inner class of class B is a forest structure. (The roots of trees are top level
classes.) Therefore several classes of a program may be given the same name (See the
examples 1 and 2). Classes use the clause extends C, (to be read as "this class inherits
from a class named C"). However, the meaning of the name C is not unique. Which of
possibly many classes named C is the direct superclass of our class? The consequences of
a possible error in inheriting may be dramatic if the author(s) and readers of a program
interpret the meaning of inherited classes differently. Obviously, compilers are readers of
programs. Therefore we postulate as a matter of course: for every program P, its author
and the compilers should identify the direct superclasses in the same way. This implies the
necessity of a clear and compact criterion which would guarantee the existence of a solution
of the problem of determining direct superclasses, whether the solution was guessed by a
programmer in an intuitive way or whether it was computed mechanically by a compiler.
To find a solution is so challenging because the Java Language Specification JLS [7] is
defining inheritance or superclassing rather implicitly: 1) Inheritance is defined by the
help of the binding function which binds applied identifier occurrences in a program to
their declaring occurrences. 2) The binding function on the other hand is defined by use
of the inheritance. Therefore we need a more formalized specification of the problem and
a constructive way of solving it, i.e. an algorithm. The algorithm should be applied as the
first step in the static semantic analysis performed by the compiler.

1.2 Four examples
Example 1.2.1. In the program below there are three classes named B. We can identify
them as follows: class B, class A$B, class A$D$B.

class B { }
class A {

class B { }
class C extends B { }

1



2 Chapter 1.

class D {
class B { }

}
class E extends D.B { }

} //end A

Which class inh(C) is the direct superclass of the class C? Which class inh(E) is in-
herited by the class E?
The answer is easy, inh(C) = A$B, inh(E) = A$D$B. We guessed the first answer fol-
lowing the usual method of static binding that for any applicative occurrence of an identifier
finds a declaration of this identifier that is appropriate. The second answer was found in
two steps: first we searched a declarative occurrence of D which is A$D, next, we searched
a class named B declared inside the class D. �

The second example shows that the complexity of the problem is non-trivial.

Example 1.2.2. Consider the following classes

class A extends B { // this can be class B or A$B
class C extends D { // this can be class B$D or E$D

class F extends G {} // this can be class A$E$G or E$G
} // end C
class E {

class G {}
} // end E
class B extends E {} // this can be class E or A$E

} // end A
class B {

class D extends E {} // this can be class E or A$E
} // end B
class E {

class G extends B {} // this can be class B or A$B
class D {}

} // end E

In this example the function inh that for every class K associates with it its direct superclass
inh(K) may be defined on 26 possible ways. For we have six clauses extends and for each
clause there are two classes of the name mentioned in it. �

This example shows that searching all possible candidates for inh function is not a good
approach as in general the number of candidates for the mapping inh may be exponential
function of the length of a given Java program. The compiler would be stuck for indefinite
amount of time.
The next example shows that the solutions may be counter intuitive.

Example 1.2.3. This example shows that the requirement (taken from JLS[7]) “a class
may not depend on itself ” is essential. The natural, however complicated, requirement that
all types mentioned in the extends phrases have some meaning, is not sufficient. Adding a
natural, additional requirement that there is no cycle in the inheritance relation does not
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A ext B B E

G ext BD ext EB ext EEC ext D

F ext G G

D

Figure 1.1: The diagram of Example 1.2.2 shows the structure of classes, solid arrows lead
from a class to its enclosing class. Dashed arrows lead from a class to its direct superclass,
they show the unique solution inh.

help. We show that there exist two different and astonishing functions, candidates for inh.

class A extends B.C { }
class B extends A.D { }
class G {
class D {
class C extends G { }

}
}
class I {
class C {
class D extends I { }

}
}

IG

D

C ext G

A ext B.C

C

D ext I

B ext A.D

inh , inh 21 2 inh1 inh

Two candidate functions: inh1 and inh2 may be guessed

A B G$D$C I$C$D
inh1 G$D$C G$D G I
inh2 I$C I$C$D G I

Both functions seem to be correct since inhi(K) is reestablished by binding the extends type
of every class declaration occurrence K. Both functions inh1 and inh2 satisfy conditions
mentioned in JLS [7] in 6.5.5 (later in Problem 2.1.6 formalized as condition I1). Still we
feel uneasy because the program would have two different dynamic semantics what is not
appropriate for a well-formed program. Which of two is the right inheritance function? Or
are both of them wrong with respect to Java’s static semantics? The answer, namely the
rejection of well-formedness of program Example 3 due to JLS [7], will be given later by
Theorems 3.2.10 and 3.2.20. Example 1.2.3 uncovers the decisive rôle of the dependency
relation which JLS [7] is introducing. This example violates the requirement “no class
depends on itself “ of JLS [7] 8.1.4 (later in Problem 2.1.6 formalized as condition I2).
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This implicit condition can not be directly included into a compiler. However, we need a
precise criterion, in form of an algorithm, to be used by the constructors of compilers for
some code of any length. �

The fourth example demonstrates that compilers may compile the same program in
different ways. It has little to do with the problem of determining direct superclasses, yet,
it shows the scale of disagreement on the meaning of program.

Example 1.2.4. We asked several Java programmers to tell what the program would print.
The answers came in two classes: "prints 1", "prints 2". Next, we tested the program by
five Java compilers {javac, gcj, jikes, kopi, ecj }. The results were in three (!) classes. For
one compiler said: The program has an error. In this way an open question arises: Is Java
an unambiguous programming language?

abstract class AF {
abstract int f();

class A { int x = f(); }
}
class B1 extends AF {

int f() { return 1; }
class B2 extends AF {

int f(){return 2;}
class B extends B1.A {}

}
}
class Test {

public static void main( String[] argv) {
System.out.println(new B1().new B2().new B().x);

}
}

�

1.3 Discussion
These examples show that the problem of determining direct superclasses is of importance
for compiler writers and for programmers as well. Even short programs may create prob-
lems in proper determination of their meaning. It seems that the majority of programmers
is unaware of subtle problems that can appear during their work with programs. The
help provided by the reference book Java Language Specification [7] is clumsy. The book
requires that a programmer reads several sections (e.g. 8.1.4 Superclasses and Subclasses, 8.5
Member Type Declarations, 6.5.5 Meaning of Type Name.) before he/she is able to understand
what is happening in a given program.
Someone may say: "your examples are unrealistic. The programmers do not write such
weird programs". Let us remark that the programs become longer and more complicated
than our examples. Compilers must be prepared to detect any possible error in any source
code.

Another doubt may appear: "are inner classes needed at all? Some descendants of
Simula67 such as SMALLTALK, C++, C# forbid inner classes."
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It turns out that the combination of inheritance and inner classes offers many interesting
possibilities:

• it allows to obtain most of the effects of multiple inheritance c.f. [12] Chapter 10,

• instead of passing classes as parameters one can extend abstract inner classes which
serve as counterparts of formal parameters [13] p.176,

• provides a convenient way to express call back objects [12],

• allows to inherit certain patterns of architecture, e.g. a class pattern of the model-
view-controller system can be defined and extended by inheriting classes [1], [12],

• allows to inherit protocols [1] p.112-113,

• enables inheritance of a class put earlier into a tree-like library of classes,

• and many others.
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Chapter 2

Formulation of the problem

2.1 Preliminaries
We assume that the reader is accustomed to the programming language Java [7] and the
notions of class, top-level class, direct superclass.
In this section we generalize the intuitions which arise from the examples. We begin with
the observation that instead of Java-programs it suffices to consider their structures of
classes. Let P be a given Java-program. We add two predefined classes {Root, Object}.
We may assume that P ’s top level classes are contained in the additional class Root. We
assume also that the class Root contains the additional class Object. Now, we strip the
program1 and leave only the clauses

class A {, or
class A extends B {, or

(?) class A extends B1.B2. ... .Bn{

and the corresponding closing braces }.
In this way one obtains a Java-program which exhibits the structure of all classes. It con-
tains all classes declared in the program and two predefined classes Root and Object. Each
user declared class has its name - an identifier introduced by the declaration. Additionally
we assume that the name of class Object is the identifier Object. Let Classes be the set
of user defined class declarations occurrences in a program P . The structure of classes is
equipped with a partial function decl which for every class K but Root points to that class
in which class K is declared, i.e. the textually directly enclosing class. It is easy to observe
that the structure 〈Classes ∪ {Root, Object}, decl〉 of classes is a tree. Class Root is the
root of this tree.2

Definition 2.1.1. Qualified type, is a finite sequence of class identifiers separated by dots.

The clauses extends bring another function defined on the set of user defined classes,
namely, for each class except Root and Object we have a extension type associated to it.
For some classes the type is empty (in these cases the keyword extends is omitted – it
means that that for these classes the direct superclass is the predefined class Object), for
some other classes the type consists of one class identifier, for other classes the type is a
qualified type. If a type consists of just one identifier then it is the name of the direct

1i.e. we throw away all instructions and all declarations other than class declarations
2There is a bijection between the set of Classes and the set T of finite sequences of names of classes

such that a sequence s ∈ T iff it is a code of a path leading from a top-level class to a given class. This
concept is present already in [11]. For example, A.B.F denotes the class F declared inside the class B
which is declared in a top level class A.

7



8 Chapter 2.

superclass (the directly inherited class). One program may contain many classes of the
same name which makes the problem of determining which class is direct superclass of a
given class a non-trivial task. Every well-formed program satisfies the local distinctness
property which says that every two different directly inner classes directly declared in a
class have different names. The property will be useful in our considerations. Now, Java
allows the types of length > 1, c.f.(?). The identifiers occurring in a type are names of
classes. The declaring occurrence of class named B1 should be visible from the place where
the class A is declared and for every 1 ≤ i < n the class Bi+1 is a member (an attribute)
3 of the class named Bi (i.e. an inner class of Bi or an inner class of a direct or indirect
superclass of class Bi).

Let P be a (stripped) Java program. Sometimes we shall use a formal description of
the structure of classes of the program P :

SP = 〈Classes, Id, Types, decl, name, ext, Root, Object〉

where

• Classes is the set of classes declared (more distinctly: class declaration occurrences)
in the stripped program P,

• Id is the set of identifiers found in the stripped program P plus the identifier Object,

• Types is the set of types found in the stripped program P after the keyword extends
extended by a special empty type ε see function ext below,

• decl : Classes ∪ {Object} −→ Classes ∪ {Root}
is the function which for each class K ∈ Classes ∪ {Object} returns the textually
directly enclosing class of the class K,

• name : Classes ∪ {Object} −→ Id
is the function that returns the identifier of a given class. The additional class Root
has no name. For the class Object name(Object) = Object,

• ext : Classes −→ Types is the function which for each class K ∈ Classes returns
the (extension) type found in its extension clause. If the extension clause is omitted
in the declaration of class K then ext(K) = ε . This empty type will denote a special
class Object as a direct superclass of class K.

Below we list properties of the structure SP .

• decl(Object) = Root.

• The pair 〈Classes ∪ {Root, Object}, decl〉 is a tree. The class Root is its root.

• If decl(K) = decl(M) then name(K) 6= name(M) or K = M .

Let C be an identifier. In the remainder of this paper we shall use partial function

.C : Classes ∪ {Root} −→ Classes ∪ {Object}.

Let K be a class. The expression K.C denotes a class Y which is declared within class
K and its name is C, K.C is defined ⇐⇒ (∃Y )(decl(Y ) = K ∧ C = name(Y )). The

3”Attribute” is the jargon of Simula67, Loglan’82 and BETA, ”member” is the jargon of SMALLTALK,
C++ and Java.
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well-definedness of .C follows from the third property listed above.
One can conceive this structure as a graph. The set Classes is the set of nodes of the
graph. Each node has two attributes associated with it: name - the name of the class,
ext - the type designating its direct superclass. The function decl defines the edges of the
graph. An example of the graph is shown in Fig. 1.1.
The same graph may be obtained from the SymbolTable - the data structure built by the
compiler for the program P . One takes the SymbolTable and throws away (ignores) all
irrelevant information about declarations of variables, methods, constructors, etc., only
information about classes is retained.
Speaking informally, for a given structure S the problem is to obtain a total function inh,
(or equivalently, a set of edges of colour inh), which for every given class K ∈ Classes
returns the direct superclass of class K or to assure that such a function does not exist,
signalling that the class structure S is not a (static semantically) correct one. Fig. 1 has
continuous edges - edges showing the decl function and dashed edges - edges showing inh
function.
In the sequel we shall use the following notations. Let f be a partially defined mapping
f : X → X. An i-th iteration of the function f is defined by induction

f 0(x) = x f i+1(x) = f(f i(x)).

The notation f ∗ denotes zero or more iterations of the function f , while f+ denotes one or
more iterations of the function f . Let Y be a subset of the set X. Notation f |Y denotes
the restriction of the function f to the set Y . Before we specify the problem, we need
definitions of a partial function bind, which is based on a given function inh, partially
defined on a subset of Classes.
Below we shall give an inductive definition of the partial function

bind : Types× Classes ∪ {Root} → Classes ∪ {Object}

which to a given pair 〈type T, class C〉 associates a class D. An equation bind(T in C) = D
reads informally as: the meaning of type T inside the class C is the class D, or in other
words inside the class C the type T is bound to the class D. Note that the same type T
may have a different meaning inside another class C ′.

Definition 2.1.2. A1) ( base of induction 1) For any class K the meaning of the empty type
ε is bound to Object. We define

bind(ε in K)
df
= Object.

A2) ( base of induction 2 ) Let K be a class. An applied occurrence of a (class) identifier C
in the class K is bound to a class named C such that

bind(C in K)
df
= (inhideclj(K)).C

where the pair (j, i), j ≥ 0, i ≥ 0, is the least pair in the lexicographic order such that
the class (inhideclj(K)).C is defined. The pairs are compared according to the lexicographical
order, i.e. the pair (j, i) is less than the pair (q, p) if j < q or j = q and i < p. The value of
bind(C in K) is undefined in the remaining cases.

B) ( inductive step ) Let X 6= ε. For any class K the meaning of a type of the form X.C in
the class K is determined in two steps.

bind(X.C in K)
df
= (inhi(bind(X in K)).C
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where i ≥ 0, is the least natural number such that the class
(inhi(bind(X in K)).C is defined,
the value of bind(X.C in K) is undefined in the remaining cases.

Compare our definition with the text of JLS [7](Sections 6.3, 6.5.5, 8.1.4). We believe that
our definition of the function bind corresponds most closely to the lengthy and scattered
description of meaning of Java’s type name. Notice that the partial function bind can be
given an algorithmic definition (in the form of a procedure) as well, c.f. 2.2.

Example 2.1.3. This example ilustrates our definition of the function bind.

F ext C E ext F B ext E G

C

AG ext CG

G.G

bind(ε in Root) = Object = inh(C)
bind(ε in C) = Object = inh(C$G)
bind(ε in C$B) = Object = inh(C$B$A)
bind(C in Root) = C = inh(F)
bind(C in E) = decl(E).C = Root.C =
= C
bind(G in A) = inh decl(A).G = E$G
bind(G.G in A) = inhi(bind(G in A)).G
= inh(E$G).G = C.G = C$G

The following relation dep plays an important rôle in the further considerations. In the
description of the Java [7] it is called the dependency relation (induced by a superclassing
function inh).
Let ext(K) be the following type C1.C2. ... .Ci. ... .Cn. Then ext(K)|i denotes the initial
segment C1.C2. ... .Ci of length i, of the type ext(K).

Definition 2.1.4. The dependency relation dep is
dep

df
= {〈K, bind(ext(K)|i in decl(K))〉 :

K ∈ Classes,
0 < i ≤ length(ext(K)) for ext(K) 6= ε,
i = 0 for ext(K) = ε}.

The above definition can be read as follows: let a class K be of the form: class C
extends C1.C2. ... .Ci. ... .Cn { ... } then the class K depends on every class designated
by the type ext(K)|i. In JLS [7] (Section 8.1.4) one finds the following sentence: It is a
compile-time error if a class depends on itself. The word depends in this sentence is to be
meant as the transitive closure of the relation dep.

Figure 2.1 illustrates the way of computing the value of the function inh and the relation
dep.

Definition 2.1.5. A stripped Java program P is well-formed iff its class’ structure SP can
be extended by a funtion

inh : Classes −→ Classes ∪ {Object}

such that it satifies the following two conditions I1) for every class K ∈ Classes the value
inh(K) is defined and the following equality holds

inh(K) = bind(ext(K) in decl(K)).

I2) The relation dep contains no cycle .
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class C extends C
1 
... C

n
class C

n

class C
n-1

class C
2

class C
1

class C'

decl+

decl

decl

decl

decl

decl

inh

inh*

inh*

inh*

inh*

dep
dep

dep

dep

...

.C
n

.C
n-1

.C
2

.C
1

Figure 2.1: Direct superclass of class C extends C1.C2. ... .Cn−1.Cn.
Let K denote the class named C.
The diagram can be viewed from several angles.
First, if we delete the arrows dep and decl and keep the arrow decl+, then the diagram
obtained in this way commutes. This is so for every class in a well-formed structure of
classes. Note however, that the diagrams themselves may differ accordingly to the length
of type mentioned in the extends clause.
Second, the commutativity of the modified diagram illustrates the condition I1, i.e.

inh(K) = bind(ext(K) in decl(K)).
Third, the diagram may help to understand how to calculate the inh-arrow for class K
(Note, this is not an algorithm!). In this case we assume that all other inh-arrows appearing
in the diagram were calculated earlier. We are to identify class M1 of name C1, M1 =
(inhideclj(K)).C1 where the pair 〈j, i〉 is the least pair such that the value of the expression
inhi(declj(K)).C1 defined, next the class M2 of name C2, M2 = inhi(M1).C2 where i is
the least integer, such that the value of inhi(M1).C2 is defined, ... class Mn of name Cn,
Mn = inhi(Mn−1).Cn where i is the least integer such that the value of inhi(Mn−1).Cn is
defined, in this order.
Now we can put an arrow inh leading from K to Mn.
During the above process, we put arrows dep leading from the class K to the classes
Mi, 1 ≤ i ≤ n . The diagram of the structure of classes enriched with inh-arrows and
dep-arrows may not contain a cycle of dep-arrows.
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Now we are ready to specify the problem of determining the direct superclasses.

Problem 2.1.6. For a given structure of classes S, find whether the structure is well
formed, and if it is so compute the function inh which satisfies conditions I1 and I2, in the
case of the negative answer signal an error.

2.2 The algorithm computing function bind
In the following two chapters we shall use two auxiliary functions.

Bind(Id id, Classes ∪ {Root} K): Classes ∪ {Object, null}
var Class ∪ {null} L
while K 6= null do

L :=BindInh(id,K)
if L 6= null then return L endif
K := decl(K)

endwhile
return null

end Bind

BindInh(Id id, Classes ∪ {Root} K): Classes ∪ {Object, null}
var Class ∪ {null} L
while K 6= null do

L:=K.id
if L 6= null then return L endif
K :=inh(K)

endwhile
return null

end BindInh

For algorithmic purposes we assume that these functions are working on a data structure
Sprog beeing a sligthly modified structure S from the previous chapter.

Sprog = 〈Classes, Id, Types, {null}, declprog, inh, name, ext, Root, Object〉

where Classes, Id, Types, name, ext, Root, Object are as previously defined,
null is a special constant representing an undefined class.
declprog extends the previous function decl by adding declprog(Root) = null
inh : Classes ∪ {Object, Root} −→ Classes ∪ {Object, null}

is a partial acyclic function defined step by step by the algorithm in the next section.
Next we modify the function .C defined in the previous chapter. We extend it from

partial to the total function .C

.C : Classes ∪ {Root, Object} −→ Classes ∪ {Object, null}

by putting K.C = null for all pairs for which the former value of this function was
undefined.

For the readers convenience the upper subscript prog was omitted in the text of pro-
grams as it is clear which function should be taken into account.

Now we are ready to give a program which defines the function bindprog for the purpose
of the next section.
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bindprog(Types Path in Classes ∪ {Root} M): Classes ∪ {Object, null}
var Class ∪ {null} L
if length(Path) = 0 then return Object;
L := Bind(Path[1], M);
if L = null then return null;
for i := 2 to length(Path) do

L := BindInh(Path[i], L);
if L = null then return null;

endfor;
return L;

end bindprog

Lemma 2.2.1. For every class K if K = bind(T in M) for some type T and class M then
also bindprog(T in K) = M.
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Chapter 3

Non-deterministic algorithm

3.1 The algorithm
Below, we present a non-deterministic, abstract algorithm named LSWA, which computes
the function inh. The algorithm uses function bind defined in the previous section as
bindprog which satisfies the corresponding lemma 2.2.1
Data Structure: The class structure Sprog of a program.
Argument: The graph G representing the structure Sprog.
Result: The function inh which for each class A ∈ Classes shows a class B, the direct
superclass of class A, or executes a command Error signalling that the structure of classes
is erroneous.
Specification: See the Problem 2.1.6.

Algorithm LSWA:

V isited := {Root, Object};
inh := {(Root, null), (Object, null));
while V isited 6= (Classes ∪ {Root, Object})
do

Candidates := {K : decl(K) ∈ V isited ∧K /∈ V isited}
if (∃K ∈ Candidates) bind(ext(K) in decl(K)) ∈ V isited
then

let K be a Candidate taken arbitrary from the above test ;
{this choice is made in the nondeterministic way}

M := bind(ext(K) in decl(K));
inh := inh ∪ {〈K,M〉};
V isited := V isited ∪ {K}

else
Error

endif
endwhile

Observe that the command “let . . . ” is instruction of non-deterministic choice. The values
of function bind are computed using the current diagram of function inh computed so far.
For the algorithm of bind consult section 2.2

The word Error is an abbreviation of the following instruction

15
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if ∃KK∈ Candidates∃i1≤i≤length(ext(K))∀j1≤j<i(bind(ext(K)|j in decl(K)) ∈ V isited

∧ bind(ext(K) |i in decl(K)) is undefined)
then

throw new Signal_ConditionI1_violated() // a direct superclass of K cannot
//be detected. There is no declaration
//of a class named ext(K)[i]

else //∀KK∈ Candidates∃i1≤i≤length(ext(K))∀j1≤j<i(bind(ext(K)|j in decl(K))
// ∈ V isited ∧ bind(ext(K) |i in decl(K)) ∈ Candidates)

throw new Signal_ConditionI2_violated() //there is a cycle in the dep-relation
endif

We shall prove:

• This non-deterministic algorithm is determinate, it means that for every data, i.e. a
structure of classes, any two acceptable computations of the algorithm give the same
result.

• The algorithm either
computes the correct solution, i.e. the function inh satisfying conditions I1 and I2
or
it adequately signals that no solution exists for the given structure of classes.

3.2 Analysis of the algorithm

3.2.1 Correctness

We are going to prove that the algorithm terminates and is correct i.e. that if it halts
in a successful way (i.e. without signalling an error) then the computed function inh is
satisfying the conditions I1 and I2. Moreover the algorithm is complete meaning that if
it signals an error that this diagnosis is correct, i.e. there is no function inh satisfying
both I1 and I2. Finally, we are going to prove the uniqueness. We show that any solution
satisfying the conditions I1 and I2 is identical to the solution computed by the algorithm.

Lemma 3.2.1. ( on termination) The algorithm terminates.

Proof. In each step of iteration of the algorithm either the set V isited is increased or the
algorithm signals an error and stops. It is easy to observe that the number of iterations is
not bigger than the number of declared classes.

Definition 3.2.2. A state S is the pair 〈V isitedS, inhS〉 of values of corresponding vari-
ables, computed by the algorithm at the moment of testing the condition of the while in-
struction. �

Obviously, inhS is a set of pairs of classes, V isitedS denotes a subset of the set Classes∪
{Root, Object}.

Remark 3.2.3. For every state S, the graph

G1S = 〈V isitedS, decl|V isitedS
〉

is a tree with the root Root. Graph

G2S = 〈V isitedS�{Root}, inhS〉

is a tree with the root Object.
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Proof. Proof goes by induction w.r.t. n, number of iterations of the algorithm. For n = 0
the tree G2S contains only its root. Suppose that the thesis is true for a number k of
iterations. In the next iteration one adds an edge going from outside the set V isited to a
certain node in this set. Therefore the new graph is a tree again.

Lemma 3.2.4. For every state S = 〈V isitedS, inhS〉, for every class K ∈ V isitedS and
for every type P :
If bindinhS

(P in K) ∈ V isitedS then bindinhS
(P |i in K) ∈ V isitedS for 1 ≤ i < length(P ).

Proof. Assume the thesis of the lemma is wrong. Then there is a greatest i0 such that
1 ≤ i0 < length(P ) and class Ci0 = bindinhS

(P |i0 in K) /∈ V isitedS. The subsequent
class Ci0+1 = bindinhS

(P |i0+1 in K ) ∈ V isitedS, and, from the definition of bind, we
have: Ci0+1 = inhkS(Ci0).name(Ci0+1) where k is the smallest integer such that the right
side is defined. From Remark 3.2.3 we obtain that since Ci0 /∈ V isitedS then k = 0.
Then Ci0+1 = Ci0 .name(Ci0+1) and decl(Ci0+1) = Ci0 . Again from Remark 3.2.3 since
Ci0+1 ∈ V isitedS then also Ci0 ∈ V isitedS. Contradiction.

Lemma 3.2.5. Let S = 〈V isitedS, inhS〉 be a state.
Let inh be an arbitrary extension of function inhS on the set Classes.
A) For every class K ∈ V isitedS, and i ≥ 0 : inhiS(K) = inhi(K) or both sides are
undefined.
B) For every class K ∈ V isitedS and for every type P :
if for every 1 ≤ i < length(P ), bindinhS

(P |i in K) ∈ V isitedS then
∀M∈Classes(bindinhS

(P in K) = M ⇔ bindinh(P in K) = M).

Proof. Proof of A)
First we are going to prove that for every K ∈ V isitedS, inhS(K)
= inh(K).
Case 1) K /∈ {Root, Object}. Then inhS(K) is defined due to Remark 3.2.3. Hence
〈K, inhS(K)〉 ∈ inh since inhS ⊆ inh.
Case 2) K ∈ {Root, Object}. Then inhS(K) and inh(K) are both undefined.
Using the remark on graph G2S we conclude that inhiS(K) = inhi(K) or both sides are
undefined.
Proof of B)
0) (base of induction) For types of length 0 the lemma is obvious.
1) (base of induction) Consider types of length 1. Let P = C, C is a name of a class.We
are going to prove
(bindinhS

(P in K) = M ⇔ bindinh(P in K) = M).
By definition bindinhS

(P in K) = M iff M = (inhiS(decl
j(K))).C where the pair 〈j, i〉 is

the least pair in the lexicographic order such that the expression (inhiS(decl
j(K))).C has

a value. We are going to show that for any pair 〈m, l〉 less or equal the pair 〈j, i〉 and for
any class N, N = (inhlS(decl

m(K))).C ⇔ N = (inhl(declm(K))).C.
If declm(K) has a value then it denotes a class in V isitedS. Put K0 = declm(K). Using A)
we see that for any p : inhpS(K0) = inhp(K0) or both sides are undefined.
From here one obtains
(bindinhS

(P in K) = M ⇔ bindinh(P in K) = M).
I) (induction step) Let us assume that the lemma is true for types P of length not greater
than n, n ≥ 1. Let us consider type P.C. From the assumptions of this lemma we have

bindinhS
(P.C|i in K) ∈ V isitedS for 1 ≤ i ≤ length(P ).

Therefore bindinhS
(P |i in K) ∈ V isitedS for 1 ≤ i < length(P ). By inductive assumption

bindinhS
(P inK) = bindinh(P inK).Now we use the definition to calculate bindinh(P.C inK).

Arguments similar to those of point 1) lead to the result
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bindinhS
(P.C in K) = bindinh(P.C in K)

or to the conclusion that both sides of the equality are undefined, which ends the proof of
the lemma.

Lemma 3.2.6. Let S = 〈V isitedS, inhS〉 be an arbitrary state. Let inh be a function
satisfying condition I1.
Then inhS ⊆ inh.

Proof. Consider the sequence of states (a computation) leading to the state S. Let us
consider the longest initial segment {Si}i=0, ... ,q of the computation such that for every
state Si the inclusion inhSi

⊆ inh holds. Such segment exists for ∅ = inhS0 ⊆ inh.
If Sq = S then the thesis of the lemma is true. Suppose Sq 6= S. Then for a certain
candidate K in the state Sq we added the pair 〈K, bindinhSq

(ext(K) in decl(K))〉. Now,
the function inhSq , the state Sq and the function inh satisfy the premises of the preceding
lemma. We put decl(K) instead of K and we put ext(K) as P. From the algorithm
we know that bindinhSq

(ext(K) in decl(K)) ∈ V isitedSq . Using Lemma 3.2.4 we have
bindinhSq

(ext(K)|i in
decl(K)) ∈ V isitedSq for i = 1, ..., length(ext(K))− 1. Let

M
df
= bindinhSq

(ext(K) in decl(K)). Now we can apply the preceding lemma to conclude
that M = bindinh(ext(K) in decl(K)). Since inh satisfies condition I1 we get 〈K,M〉 ∈
inh. Therefore the state Sq+1 satisfies inhSq+1 ⊆ inh which contradicts our assumption.

Remark 3.2.7. The set S of states is partially ordered by the relation ≺ being the transitive
closure of the relation of immediate successorship of states.
Given two states S1 and S2, if S1 ≺ S2 then then inhS1 ⊂ inhS2 and V isitedS1 ⊂ V isitedS2

Lemma 3.2.8. Let S be a state S = 〈V isitedS, inhS〉. S satisfies condition I1 restricted in
this way that in this condition the set V isitedS, takes place of set Classes∪{Root, Object},
and function inhS the place of inh.

Proof. Let K be a class from V isitedS \ {Root, Object}. Let S1 be a state earlier than
S, S1 ≺ S, such that instruction inh := inh ∪ {〈K,M〉} is going to be executed, i.e. the
state S2 next to S1 is the first state such that 〈K, inhS2(K)〉 ∈ inhS2 . Then inhS2(K) =
bindinhS1

(ext(K) in decl(K)). By Remark 3.2.7 inhS1 ⊆ inhS2 ⊆ inhS. From the algorithm
the class bindinhS1

(ext(K) in decl(K)) ∈ V isitedS1 . Then, by Lemma 3.2.4 for every
1 ≤ i < length(ext(K)) the class bindinhS1

(ext(K)|i in decl(K)) ∈ V isitedS1 . Now by the
Lemma 3.2.5
bindinhS

(ext(K) in decl(K)) = bindinhS1
(ext(K) in decl(K))

bindinhS1
(ext(K) in decl(K) = inhS2(K) (see above)

inhS2(K) = inhS(K) (by the above inclusion).
This ends the proof of property I1.

Lemma 3.2.9. With the assumptions of the previous lemma we observe that if there exists
a cycle in the relation depS then no one of the classes of this cycle will ever be included to
the set V isited.

Proof. Suppose that there exists a cycle in the relation depS.
Let V = {K1

←−−−−−−−−−−−
→ K2 → ... →Kp} be this cycle. I.e. for j = 1, ..., p− 1 pairs 〈Kj, Kj+1〉 ∈

dep and pair 〈Kp, K1〉 ∈ dep. W.l.g. assume that K1 is the class which was added to the
set V isited as the first one. Then K2 = bindinhS

(ext(K1)|i in decl(K1)) for some 1 ≤ i ≤
length(ext(K1)). Let S0, S1 be two consecutive states such that inhS1(K1) is computed in



3.2 Analysis of the algorithm 19

the state S0. By the algorithm inhS1(K1) = bindinhS0
(ext(K1) in decl(K1)) ∈ V isitedS0 .

By Lemma 3.2.4, for every 1 ≤ j < length(ext(K1)) the class bindinhS0
(ext(K1)|j in decl(K1)) ∈

V isitedS0 .
According to Lemma 3.2.5 bindinhS0

(ext(K1)|i in decl(K1)) =

bindinhS
(ext(K1)|i in decl(K1)) = K2. In this way we proved that K2 ∈ V isitedS0 and

K1 /∈ V isitedS0 . Contradiction!

The above lemma leads immediately to the following

Theorem 3.2.10. (on correctness) Suppose that the algorithm stops without signalling an
error. Then the resulting function inh satisfies the conditions I1, I2 and the structure of
classes is well-formed.

3.2.2 Completeness

Now we are going to prove the completeness property of the algorithm. Namely, if the
algorithm stops and signals error then no total function inh exists of desired properties. We
begin with the remark that the instruction Error may be considered as an abbreviation of
a conditional statement, look at Section 3.1. This splitting in two cases is motivated by the
following observation: Should the algorithm come up with Error then the set Candidates
is not empty and ext(K) 6= ε for all K ∈ Candidates. For every such K there is a uniquely
associated i such that 1 ≤ i ≤ length(ext(K)) with bind(ext(K)|j in decl(K))
∈ V isited for all 1 ≤ j < i and bind(ext(K)|i in decl(K)) /∈ V isited. There are two
possible reasons for the latter situation: Either bind(ext(K)|i in decl(K)) is undefined or
a class M ∈ Candidates.
The following program examples illustrate these two cases.

Example 3.2.11. In this example no class named C is visible in the place where class A
is declared which is to inherit a class named C.

class A extends C {}
class B {

class C {}
}

The algorithm terminates erroneously in final state

Sfin = 〈V isited, inh〉 = 〈{Root, Object, B, C}, {〈B,Object〉, 〈C,Object〉}〉.

Class A is the only one candidate. The value of bind(C in Root) is undefined what is
showing up the first case.
A compiler should report “there is no appropriate class C declared“. �

Example 3.2.12. We consider the instructive Example 1.2.3 again. It is showing up the
second case. Our algorithm terminates erroneously in final state shown on Fig.3.1.
A and B are the two candidates. The value bind(A in Root) is A, the value bind(B in Root)
is B. �

Example 3.2.13. This example has exactly one solution inh which fulfills I1. inh has no
cycles, but its dependency relation dep has a cycle.
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A ext B.C

Root Object

B ext A.D G I

C

D ext I

D

C ext G

Continuous arrows are showing decl,
dashed arrows show inh,
grey  rectangles show Visited 

Figure 3.1: Final state for Example 3.2.12 (and Example 1.2.3)

class A extends B . D {
class C {}}

class B extends A . C {
class D {}}

Our algorithm terminates erroneously in final state
Sfin = 〈{Root, Object}, ∅〉.

A and B are the candidates. bind(B in Root) is B and bind(A in Root) is A, so there is a
cycle A dep−→ B

dep−→ A.
This example is so instructive also because it is showing that Igarashi’s and Pierce’s so called
sanity conditions 6) and 7) in [11] are more liberal than the condition ”no class depends on
itself“ taken from JLS [7]. Condition 6) is saying that inh has no cycles. Condition 7) is
saying that no class A is inheriting its own inner class (no A inh+

−→ B
decl+−→ A is allowed)”.

�

The example 3.2.11 motivates the following

Definition 3.2.14. We say that in a given state S = 〈V isitedS, inhS〉 the permanent lack
of a class to be inherited occurs iff there exists a class K such that for a certain 1 ≤ i ≤
length(ext(K)), decl(K) ∈ V isitedS and bindinhS

(ext(K)|i in decl(K)) is undefined and
for all 1 ≤ j < i bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS.

Lemma 3.2.15. If in a certain state S = 〈V isitedS, inhS〉 occurs the permanent lack of
a class to be inherited then no function inh exists which satisfies condition I1.

Proof. Suppose that a function inh satisfying I1 exists. Let K and i be a class and an
integer that have properties mentioned in Definition 3.2.14. By Lemma 3.2.6, inhS ⊆ inh.
Moreover, for all 1 ≤ j < i bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS . The values
inh(Root) and inh(Object) are undefined. Observe that decl(K) ∈ V isitedS.
By Lemma 3.2.5 we have ∀M∈Classes(bindinhS

(ext(K)|i in decl(K)) = M ⇔ bindinh(ext(K)|i in decl(K)) =
M).
Since inh satisfies I1, bindinh(ext(K) in decl(K)) = inh(K) is defined. Hence the right-
hand side of the equivalence above holds for some class M .
So bindinhS

(ext(K)|i in decl(K)) is defined contrary to our assumption!

Now we shall analyse the remaining case and prove that if for a certain state S =
〈V isitedS, inhS〉 the following condition holds
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c1) the algorithm signals an error in this state, and
c2) the property permanent lack of a class to be inherited does

not hold for S
then there exists a cycle in the dep relation for every dep relation induced by any function
inh satisfying I1.

Definition 3.2.16. Each state S determines the set CandidatesS which is evaluated just
after the test V isited 6= (Classes ∪ {Root, Object}) is performed.

We begin with an auxiliary lemma

Lemma 3.2.17. Let S be a state such that the conditions c1) and c2) are satisfied then
for every class K ∈ CandidatesS there exists a class M ∈ CandidatesS such that for a
certain 1 ≤ i ≤ length(ext(K)), M = bindinhS

(ext(K)|i in decl(K)) and for all 1 ≤ j < i,
bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS.

Proof. Let IK = {l : 1 ≤ l ≤ length(ext(K)) ∧ (∀1 ≤ j < l) bind(ext(K)|j in decl(K)) ∈
V isitedS}. First, we show that the set IK is non-empty. We demonstrate that 1∈ IK . We
can assume that length(ext(K)) ≥ 1 for in the opposite case of length(ext(K)) = 0 the
algorithm would not signal error and add the pair 〈K,Object〉 to inh. Consider l = 1, the
formula (∀1 ≤ j < l) bind(ext(K)|j in decl(K)) ∈ V isitedS is valid. Hence the set IK
contains 1 and is non-empty.
An upper bound of the set IK is length(ext(K)), hence max(IK) is defined, denote it by i.
Suppose now, that the value of bindinhS

(ext(K)|i in decl(K)) is undefined. It would mean
that the condition of permanent lack of a class to be inherited occurs which was excluded
by the assumption. Therefore there exists a class M defined by this expression M =
bindinhS

(ext(K)|i in decl(K)). We are going to show that M /∈ V isitedS. Let us assume
thatM ∈ V isitedS. Suppose moreover that i = length(ext(K)). In this case the algorithm
would add the pair 〈K,M〉 to inhS instead of signalling error. Hence i < length(ext(K)).
In this case i + 1 ∈ IK which contradicts the assumption i = max(IK). In this way we
proved that M /∈ V isitedS.
It remains to be proved that M ∈ CandidatesS. In order to do so it suffices to show that
decl(M) ∈ V isitedS. Put C = name(M).
Consider the case i = 1. We haveM = bindinhS

(C in decl(K)). By the definition of bindinhS

M = (inhlS(decl
k decl(K))).C for some l and k. Hence decl(M) = inhlS(decl

k decl(K)).
Since K ∈ CandidatesS we know decl(K) ∈ V isitedS. From Remark 3.2.3 we obtain
decl(M) ∈ V isitedS.
Consider the case i > 1. From the definition of i we have
bindinhS

(ext(K)|i−1 in decl(K)) ∈ V isitedS . Let P = ext(K)|i−1 then ext(K)|i = P.C.
Since M = bindinhS

(P.C in decl(K)) then by definition of bindinhS
we obtain

decl(M) = inhlS(bind(P in decl(K)) for some l ≥ 0.

Now we apply Remark 3.2.3 and obtain decl(M) ∈ V isitedS.

Corollary 3.2.18. Suppose that the assumptions of lemma 3.2.17 are satisfied. Let M be
a class such that

M = bindinhS
(ext(K)|i in decl(K))

for a certain 1≤ i ≤ length(ext(K)) and
for all 1≤ j < i bindinhS

(ext(K)|j in decl(K)) ∈ V isitedS. Suppose that a function inh
satisfying I1 exists.
Then M = bindinh(ext(K)|i in decl(K)).
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Proof. By the lemmas 3.2.5 and 3.2.6.

Lemma 3.2.19. If in a state S the algorithm signalled an error and there exists a function
inh satisfying the condition I1 (it implies no permanent lack of a class to be inherited due
to Lemma 3.2.15) then for any natural number n one can find a sequence K1

dep→ K2
dep→

...
dep→ Kn, such that all classes Ki ∈ CandidatesS, the relation dep→ is determined by the

solution inh, according to the definition.

Proof. (by induction) Let n = 1. The set (Classes\V isited is non-empty. Consider a class
M ∈ Classes\V isitedS. Let i be the least natural number such that decli(M) ∈ V isitedS.
Since Root ∈ {declj(M) : j > 0 and declj(M) is defined} and Root ∈ V isitedS, we know
that i exists. Since M /∈ V isitedS, i ≥ 1. Let K1 = decli−1(M). K1 ∈ CandidatesS.
(inductive step) Suppose that there exists a sequence K1

dep→ K2
dep→ ...

dep→ Kn which
satisfies the thesis of the lemma, i.e. Kn ∈ CandidatesS. By Lemma 3.2.17 and Corollary
3.2.18 there exists a class M = bindinh(ext(Kn)|i in decl(Kn)), M ∈ CandidatesS for a
certain 1 ≤ i ≤ length(ext(K)). We define Kn+1 = M and have Kn

dep→ M which ends the
proof.

From the above considerations one obtains:

Theorem 3.2.20. ( on completeness) The algorithm signals Error iff the structure of
classes is erroneous and no function inh satisfying conditions I1 and I2 exists.

Proof. Suppose that a solution inh exists. Since an error is signalled then either there is
permanent lack of a class to be inherited (c.f. Lemma 3.2.15) and consequently inh does not
enjoy the property I1 or (by Lemma 3.2.19) there exists a sequence K1

dep→ K2
dep→ ...

dep→ Kn

of length greater than the cardinality of set Classes. It means that there is a cycle of dep
arrows, it is impossible to extend the function inh computed so far in a way satisfying
conditions I1, I2 and A1, A2, B of Definition 2.1.2.
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A deterministic algorithm

4.1 The algorithm
This section presents a deterministic algorithm which elaborates direct superclasses. This
algorithm has several advantages over the non-deterministic one of c.f. section 3.1

• The algorithm is deterministic. All details necessary to implement it in practice are
given,

• The algorithm is equipped with diagnostics and error recovery mechanism. It consists
in coloring the visited classes i.e. nodes of classes structure S. The diagnostics
recognizes two types of errors: a) undeclared class or b) cycle in dependence relation.
The case of cycle in dependence relation is easy identifiable for the algorithm lists
the pairs
〈 header of a class declaration, path (name) of class on which the declared class
depends on 〉

• In both cases the error recovery uses the class Object as a target of inheritance.
The error recovery makes possible to continue the static semantic analysis of Java
programs.

In order to define proper data structure for the algorithm we extend the structure Sprog de-
fined in section 2.2 by the function sons : Classes∪{Root} −→ OrderedCollectionofClasses
Members of the ordered collection sons(K) are defined by the follwing equivalence:

M ∈ sons(K) ≡ decl(M) = K

The function sons together with its the order of its result collection is produced (like other
elements of the structure Sprog) as result of syntax analysis. The simplest ordering is that
induced by the textual order of classes declarations. The ordering of a collection sons(K)
in relevant in the execution of a loop for (Classes L : sons(K))
The algorithm uses functions Bind and BindInh defined in section 2.2, and consists of a
few procedures.
Data Structure: The class structure Sprog of a program and the function sons
Argument: The graph G representing the structure Sprog and the function sons.
Result: The function inh which for each class A ∈ Classes shows a class B, the direct
superclass of class A, such that inh satisfies problem 2.1.6 or signaling an error if such
function inh does not exist. In the case when error is signalled error recovery is performed
in order to define inh to the rest of remaining classes.

23
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Algorithm
DCStack := EmptyStack

{this stack is a global structure and will be used
for diagnostics of a cycle in dep relation}

Mark Root and Object White and all other classes mark Black
{Root and Object have inh undefined and all other classes were not processed yet}

Let inh(K)=null for every K ∈ Classes
call Preorder(Root)

end Algorithm

Preorder(Classes K)
if K is Black then

{we proceed only with such K which was not processed yet by ComputeInhFor
called form itself}
call ComputeInhFor(K)

endif
for (Classes L : sons(K)) do

call Preorder(L)
endfor

end Preorder

CycleMessage(Classes K)
{dump DCStack in order to write out the whole dependency cycle}

writeln(”Dependence cycle:”)
writeln(header(K))
writeln(”depends on class named ”, Pop(DCStack), ”which is: ”)
do

writeln(header(Pop(DCStack)))
if empty(DCStack) then exit endif
writeln(” which in turn depends on class named:”Pop(DCStack), ”which is: ”)

enddo
end CycleMessage

ComputeInhFor(Classes K)
var Classes ∪ {null} L i.e. value of variable L is either a Class or null

{variable L is used to compute consequtive types found in ext(K)}
{ decl(K) is White }
{decl(K) was yet processed and has its inh computed}
Mark K Grey
{denotes the presence of K in the stack of ComputeInhFor activation records and
is used for detection of cycle in dep relation}

if length(ext(K)) =0 then
L := Object;
{empty type denotes, by default, inheritance form Object}

else
i:=1
L:=Bind(ext(K[i], decl(K))
{L is the meaning of the first identifier in ext(K)}
{Invariant of the loop: L=bind(ext(K)|i in decl(K)) }
while ¬ (i=length(ext(K)) and L is White) do
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if L=null then
writeln(“undeclared class”, ext(K)|i, “in the header of class”, header(K))
inh(K):=Object; Mark K White – – recovery
return

endif
if L is Grey then

{L in stack of ComputeInhFor – cycle in dep detected}
Push(DCStack, L); Push(DCStack, ext(K)|i)
Mark K Black; Mark L Red

mark red the bottom element of the cycle in stack of ComputeInhFor
if K=L then – – one element cycle detected

call CycleMessage(K) – – diagnostics
L := Object – – recovery
exit

endif
return

{otherwise the cycle is longer and we should continue popping
ComputeInhFor stack in order to find the red bottom of the cycle}

endif
if L is Black then

{L was not processed yet}
call ComputeInhFor(L)

{compute inh for L by demand}
if not empty(DCStack) then

{L was involved in dep cycle, so push it to DCStack}
Push(DCStack, L) ; Push(DCStack, ext(K)|i)
if K is Red then

{bottom of the cycle find}
call CycleMessage(K) – – produce diagnostics
L:=Object – – recovery
exit

endif
Mark K Black
{bottom of the cycle lies below current ComputeInhFor activation record
K will be treated as unprocessed for further analysis
and will be pushed onto DCStack immediately after return}

return
endif – – ComputeInhFor has returned with the proper value of inh(L)

endif – – the value of inh is properly set for l
{Assertion1: L=bind(ext(K)|i in decl(K)) and L is White }
if i=length(ext(K)) then exit endif

{if the value of L is the whole type ext(K) exit while
otherwise compute the next element of ext(k)}

i:=i+1 ; L:=BindInh(ext(K)[i], L)
endwhile
{Assertion2: L=bind(ext(K) in decl(K)) and L is White or K is Red and L=Object }
{L is either the proper value of ext(K) for nonempty type
or is set to Object by error recovery}

endif
{Assertion3: L=bind(ext(K) in decl(K)) and L is White or K is Red and L=Object }
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{L is either the proper value of ext(K) or is set to Object by error recovery}
inh(K):=L ; Mark K White

end ComputeInhFor

4.2 Analysis of algorithm

We are going to prove that if the algorithm computes the function inh without signalling
any error, then it is a correct solution of the problem.

4.2.1 Experiments

We did some experimenting before proceding to wording of lemmas and proving them.
Two animations of experiments are offered at the URL:
http://duch.mimuw.edu.pl/∼ salwicki/CSP2007/
presentationLagow/prezentacja21Listop2007.pdf.
Here we quote a slide of detection of cycle in dep relation.

4.2.2 Proof of correctness

Lemma 4.2.1. The following observations are valid:

(i) Marking a node K White and assigning a value 6= null to inh(K) takes place together.

(ii) If a node is marked White then it is never marked again.

(iii) If value 6= null was assigned to inh(K) then it is never changed.

(iv) In procedure ComputeInhFor node K may get color Black. It is done only if in-
struction Push is executed.

(v) If a node is marked Grey then the stack of activation records of ComputeInhFor
contains a record such that its parameter K points to the node.

(vi) The procedure ComputeInhFor will never be called with the parameter K equal Root
or Object.

Proof. (i) Look at the code of ComputeInhFor and check that there are only two places
in the algorithm where a node K is marked White. In both cases this instruction is
accompanied by the instruction of the form inh(K) := expression.

(ii) Check the code of ComputeInhFor.

(iii) It follows from the previous observations.

(iv) Check the code of ComputeInhFor.

(v) Obvious.

(vi) This is obvious consequence of the fact that Root and Object are White and all
procedure calls of ComputeInhFor have the argument K Black. As the consequence
we observe that the expressions of the form ext(K) have always the well defined value.
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Algorithm

Preorder
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ComputeInhFor

K = B
i = 2
L = F                  

ComputeInhFor

K = F
i = 1
L = A                 

ComputeInhFor

ComputeInhFor(K)
   ...
if L is Gray then
    Push(DCStack, L); 
    Push(DCStack, ext(K)|i )
    if K=L then
        call CycleMessage(K)
        L := Object
        exit
    endif
    Mark K Yellow; Mark L Red
    return
endif ... A

„A”

A

Figure 4.1: The cycle of dep relation of dependency is: A dep B dep F dep A
Explanation of the diagram:
- in left upper corner you see the structure of classes,
- in right lower corner the content of DCStack,
- to the left the stack of activation records is shown,
- in left lower corner we exhibit a part of code of currently executed method.
Relation dep is visible in activation records of ComputeInhFor
the node K depends on node L.
Attention! This picture uses colour Yellow instead of colour Black – it was done in order
to avoid blackening the rectangles and texts in them, simply read Yellow as Black.
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The next lemma analyzes actions taken when a node is marked Red. The condition
necessary to mark a node Red is as follow: The algorithm detects that the newest activation
record of ComputeInhFor has computed the value L := Bind(ext(K)[i], decl(K)) and
found that L is marked Grey. It means that the stack of activation records contains
an activation record of ComputeInhFor where the parameter K is equal to the recently
computed value of the variable L. The algorithm pushes two elements on DCStack. Having
this in mind we formulate the following

Lemma 4.2.2. If during an execution of the algorithm a node B is marked Red then

• activation records of ComputeInhFor are closed one after another until the current
activation record has the object K marked Red,

• when an activation record of ComputeInhFor is going to be closed and node K is
Grey then the algorithm puts two elements onto DCStack and marks K Black, then
the activation record is closed, instruction return is executed,

• observe that these actions do not allow to reach Assertion1,

• when the current activation record of ComputeInhFor has the object K marked Red
then the instructions {call CycleMessage(K); L :=Object: exit} are executed causing
that the algorithm skips Assertion1 and reaches Assertion2.

Lemma 4.2.3. Whenever the algorithm reaches Assertion1 the node L is White

Proof. It is clear that when the algorithm reaches Assertion1 then L cannot be Grey nor
Black nor null. From the above lemma we know that L is not marked Red.

Lemma 4.2.4. The set W = {n ∈ Classes : n is White ∧ n 6= Root} of nodes marked
White excluding Root, together with the function inh is a tree. The class Object is the root
of the tree.

Proof. Proof goes by induction w.r.t. n – the number of executed instructions “Mark K
White“. For n = 0 the tree contains only its root Object. Suppose that the thesis is true
for a number k. At the next execution of instruction ”Mark K White“ we add an edge
going from a non-White node K to a certain White node and we mark K White. It follows
from (ii) and (iii) of Lemma 4.2.1 that the new graph is a tree again.

Corollary 4.2.5. In every step of computation, if a node K is White then all nodes
reachable by a path inh∗ from K are White too.

Lemma 4.2.6. The following statements are invariants of every computation of the algo-
rithm

A) If K is White then any element of the form (decl | inh)∗(K) is White.

B) If the instruction call ComputeInhFor(K) is going to be executed then K is Black and
decl(K) is White.

Proof. Proof of B) We entered ComputeInhFor either from Preorder, and then the thesis is
obvious or from ComputeInhFor. In this case we execute the instruction call ComputeIn-
hFor(L) and either a) L = Bind(ext(K)[1], decl(K))
or
b) L = BindInh(ext(K)[i], L′) and L′ is White.
If a) then decl(L) ∈ (decl | inh)∗(decl(K)) therefore by inductive assumption A decl(L) is
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White.
If b) then decl(L) ∈ inh∗(L′) therefore decl(L) is White. It ends the proof of B).
Proof of A) From B) and the inductive assumption it follows that when K is marked White
then (decl | inh)∗(decl(K)) is White. Using corollary 4.2.5 we have inh∗(K) is White hence
(decl | inh)∗(K) is White which ends the proof of A). �

Lemma 4.2.7. When the algorithm computes Bind or BindInh then its second argument
is a White node.

Proof. Check the places where the instructions call Bind, respectively call BindInh, occur.
Instruction call Bind occurs once before the while statement. Its second argument, decl(K)
is White, c.f. lemma 4.2.6. Instruction call BindInh occurs once, inside the while statement.
Its second argument L is White c.f. lemma 4.2.3. �

Lemma 4.2.8. If each element of the form (decl|inh)∗(K) is White then for every identifier
id and for any later moment in the execution of the algorithm the evaluation of expression
Bind(id,K) (respectively, BindInh(id,K) give the same result.

Lemma 4.2.9. In any moment of execution of the algorithm, i.e. for any function inh,
and for every type name Path, such that length(Path) > 0 and for every class M

R = bind(Path in M) ≡ L := Bind(Path[1], M);
for i := 2 to length(Path) do

L := BindInh(Path[i], L)
done {L = R}

here Path is conceived as an array of identifiers, Path[i] denotes the i-th identifier of
qualified type name.

Lemma 4.2.10. Assume that a computation of the algorithm terminates without signalling
an error. The following formula is the invariant of the loop while in the ComputeInhFor(K)

L = bind(ext(K)|i in decl(K))

Lemma 4.2.11. Algorithm terminates.

Proof. It suffices to show that the stack of activation records of ComputeInhFor is of depth
limited by the number of classes. Now, recall that when an instruction call ComputeIn-
hFor(K) is executed then node K is marked Black. Upon entrance to the procedure, node
K is marked Grey. Its colour may change to White or to Black, and then the computation
leaves the activation record. The colour of node K may change to Red and ComputeIn-
hFor(K) cannot be called again. Hence it is impossible to have stack of depth bigger then
n, where n is number of classes.
Observe that the number of iterations of instruction while is limited by length(ext(K)).
� Putting all the lemmas together we obtain the following

Theorem 4.2.12. If the algorithm terminates without signalling any error, then it com-
putes function inh such that the conditions I1 and I2 mentioned in problem 2.1.6 are
satisfied.

The qualitative analysis of the algorithm is completed by the following theorem

Theorem 4.2.13. If the algorithm terminates and signals an error then no solution exists,
i.e. the structure of classes is erroneous.
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Proof. If during an execution of the algorithm a node is marked Red then a cycle in dep
relation has been detected and printed out. C.f. lemma 4.2.2. If during an execution
of the algorithm a message was printed ”undeclared class X in the header of the class“+
header(Y) then no solution exists. Here X stands for a type name, and in the structure
of classes, no class named X is accessible from the place of declaration of the currently
analyzed class Y. For the proof see [17]. �

4.2.3 Complexity of the algorithm

As concerns the complexity of the algorithm it can be estimated as follow for the well-
formed programs: Each node is visited twice: once by the procedure ComputeInhFor
and second by the procedure Preorder. During these visits the while instruction of the
procedure ComputeInhFor is executed. The number of iterations is equal to the length of
path appearing after extends. To this cost one must include O(n2) – the cost of operations
Bind executed. In a pessimistic case the cost may be as high as O(n3). In real programs
the paths occurring after the key word extends are not too long. The cost of Bind can be
also less then pessimistic O(n2). In practical cases the cost of the algorithm is linear.

4.3 Remarks on efficiency and error recovery
The algorithm solves the system of two recursively defined functions. Hence, it was not
obvious how to prove its correctness and completeness. The proof of correctness of non-
deterministic algorithm took 10 pages.
The method of elaborating types proposed by Igarashi & Pierce [11] is highly ineffective,
for it requires elaboration of each segment of a qualified type anew. The nondeterministic
algorithm (see section 3.1) stores the elaborated types and makes possible the further usage
of earlier stored results. The deterministic algorithm uses pebbling by pebbles of different
colours thus making the algorithm more efficient.
The algorithm continues its work after discovering an error in the structure of classes. The
first error found is accompanied by the unquestionable diagnostic. Hence one can confide
in it. The diagnostic of subsequent errors has a lower level of credibility. Can we trust the
subsequent error signals? Is it possible to prepare a better scheme of error recovery?
The compilers of Java do error recovery only in selected phases (most of them interrupts
the parsing after a syntactic error found). On the other hand, the errors found during static
semantic analysis are always recovered. The errors discovered by our algorithm belong to
this class. We felt obliged to include such a mechanism in our deterministic algorithm.
During the work on deterministic algorithm we concentrated on its correctness and com-
pleteness (i.e. diagnostic of errors) and the error recovery came as an easy extension. In
the case when the structure of classes of a program is not well-formed the estimation of
the cost is an open problem.

4.4 Signalling the errors
In this appendix we present a source of an erroneous Java programs and the diagnostic
produced by our algorithm.

class A extends B.C {
class D {}

}
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class B extends E.F.G {
class C { }

}

class E {
class F extends A.D {

class G {}
}

}

Below is a message of our algorithm

Dependence cycle :
line1 : class A extends B.C {
depends on class named B which is :
line5 : class B extends E.F.G {
which in turn depends on class named E.F which is :
line10 : class F extends A.D {
which in turn depends on class named A which is :
line1 : class A extends B.C {}

Observe that no existing Java compiler gives so many details on cycle in dependence
relation.
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Chapter 5

Remarks on earlier work

5.1 Introduction

We begin this Section with the comments on SIMULA67 and LOGLAN’82 programming
languages.

simula67
In this language the type of direct superclass is designated by a single identifier. The
direct superclass (or the prefixing class, in the jargon of SIMULA) has to fulfill much
simpler condition

ISIMULA) for every class X, decl(inh(X)) = inhi(decl(X))

where i is the least non-negative integer such that above equality is holding.
It can be proved that if inh(X) is defined then ∃k declk(inh(X)) = declk(X), it means
that the direct superclass of a given class is either a sibling of the extended class or more
generally, must be found on the same level of decl-tree as the class itself. We say that
SIMULA67 admits the horizontal inheritance.
Due to this simpler requirement, the task of determining the direct superclass is easy. For
example, the algorithm bind may be much shorter and simpler. The same applies as well
to the algorithm of determining the direct superclass.
On the other hand the requirement that the inherited class and the inheriting class are
on the same level of the structure of inner classes (also called the tree of nesting modules)
makes extensions of library of classes impossible. Simula67 has only two classes in its
library: SIMSET and SIMULATION. On the other hand, due to the above mentioned re-
striction, Simula67 can use the Display Vector mechanism [4] of Algol60 without problems.

loglan’82
As in Simula the type denoting the direct superclass is designated by a single identifier.
No restriction on the level of direct superclass is imposed. It means that the class named
B must be visible from the place where the class A is declared

inh(A) = bind(B in decl(A)).

This kind of inheritance can be described as upward skew inheritance, for the direct super-
class is on not lower level of decl-tree than the class itself. The algorithm determining the
direct superclasses for LOGLAN’82 is much simpler than the LSWA algorithm presented
above. It can be compared to topological sort.
The library of classes may be extended at will. It is worthwhile to mention that LOGLAN’82

33
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admits inheritance in all modules: procedures, functions, blocks, classes, coroutines and
processes. In the papers [5,6,7] the problem of maintaining the Display Vector was ad-
dressed and solved.

beta
The situation in BETA[3] is different, but no less complex than the one in Java. Inheri-
tance in BETA is dynamic, it involves objects, not only names of classes. Note, BETA as
LOGLAN’82 admits inheritance of patterns in procedures, functions, classes.

java
The problems of Java inheritance have been studied among others by Igarashi and Pierce
[16]. The scope of their paper is much broader, they present a formal semantics for (es-
sentially) a subset FJI of new Java [11], Featherweight Java with Inner classes. Usual
Java-programs are assigned their semantics via semantics of corresponding FJI-programs.
It is characteristics of FJI that every extension clause is the complete names path of the
direct superclass plus of all enclosing classes where there are not allowed identifier repeti-
tions in a path. Due to the local distinctness property and the required visibility of top
level class names there is exactly one inheritance function inh per program which satisfies
condition I1 of Section 2.

But not every syntactically correct FJI-program is a well-formed FJI-program, i.e. one
which can be assigned an appropriate dynamic semantics. Igarashi and Pierce require so
called sanity conditions to be fulfilled. Condition 6) says: inh has no cycles. Condition 7)
says: There is no class which has any direct or indirect inner class as its direct or indirect
superclass. These sanity conditions should correspond to condition I2 in Section 2 which
expresses that the dependency relation is free of cycles, see Java Language Specification
[11], (Section 8.1.4, Superclasses and Subclasses).

However, the sanity conditions and the conditions I1, I2, restricted to FJI, are not equiv-
alent. FJI is more liberal. Example program 3.2.13 in Section 4.1 is a drastic counter ex-
ample of equivalence. Example 3.2.13 is a well-formed FJI-program, but algorithm LSWA
reports an error as we have seen in Section 4.1: Condition I2 is violated, the dependency
relation has a cycle.

Igarashi and Pierce propose an Elaboration of Types calculus – let us call it IPET –
which allows to infer binding. Inheriting is a special case of binding. P ` X ⇒ T , read
“type X is elaborated to class T in class P ”, is what we would express bind0(X in P ) = T or
bindinh0(X in P ) = T . Inferring in a general top-down manner does not work because there
is one inference rule, namely ET-SimpEncl, with a metatheoretic premise P ` X. D ⇑
which means: “There is no derivation of P ` X. D ⇒ T for any class T ”.

In our opinion it is a serious methodological error to mix a theory and its metatheory.
Such mixing leads to paradoxes frequently. The authors of [16] give no evidence that such
a paradox will not appear.

They recommend to read the rules in a bottom-up manner and so to interpret them
as a generalized program procedure, implemented and executed by help of consecutive
run-time stacks of procedure activation records [4]. Generalized means: We have not only
pushing-down and popping-up of activation records, but we have also backing-up in case
there is some evidence that all actions whatsoever after an activation P.C ` D are never
resulting in any class T (see rule ET-SimpEncl). Even if such evidence is showing up, e.g.
by cycling or other infinitely expanding run-time stacks, we are to know which are correct
back-up states in order to guarantee determinate, non-multivalued results.

Program examples demonstrate that we need clearer correctness, completeness and
termination criteria for IPET. We would like to consider calculus IPET rather a method
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than an algorithm. It is possible to repair calculus IPET and to transform algorithm
LSWA and its binding function towards a calculus without metatheoretic premises where
all inferences can be done in a top-down manner, see a forthcoming article.

The subsection 5.2.1 of the section 5 of [11] is devoted to the elaboration of types, which
makes the identification of direct superclasses possible. The Table 1 cites six inference rules
of the paper [11][p.35]. They define a calculus. We shall name it the IPET calculus. We
are analyzing the calculus. The aim of the IPET calculus is to help in identifying the direct
superclasses in any Java program. We present some observations.

1. The calculus is not determinate. It means that it is possible to derive two or more
different classes as a direct superclass of certain class. One may say the calculus is
inconsistent.

2. Moreover, there exist two different models of the calculus.

3. Moreover, the models do not enjoy the property: the intersection of two models is a
model. Therefore it is difficult to say what is the meaning of the calculus.

The authors are aware of the non-determinacy. They say the calculus plus a metatheoretic
hint: apply the rules from bottom up may be called an algorithm. They have chosen an
inadequate word. It is not an algorithm however. For it does not enjoy the termination
property c.f. [11][p. 34] . Therefore we propose to call it a method. Again the method
may lead towards different answers. We shall show that the method can be specified in
two different manners. The IPET calculus may be used to define the inheritance function
inh from classes to classes. We can take another approach and ask: has the IPET calculus
one or more models? It turns out that it has several, non-isomorphic, models. Let us
remark that each model can be constructed by the corresponding algorithm. Hence it is
necessary to add some hint of metatheoretical nature. Usually, a calculus (or a theory) is
accompanied by the metatheoretical hint: choose the least model. We are going to show
that this will not work. For the intersection of two models needs not be a model.

It seems that the source of the problems is in admitting an inference rule (ET-SimpEncl).
One of the premises of this rule is a metatheorem: P ` X.D ⇑. This formula expresses the
following property: for every class T there is no proof of the formula P ` X.D ⇒ T . One
remedy would be to eliminate the rule and to replace it with some rules that do not in-
troduce metatheoretic premises and such that the premises are positive formulas. Another
approach would consists in extending the language of the theory, such that the expression
P ` X.D ⇑ were a well formed expression of the language, and adding some inference rules
to deduce formulas of this kind. Nothing of this kind happens in [11].

We are stressing the fact that the discussed paper is one of many papers of various
authors, where the reader discovers a metatheorem as a premise of an inference rule.
Therefore our remarks are of general character.

5.2 Igarashi’s and Pierce’s calculus IPET for elabora-
tion of types

Igarashi and Pierce [11][5.2.1 pp.34-36] are presenting a calculus IPET of derivation rules
for a so called elaboration relation of types. The formulae of the calculus have the form (are
written as) P ` X⇒ T to be read: The simple or qualified class type X (i.e. a non-empty
sequence of class identifiers separated by periods) occurring inside the directly enclosing
body of class declaration occurrence P is elaborated to (resp. is bound to) the class dec-
laration occurrence T. In other words: the meaning of the type X in the class P is the
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class T. We have to differentiate between a syntactical entity and its occurrences, see the
ALGOL68-report [14], because a class declaration (class for short) may occur several times
in a given program .

Observe that there is a bijection between class occurrences like P (or T) and their so
called absolute types (paths) C1. · · · .Cn where Cn is the name of class P and Cn−1, · · · ,C1

are the names of the successive class occurrences which enclose class occurrence P. To
understand this one should remark that the classes of a program form a tree. The root of
the tree is a fictitious class that encloses all the top level classes of the program. Let n be
an internal node of the tree. It can be identified with the path leading from the root to
it. Such a path consists of the names of classes. All direct inner classes declared in the
class which is the node n are the sons of the node n. Therefore we are entitled to identify
an occurrence of a class declaration and the absolute path of it. Beside the user declared
class occurrences in a Java-program there are two implicit, fictitious class occurrences:

1. Root = {· · · } which is enclosing all top level classes (i.e. other class occurrences) of
the Java-program and which has no name nor extends clause. The authors of [11]
represent Root by its fictitious name ? which users are not allowed to write.
?.C1. · · · .Cn is identified with C1. · · · .Cn .

2. Object = class Object {· · · } the name of which is Object, which is directly enclosed
by Root and which has also no extends clause. Without loss of generality we can
assume that there are no classes declared inside the body of Object.

Let us explain the meaning of some premises in the inference rules. In three rules one finds
the premise of the form CT (P.C) = class C extends X {· · · }. In this way the authors
Igarashi and Pierce express the fact that the class P.C extends the type X i.e. the class
which is the meaning of the type X in this place where the declaration the class P.C occurs.
The formulas of the form P.C ∈ Dom(CT ) mean the program contains the class named
C in its directly enclosing class to be identified with the path P . Obviously, the formula
of the form P.C.D /∈ dom(CT ) expresses the fact that the class to be identified with the
path P.C does not contain any class named D. In the Table 1 we present Igarashi’s and
Pierce’s calculus IPET for elaboration of types.
Below we collect some observations and comments.

1. The system IPET is inconsistent! Consider a Java program with a user declared class
Object. From the axiom (I ET-Object) one obtains that the meaning of the name
Object is Object, or ?.Object. From the rule (II ET-In-CT) one obtains P.Object
where P is the class containing the user declared class Object.
Remedy: Consider only programs without user declared class named Object.

2. The rule (III ET-SimpEnc) has four premises. The fourth premise of the form
P ` X ⇑ is in fact a metatheorem “there is no class T such that the triplet P `
X ⇒ T has a formal proof ". This rule is a source of severe problems as we shall see
below.

3. There is no definition of the notion of proof in the system IPET of inference rules.
Should one accept the classical definition of the notion of formal proof then the lack
of possibilities to derive premises of the form P ` X ⇑ becomes evident. We know,
the standard answer to this remark is: but everything is finite and therefore one can
control the situation. Is this one person added to the definition of the proof? What
instructions are given to her/him making the task of recognition of the impossibility
of the proof possible?
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Table 5.1: Igarashi’s & Pierce’s rules of elaboration

I. (ET-Object) P ` Object⇒ Object

II. (ET - In CT) P.C ∈ dom(CT )
P ` C⇒ P.C

III. (ET-SimpEncl)
P.C.D /∈ dom(CT ) P ` D ⇒ T

CT (P.C) = class C extends X {· · · } P ` X.D ⇑
P.C ` D ⇒ T

IV. (ET-SimpSup)
P.C.D /∈ dom(CT ) CT (P.C) = class C extends X {· · · }

P ` X.D ⇒ T
P.C ` D ⇒ T

V. (ET-Long) P ` X ⇒ T T.C ∈ dom(CT )
P ` X.C⇒ T.C

VI. (ET-LongSup)
P ` X ⇒ P ′.D P ′.D.C /∈ dom(CT )

CT (P ′.D) = class D extends Y{· · · } P ′ ` Y.C ⇒ U
P ` X.C ⇒ U

4. A reader may hesitate what does the following sentence mean ”A straightforward
elaboration algorithm obtained by reading the rules in a bottom-up manner might di-
verge.“ [11][p.34] Two questions appear immediately. Is there an implicitly defined
elaboration algorithm? What does it mean ”reading the rules in a bottom-up man-
ner“?
Our first guess is that the authors think of Gentzen-style proofs. The textbook on
mathematical logic [15] describes an algorithm constructing a formal proof of a logical
formula. The system of inference rules must enjoy some properties and the algorithm
must precisely describe which rule is to be applied in every step of the algorithm.
Our second guess is as follow: Subcase 1. Consider an open question P ` X ⇒?
and apply the rules trying to construct the formal proof of some triplet P ` X ⇒ T .
Depending on the rule applied we create some new open questions. In this way a
tree is constructed with the nodes decorated by open questions or axioms. Once
an inner node has all its sons decorated by closed triplets, one can close an open
question by application of the rule that constructed the sons of the current node.
Should we come back to the root with an answer the formal proof is constructed and
the searched class T is found. Subcase 2. As previously consider an open triplet and
build a formal proof of some triplet P ` X ⇒ T applying the rules from the sixth to
the first one.
Which guess is a proper one?

5. The authors are aware that construction of the proof is not always possible. They
give an evidence of the fact that the algorithm we guessed may loop without exit
[11][p.34].

6. In fact the task of type elaboration is divided in two subtasks: a) to find if the program
is a well formed one, b) to define a function inh which for every user declared class
C returns the direct superclass of C. It is evident that the IPET does not help in
detecting the possible errors in typing.
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7. Seeing the incompleteness of the IPET calculus (c.f. the rule III) one may ask a
slightly different questions: is it true that the IPET has exactly one model? We shall
see that there are several models.

8. The next question appears: Is it possible to equip the calculus with an extra hint of
the kind: consider the least one of all models as THE model of the IPET calculus.

9. This hope should be abandoned in the light of the section 5.5.

5.3 Langmaack’s, Salwicki’s and Warpechowski’s bind-
ing functions bindinh compared with IPET

In [16] Langmaack, Salwicki and Warpechowski developed binding functions bindinh which,
based on given inheritance(i.e. direct superclassing) functions inh, determine the associated
class occurrences T for class types X directly enclosed by the bodies of class occurrences
P : bindinh(X in P ) = T .
Above that the authors developed an algorithm LSWA which determines superclassing
function inh0 which is the least fixed point of the continuous functional Bdfl′(inh)

inh0 = Bdfl′(inh0)
and is totally defined for all (finitely many) user declared classes P in a given well-formed
Java-program. Especially: inh0 satisfies the so called inheritance condition I1, i.e. for all
user declared classes P inh0(P ) is defined and the equation

inh0(P ) = bindinh0(X in P ′)

is holding where X is the type ext(P ) in the extends clause of P and P ′ is that class
occurrence decl(P ) which directly encloses P . Because both theories of [11] and of [16]
ought to agree

the ternary relation bindinh0(X in P ) = T
should satisfy all six rules of the types elaboration relation

P ` X ⇒ T
in calculus IPET. Both theories would agree perfectly iff there were exactly one distin-
guished satisfying binding function for a well-formed Java-program such that the set of all
derivable triplets (X, P, T) is exactly the binding function bindinh0 . In order to have an
easier way of comparison we translate the rules to the mode of expression in [16] what is
yielding the formulation of the definition 5.3.1

Definition 5.3.1. The calculus BIPET is defined by the rules of the Table 2.

Theorem 5.3.2. The function bindinh0 is satisfying all six rules of BIPET (and hence of
IPET) calculus.

Proof. Are these six rules (implications) really holding? We shall check them and find that
the answer is: Yes.
I. (BET-Object)
As Object is the only class named Object and is directly enclosed by Root the required
equation is holding independently of all possible inheritance or direct superclassing func-
tions inh which parametrize bindinh.
II. (BET-InCT)
If the class P contains a direct inner class named C, i.e. P.C is defined,P.C ∈ Dom(CT ),
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Table 5.2: IPET rules translated using bind function
I. (BET-Object) bindinh0(Object in P ) = Object.

II. (BET - InCT) the class P has the direct inner class named C,
bindinh0(C in P ) = P.C.

III. (BET-SimpEncl)
bindinh0(D in P ) = T, no class named D in P.C,

bindinh0(ext(P.C).D in P ) is undefined,
bindinh0(D in P.C) = T .

IV. (BET-SimpSup)
bindinh0(ext(P.C).D in P ) = T,

class P.C has no direct inner class named D,
bindinh0(D in P.C) = T.

V. (BET-Long)
bindinh0(X in P ) = T ,
class T has a direct inner class named C,
bindinh0(X.C in P ) = T.C.

VI. (BET-LongSup)

bindinh0(X in P ) = P ′.D,
class P’.D has no direct inner class named C,
bindinh0(ext(P

′.D).C in P ′) = U ,
bindinh0(X.C in P ) = U .

then the conclusion the meaning of the name C in the class P is the class P.C is holding
independently of all possible inheritance functions.
III. (BET-SimpEncl)
Let P be a user declared class. From the first premise bindinh0(D in P ) = T we have
that there exist natural numbers i ≥ 0, l ≥ 0 such that T = inhi0(decl

j(P )).D where the
pair 〈l, i〉 is the least in the lexicographic order such that the right hand side expression is
defined.
The third premise "bindinh0(ext(P.C).D in P ) is undefined" says that for every l ≥ 0 the
expression inhl0(bindinh0(ext(P.C) in P ).D is undefined, and so inhl0(inh0(P.C)).D is unde-
fined, because the function inh0 enjoys the property I1 : inh0(P.C) = bindinh0(ext(P.C) in P ).
We claim that the pair 〈j + 1, i〉 is the least pair in the lexicographic order such that
inhi0(decl

j+1(P.C)).D is defined. Suppose that there exists a pair 〈k, l〉 such that the the
expression inhl0(decl

k(P.C)).D has a defined value and that the pair 〈k, l〉 precedes the
pair 〈j+ 1, i〉. From the second and third premise we know that k 6= 0. In other words the
path inhl0(decl

k(P.C)).D goes from the class P.C through the class P further on. From
the previous considerations we know the pair 〈j, i〉 is the least in the lexicographic order
such that the expression inhi0(declj(P )).D is defined. Hence k = j+1 and l = i. The cases
where P = Object or P = Root can be checked in a separated way.
IV. (BET-SimpSup)
Let P.C be a user declared class. The premise bindinh0(ext(P.C).D in P ) = T tells us that
there exists a natural number i ≥ 0 such that the value of T = inhi0(bindinh0(ext(P.C) in P )).D
is defined. Since the function inh0 enjoys the property I1 we know that the expression
inhi0(inh0(P.C)).D has a value T . Hence T = inhi+1(decl0(P.C)).D = bindinh0(D in P.C).
For the pair 〈0, i + 1〉 is the least pair such that the value of inhi+1(decl0(P.C)).D is de-
fined. The only less candidate 〈0, 0〉 is excluded by the second premise. If P = Object or
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P = Root then the conclusion is holding trivially.
V. (BET-Long)
The conclusion is holding due to definition of bindinh0 .
VI. (BET-LongSup)
In case P ′.D is user declared we begin with the third premise bindinh0(X.C in P ′) = U .
This means that there exist a natural number l ≥ 0 such that inhl0(bindinh0(X in P ′)).C =
U and l is the least one that the left hand side is defined. Making use of the first premise
and condition I1 for P ′.D we obtain inhl+1

0 (P ′.D).C = U . From the second premise we
conclude that the exponent l + 1 is the least one such that the left hand side is defined.
The soundness of this rule follows from the definition 2.1.2 of the function bindinh0 and
from the first premise.
In case P ′.D is not user declared the conclusion is holding trivially.

Hence the binding function bindinh0(X in P ) = T satisfies all six rules of IPET where the
given Java-program is well-formed. We recall that its least fixed point is the inheritance
function inh0 and satisfies the conditions I1 and I2 of the Java Language Specification
JLS [7] as formalized in [16]. Our next question is: Is IPET defining bindinh0 uniquely?
Are there other binding functions which satisfy all rules of IPET? Is there a distinguished
binding function of IPET? In what sense does IPET define a distinguished binding func-
tion? Or, perhaps, there is no a reasonable way to distinguish a good inheritance function?
We have already seen that IPET does not allow straightforward, constructive top-down
application.

5.4 On another binding function BindinhB0 which satis-
fies all rules of IPET

It is astounding that there is a way to define a family of binding functions Bindinh(X in P )
which are different from bindinh(X in P ) and which lead to an analogous satisfaction
theorem (of IPET, by an analogous BindinhB0

instead of bindinh0). As previously, we
assume that every user declared class has an explicit extends clause with a type of length
≥ 1 as the authors of [11] and their calculus are requiring. Bindinh is to become a partial
mapping

Bindinh : Types × CRO part−→ CO

where C = Classes is the set of user declared class occurrences in a given Java-program
with inner classes, CO is C ∪ {Object} and CRO is CO ∪ {Root}. Bindinh, Types is the set
of simple or qualified types in the Java-program. The function Bindis parametrized by a
given partially defined inheritance function (direct superclassing function) inh : C part−→ CO
as bindinh is. The values of inh(Root) and inh(Object) are undefined.

Consider the ordered alphabet A of the two operators inh and decl, where we define inh
to be less than decl, inh ≺ decl. This order is inducing a lexicographical (from the right),
total order in the set A∗ of all words over A . For example, the words inh ≺ declainh ≺
decl ≺ inhadecl are in this order.
Let w = ida

1 id
a
2 · · · idn, w ∈ A∗. Let P be a class. The word w applied to the class P is

the class w(P ) = id1(id2(· · · (idn(P )) · · · )) or the result is undefined. Clearly ε(P ) = P .
Now, we have the following
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Definition 5.4.1. Let X be a type of length ≥ 1, P ∈ CRO and inh ∈ C part−→ CO. Then

Bindinh(X in P )
df
=



µw(P ).X if length(X) = 1 and there
exists the least word µw ∈ A∗
such that µw(P ).X ∈ CO
is defined and there are
no repeated classes on this path
µw from P to µw(P ).

Bindinh(C in else if X = X ′.C
Bindinh(X

′ in P )) where length(C) = 1
and length(X ′) ≥ 1 and
Bindinh(C in
Bindinh(X

′ in P )) ∈ CO
is defined

undefined otherwise

Remark 5.4.2. It is worthwhile to observe that the Bindinh function defined in this way
differs from the bindinh function defined earlier. Namely, in the definition of bind we
consider only words of the form inhideclj, where i, j ≥ 0.

Example 5.4.3. C.f. the class’ structure of the example 5.4.4. We have
bind(C in decl(B$D)) = bind(C in B) = inh(B).C = Bind(C in B) = A$C
bind(E in decl(B$D$F )) = bind(E in B$D) = decl(B$D).E = B$E
Bind(E in decl(B$D$F )) = Bind(E in B$D) = declainh(B$D).E = E$A
since declainh ≺ decl

Now we are going to look for a specific inheritance function inhB0 such that BindinhB0

satisfies all rules of IPET. We go an analogous way as in [17] and look for an appropriate
functional Biddle′ such that inhB0 is the least fixed point. The natural functional

BDfl(inh)(P )
df
= Bindinh(ext(P ) in decl(P ))

is, unfortunately, not monotone and continuous in
(C part−→ CO)

tot−→ (C part−→ CO)

where C part−→ CO is a cpo completely partially ordered by the set theoretic inclusion ⊆ of
partially defined inheritance functions with bottom function inh⊥ = ∅.

Example 5.4.4. Let us consider the following (structure of a) Java-program:

class A extends Object {
class E extends Object { }
class C extends Object { }

}
class B extends A {

class E extends Object { }
class D extends C {

class F extends E { }
}

}

E C E D ext C

B ext AA

F ext E

inh: bind

inh: Bind

We have
∅ = inh⊥ ⊂ BDfl(inh⊥) 6⊆ BDfl2(inh⊥)

because
BDfl(inh⊥)(B) = A, BDfl(inh⊥)(D) =⊥, BDfl(inh⊥)(F ) = B$E,
BDfl2(inh⊥)(B) = A, BDfl2(inh⊥)(D) =A$C, BDfl2(inh⊥)(F ) = A$E .
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Example 5.4.4 convinces us to modify functional BDfl towards BDfl′. But first we
introduce the notion of State.

Definition 5.4.5. An inheritance function inh ∈ (C part−→ CO) is called a State iff
for all classes K ∈ dominh the following two relations
inh(K) ∈ domO

inh, where domO
inh

df
= dominh ∪ {Object}}

decl(K) ∈ domR
inh where domR

inh

df
= {dominh ∪ {Root}}

and the equation
inh(K) = Bindinh(ext(K) in decl(K))

are holding.

Definition 5.4.5 is saying that domRO
inh = dominh ∪ {Root, Object} is an initial tree of

the whole decl-tree CRO, and that for all K inheritance chain {inhi(K) : i = 0, 1, · · · } is
remaining inside domRO

inh (i.e. either has a cycle or ends up in Object or Root) and condi-
tion IB1 (see Definition 5.4.7) is satisfied, restricted to dominh as a subset of C. inh or its
dependency relation Depinh may have cycles:

Definition 5.4.6. The dependency relation Depinh associated to inh is
Depinh

def
= {〈K,Bindinh(ext(K) |i in decl(K))〉 :

K ∈ dominh, 1 ≤ i ≤ length(ext(K))}
where ext(K) |i is the initial segment of length i of type ext(K).

To remind the reader(c.f. definition 2.1.5):

Definition 5.4.7. A Java-program is called Well-Formed iff there exists an inheritance
function inhWF which satisfies the following two conditions
IB1) inhWF is defined for all classes K ∈ C and the equation

inhWF (K) = BindinhWF
(ext(K) in decl(K))

is holding for them;
IB2) the induced dependency relation DepinhWF

has no cycles in CRO.

We consider the sub-cpo
C State−→ CO of C part−→ CO

of inheritance functions which are States. The word “State” is chosen because our later
algorithms LSWA’B resp. LSWAB which determine the least fixed point inhB0 are running
through computation states which can be represented by the above mentioned special
inheritance functions which are States.
Let’s come to the desired functional BDfl′. Let us introduce an abbreviation αBinh(A)
denoting the following logical formula:

αBinh(A) : decl(A) ∈ domR
inh ∧ A 6= Root ∧ A 6= Object

∧Bindinh(ext(A) in decl(A)) ∈ domO
inh.

The desired functional is

BDfl′(inh)(A)
df
=

{
Bindinh(ext(A) in decl(A)) if αBinh(A)
undefined otherwise.

Theorem 5.4.8. BDfl′ is a monotonous functional (and consequently is continuous be-
cause C State−→ CO is finite).

We need four Lemmas 5.4.9 to 5.4.13 for a proof of Theorem 5.4.8.
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Lemma 5.4.9. For every State inh, for every class K ∈ domRO
inh and for every type X: If

Bindinh(X in K) ∈ domRO
inh then Bindinh(X|i in K) ∈ domRO

inh for 1 ≤ i < length(X).

Proof. Assume the thesis of the Lemma is wrong. Then there is a smallest i0 with 1 ≤
i0 < length(X) and Bindinh(X|i0 in K) /∈ domRO

inh. Then this class Ci0 is such that
decl(Ci0) ∈ domR

inh because inh is a State. Then inh(Ci0) is undefined andBindinh(X inK)
is necessarily a nested class Cl inside or equal Ci0 with decll−i0(Cl) = Ci0 , l = length(X),
and Cl is necessarily /∈ domRO

inh. Contradiction!

Lemma 5.4.10. Let inh0 be a State. Let inheritance function inh be an arbitrary extension
of function inh0 on a subset of C.
A) For every class K ∈ domRO

inh0
and every word w0 ∈ A∗0 = {decl, inh0}∗ and analogous

word w ∈ A∗ = {decl, inh}∗ : w0(K) = w(K) ∈ domRO
inh0

or both sides are undefined.
B) For every class K ∈ domRO

inh0
and for every type X :

If for every 1 ≤ i < length(X) Bindinh0(X|i in K) ∈ domRO
inh0

then for all 1 ≤ i <
length(X)

Bindinh0(X|i in K) = Bindinh(X|i in K)
and either

Bindinh0(X in K) = Bindinh(X in K) ∈ CO
or both sides are undefined.

Proof. Proof of A)
Two cases are to be discussed: A1) w0(K) = Kn ∈ domRO

inh0
resp. A2) w0(K) is undefined.

A1) Because inh0 ⊆ inh
we have w(K) = Kn as well.
A2) Let Kn ∈ domRO

inh0
be the final class in the chain of classes

K = K0, K1, · · · , Kn ∈ domRO
inh0

with n < m which w0 = inh01 · · · id0m and K are inducing,
id0i ∈ A0. Then id0,n+1(Kn) is undefined. Kn is Object or Root because inh0 is a State.
Because inh0 ⊆ inh and inh(Root) and inh(Object) are undefined we have for the analo-
gous word w = id1 · · · idm,
idi ∈ A: Either Kn = Root and id0,n+1 = idn+1 = decl or Kn ∈ {Root,
Object} and ido,n+1 = inh0, idn+1 = inh. So w(K) is undefined.
Proof of B)
(Base of induction length(X) = 1)
Due to A) the A0- resp. A-chains of classes starting in K coincide. So Definition 5.4.1
does not differentiate between inh0 and inh which the definition is based on.
(Induction step length(X) > 1)
Let for every 1 ≤ i < length(X)

Bindinh0(X|i in K) ∈ domRO
inh0

(?).
Due to induction hypothesis and assumption (?) we have for all 1 ≤ i < length(X)− 1
Bindinh0(X|i in K) = Bindinh(X|i in K) ∈ domRO

inh0

and
Bindinh0(X|length(X)−1 in K) = Bindinh(X|length(X)−1 in K) ∈ domO

inh0
.

So we find an analogous situation as in the induction base and Definition 5.4.1 does not
differentiate between inh0 and inh.

Lemma 5.4.11. If inh is a State then the inheritance function
inh′ = BDfl′(inh) is an extension of inh.

Proof. Let A ∈ dominh. Then A 6= Root, A 6= Object, decl(A) ∈
domR

inh, inh(A) ∈ domO
inh, inh(A) = Bindinh(ext(A) in decl(A)) because inh is a State. So

αBinh(A) is holding and inh′(A) = Bindinh(ext(A) in
decl(A)) by definition. So inh′(A) = inh(A), i.e. inh′ is an extension of inh.
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Remark 5.4.12. Let inh be a State and A′ ∈ C\dominh with decl(A′) ∈ domR
inh (i.e. A′

is a so called candidate) and Bindinh(ext(A′) in decl(A′)) ∈ domO
inh (i.e. A′ is a so called

generating candidate). Then let us denote the extension
inh ∪ {〈A′, Bindinh(ext(A′) in decl(A′))〉}

of inh by inhA′.

Lemma 5.4.13. If inh is a State then inh′ = BDfl′(inh) is also a State.

Proof. Let A ∈ dominh′ . We have to show that inh′(A) ∈ domO
inh′ and decl(A) ∈ domR

inh′

and that inh′(A) = Bindinh′(ext(A) in decl(A)) is holding. We have two subcases
A) A ∈ dominh and
B) A ∈ dominh′ \ dominh.
Subcase A) is straightforward by help of Lemmas 5.4.9, 5.4.10, 5.4.11.
Proof of the subcase B): Because inh′(A) is defined, αBinh(A) is holding and inh′(A) =
Bindinh(ext(A) in decl(A)). Since inh′(A) ∈ domO

inh and inh′ is an extension of inh we
have inh′(A) ∈ domO

inh′ . Since decl(A) ∈ domR
inh we have decl(A) ∈ domR

inh′ . The last fact
to prove for subcase B) is: inh′(A) = Bindinh′(ext(A) in decl(A)). As decl(A) ∈ domR

inh,
inh′ is an extension of inh and Bindinh(ext(A) in decl(A)) ∈ domO

inh then we have due to
Lemma 5.4.9 and Lemma 5.4.10 B)

Bindinh(ext(A) in decl(A)) = Bindinh′(ext(A) in decl(A)) .
The left side is exactly inh′(A) by definition of BDfl′.

Remark 5.4.14. on direct and indirect successors of States:
If in this proof of Lemma 5.4.13 we replace inh′ by inhA′ then we have a proof for: inhA′

is a State. We call inhA′ a direct successor State of inh and write inh ≺DS inhA′ with
the transitive closure ≺S of ≺DS which is an irreflexive partial order in the set of States
C State−→ CO.

Proof. of Theorem 5.4.8, on monotonicity of BDfl′:
Let inh1 ⊆ inh2 be two States and BDfl′(inh1)(A) = inh′1(A) = M be defined. We claim
BDfl′(inh2)(A) = inh′2(A) = M .
Due to definition of BDfl′ we have that

αinh1(A) ∧ M = Bindinh1(ext(A) in decl(A))
is holding.
Case 1: A ∈ dominh1 . Then A ∈ dominh2 and M = inh′1(A) = inh1(A) = inh2(A) =
inh′2(A).
Case 2: A ∈ dominh′1\ dominh1 . Then M = Bindinh1(ext(A) in decl(A)) ∈ domO

inh1

Lemmas 5.4.9 and Lemma 5.4.10 B) are ensuring
Bindinh1(ext(A) in decl(A)) = Bindinh2(ext(A) in decl(A)).

So M ∈ domO
inh2

. Furtheron, due to αinh1(A): A 6= Root, A 6= Object,
decl(A) ∈ domR

inh1
⊆ domR

inh2
. So αinh2(A) is holding and M = inh′2(A).

Remark 5.4.15. on modular confluence:
The relation ≺DS is modularly confluent, i.e. if inh ≺DS inhA, inh ≺DS inhA′ and inhA 6=
inhA

′ then there is a common direct successor ĩnh with inhA ≺DS ĩnh and inhA′ ≺DS ĩnh,
especially ĩnh = inhAA

′
= inhA

′A (due to an easy calculation using Lemma 13). If a ≺DS-
chain

inh0 ≺DS inh1 ≺DS inh2 ≺DS · · · ≺DS inhn
ends up in a maximal inhn then inhn is uniquely determined by inh0. Every State inh0

has such a uniquely determined maximal successor State inhmax0 . Obviously
BDfl′(inh) = inh ∪ {ĩnh : inh ≺DS ĩnh}

is holding. Therefore a State inh is maximal w.r.t. ≺S if and only if inh is a fixed point of
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BDfl′. The maximal successor State inhmax⊥ is the least fixed point of BDfl′, obviously.
If inh has no cycle then inhA has none as well since A /∈ domO

inh. If Depinh has no cycle
then so it is for DepinhA, because we may easily deduce by Lemmas 5.4.9 and 5.4.10 B)

DepinhA = Depinh ∪ {〈A,Bindinh(ext(A) |i in decl(A))〉 :
1 ≤ i ≤ length(ext(A))}

where A ∈ C \ dominh is the generating candidate for inhA.

Theorem 5.4.8 allows to apply the fixed point theorem: BDfl′ in

(C state−→ CO)
tot,cont−→ (C state−→ CO)

has exactly one least fixed point (κ = card(C))

µBDfl′ =
⋃

i∈Nat0

BDfl′ i(inh⊥) = BDfl′ κ(inh⊥)

which is
=

⋃
inh⊥≺S inh

inh = inhmax⊥ .

Theorem 5.4.16. If the given Java-program is Well-Formed then the function BindinhB0

is satisfying all six rules of IPET. The rules are the same as in Theorem 5.3.2, only inh0

, bind and bindinh0 are to be replaced by inhB0, Bind and BindinhB0
respectively.

Proof. The verification of the rules I and II is the same as earlier in the proof of the theorem
5.3.2.
III. (ET-SimpEncl)
Consider a user declared class P . From the first premise: BindinhB0

(D inP ) = T we have
that there exist the word w0 - the least word such that w0(P ).D = T . From the definition
of Bind

BindinhB0
(ext(P.C).D in P ) = BindinhB0

(D in BindinhB0
(ext(P.C) in P ).

Since inhB0 satisfies the property I1 we can simplify the right-hand side of the equation to
BindinhB0

(D in inhB0(P.C)).
The third premise reads: BindinhB0

(ext(P.C).D in P ) is undefined. From it we have that
for every word w′′ of the form w′ainh the value of the expression (w′ainh)(P.C).D is un-
defined. From the second premise we have: the value of λ(P.C).D is undefined. Now
consider BindinhB0

(D in P.C). Remark that the equality (wa
0 decl)(P.C).D = T holds.

Making use of the observations based on the second and third premises we conclude that
the word wa

0 decl is the least word w such that the expression w(P.C).D is defined. Hence,
BindinhB0

(D in P.C) = T . If P.C = Object then P = Root and P.D = T . The conclusion
is holding also due to definition of BindinhB0

. If P = Root then the conclusion is holding
trivially.
IV. (ET-SimpSup)
The equality inhB0(P.C) = BindinhB0

(ext(P.C) in P ) is valid if P.C is a user declared
class because condition IB1 is holding. Due to definition of BindinhB0

we have T =
BindinhB0

(ext(P ).D in P ) = BindinhB0
(D in inhB0(P )) and T is µw(inhB0(P )).D. Be-

cause P.C.D is undefined P is not repeated on the path µw inhB0 from P to decl(T ). So
µw inhB0 is the least path, denoted µw̃, without repeated classes such that µw̃(P ).D =
T = BindinhB0

(D in P ). If P = Object or = Root then the conclusion is holding trivially.
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V. (ET-Long)
The conclusion is holding due to definition of BindinhB0

.
VI. (ET.LongSup)
The equality inhB0(T ) = BindinhB0

(ext(T ) in P ′) is valid if T is a user declared class be-
cause condition IB1 is holding. Due to definition of BindinhB0

we have U is µw(inhB0(T )).C
and U = BindinhB0

(ext(T ).C in P ′) = BindinhB0
(C in inhB0(T )). Because T.C is un-

defined T is not repeated on the path µw inhB0 from T to decl(U). So µw inhB0

is the least path, denoted µw̃, without repeated classes such that µw̃(T ).C = U =
BindinhB0

(C in T ) = BindinhB0
(X.C in P ).

If P = Object or P = Root then the conclusion is holding trivially.
We may observe that the model BindinhB0

may be calculated by an algorithm. Hence we
have two different algorithms to construct the models of IPET calculus. Now we see that
the statement “a straightforward algorithm ...[11]p.34“ is not justified at all. First of all
the authors of [11] gave no description of the algorithm. Second, there exist at least two
algorithms. The cited statement does not answer to the question which of algorithms is
the proper one?

5.5 The dilemma with IPET’s rule III. (ET-SimpEncl)
The dilemma with IPET does not end itself on that IPET allows at least two different
binding functions bindinh0 resp. BindinhB0

which satisfy all six rules of IPET and which
yield two different notions of well-formedness of (the structure of) a Java-program. If there
were a clear criterion for the calculus how to elect the distinguished inheritance function
resp. binding function everything would be fine. Let us remark that, in case all premises
and conclusions are positive logical formulas then the intersection of any two satisfying
functions is satisfying as well. Moreover, the distinguished function can be gained in a
constructive manner by successive top-down applications of the rules.
We have already seen that rule III. (ET-SimpEncl) has a premise which is a negative, and
a metatheoretic formula such that clear application of the rule is a great problem. It is
even so that there is a program, namely Example 5.4.4, which is well-formed w.r.t. bindinh0

and BindinhB0
, but the intersection function bindinh0 ∩BindinhB0

does not satisfy rule III.
(ET-SimpEncl), especially is different from bindinh0 which Java Language Specification JLS
[7] has prescribed to be the appropriate binding function.

Lemma 5.5.1. The intersection of the two models of IPET calculus need not to be a model
of IPET.

Proof. The proof of the lemma consists in exhibiting a counter-example program of the
previous section.
Example 1 continued :
We have

inh0(B) = inhB0(B) = A
inh0(B$D) = inhB0(B$D) = A$C
inh0(B$D$F ) = B$E
inhB0(B$D$F ) = A$E 6= B$E !

Let us calculate the binding functions:
bindinh0(A in Root) = BindinhB0

(A in Root) = A
bindinh0(C in B) = BindinhB0

(C in B) = A$C
Now bindinh0(E in B$D) = B$E
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because path decl from B$D to B is lexicographically less than path
inhadecl from B$D to A

But BindinhB0
(E in B$D) = A$E 6= B$E !

because path declainh from B$D to A is lexicographically less than
path decl from B$D to B.

Let us define the intersection relation

Int
df
= bindinh0 ∩BindinhB0

.

We shall prove that Int relation does not satisfy rule III (ET-SimpEncl). From the facts
gathered till now one deduce (using the rule III) that the value of Int(E in B$D) should
be B$E.
However from the definition of Int we have

B = decl(B$D
B$D.E is undefined
Int(EinB) = B$E
Int(C.E in B) is undefined

because
bindinh0(C.E in B)
= attrbindinh0(E in bindinh0(C in B))
= attrbindinh0(E in A$C) is undefined

and
BindinhB0

(C.E in B)
= BindinhB0

(E in BindinhB0
(C in B))

= AttrBindinhB0
(E in A$C)

= A$E.
But

bindinh0(E in B$D) = B$E
BindinhB0

(E in B$D) = A$E
hence

Int(E in B$D) is undefined.
Hence Int is not a model of IPET.

In the previous sections we have unexpectedly seen two different models of IPET calcu-
lus. Therefore the IPET can not be treated as a definition of function of binding. Now, the
immediate instinct to enrich the IPET with a (metatheoretic!) clause: "choose the least of
all IPET’s models" leads to nowhere.

5.6 What was left open by Igarashi and Pierce
The identification of declarative occurrence T of a class that is bound to an applicative
occurrence of a (class) type X within a class P is basic for the understanding how a
program works. The paper [11] offers the IPET calculus for deducing the values of the
function bind(X in P ) = T , in original paper it is written P ` X ⇒ T . It turned out the
formal system of IPET has many models, hence, the system does not define the binding
function.

The discussion of this chapter shows how important is to state a few questions known
already in metamathematics:

1. (determinacy or consistency) It is obvious that a formal system may allow to prove
a sentence on many alternative ways. However, a sound system may not allow to
deduce mutually negating answers. In this case the question should be: is it true
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that for every class P and for every type X if IPET calculus allows to deduce two
triplets P ` X ⇒ T and P ` X ⇒ U then T = U? We should be sure that the
relation P ` X ⇒ T is a function, that binds an applicative occurrence of the type
X inside the class P to the declaration T of a class.

2. (categoricity or completeness) How many models has a proposed formal system? In
our case the question is are there different functions bind that are models of the
IPET calculus? The positive answer tells us that something important escaped our
attention.

3. (repairing an incomplete system)If there are several models, one should try to repair
the formal specification by adding either more axioms and inference rules (this way,
we believe, is the correct one) or by adding some metatheoretic rule like, for example,
among all possible models choose the least one. Or better, among all possible models
choose the one calculated by certain algorithm.

These questions were not addressed in the paper [11].
Still there are open questions (to be answered in forthcoming papers):

• is it possible to repair the IPET calculus and present a formal system which will
enable to deduce the values of the function bindinh0?

• how many models the calculus IPET admits? The eventual answer may interest the
designers of programming languages.
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Static and runtime binding

In this chapter we shall discuss the problem of determining the meaning of identifiers
during a compilation and later an execution of a program. In the preceding two chapters
we discussed the problem of identifying the direct superclass of a given class. We gave the
algorithm for computing function inh. This algorithm uses another function bind. The
latter algorithm finds application during the phase of compilation which checks whether
a source code is well formed program. This phase of compilation is usually called “static
semantic analysis”. The application of function bind during compilation allows to simplify
the access to variables during execution of program as it will be seen from the theorem
6.1.6.

6.1 Binding of variables

Variables are referenced in method bodies. Variables declared inside a method are con-
sidered to be local. All other references to variable identifiers should be bound in the
environment of the method. This environment consist in the class which declares the
method and all classes textually enclosing the declaring class. Without loss of generality
we assume that all variables are of class types. We assume that for every class K there exist
a function .v such that K.v returns the class M being the type of the variable v declared
within the class K or remains undefined if the class does not declare a field variable named
v. Since no class should declare two different variables with the same name K.v is really
the function.

Definition 6.1.1. An applied occurrence of a variable identifier v within the body of a
method M will be called nonlocal iff the variable identifier v is not declared within the
method M neither as a local variable nor as a formal parameter.

The way of searching the environment of nonlocal variable v applied occurrence in
method M body is isomorphic to a class identifier binding when they occurs within classes
(cf. definition 2.1.2).

Definition 6.1.2. Let K be a class. An applied occurrence of a variable identifier v in the
class K is bound to a class L such that L is the type of the applied variable v occurrence.

bind(v in K)
df
= (inhideclj(K)).v

where the pair (j, i), j ≥ 0, i ≥ 0, is the least pair in the lexicographic order such that the
class (inhideclj(K)).v is defined.

49



50 Chapter 6.

Definition 6.1.3. The nonlocal applied occurrence of a variable identifier v with the body
of a method M is bound to its type L iff its bound to the same type as applied variable
occurrence in class K where K is the class declaring the method M.

During runtime applied occurrences of variable identifiers should be bound to the cor-
responding locations in store. Each class together with its declared variable fields is the
pattern used to allocate location for every variable declared in this class. During runtime
any given class may be used many times to reserve new locations to declared field variables.
All locations for field variables of a given class should be reserved at once and we call such
collection of locations a data field of the class. As we will see in the next section data fields
forms during the run time a structure

DF = 〈Dfields,Decl, Inh〉

homomorphic to the compile time structure

CL = 〈Classes, decl, inh〉

with the homomorphism h : Dfields −→ Classes defined as follows
h(κ) = K iff the data field κ was reserved for locations of class K field variables.

Since field variables have unique names within each class we can assume that for every
data field κ there exist function .v such that κ.v returns the location of variable field v
within data field κ iff such location exists

Definition 6.1.4. Let κ be a data field of an arbitrary class. An applied occurrence of a
variable identifier v in the data field κ is bound to a location λ such that λ is the value of
the function bind computed in the following equality.

bind(v in κ) df
= (InhiDeclj(κ)).v

where the pair (j, i), j ≥ 0, i ≥ 0, is the least pair in the lexicographic order such that the
class (InhiDeclj(K)).v is defined.

Definition 6.1.5. The nonlocal applied occurrence of a variable identifier v while invoca-
tion ϕ of the method M is bound to its the location λ iff its bound to the same location as
applied variable occurrence in class data field κ where κ idata field of the classs defined as
the value of the expression “this” within the invocation ϕ

Theorem 6.1.6. Let κ be a data field of class K, v be applied variable identifier occurring
in κ and in K and L be a class designated as type of v by the formula
(inhistatdecljstat(K)).v = L
from the definition 6.1.2 and λ be a location designated as the location of v by the formula
(InhidynDecljdyn(κ)).v = λ
from the definition 6.1.4
then jstat = jdyn and istat = idyn

6.2 Instantiation of classes

6.2.1 Static typing of instantiation expression

Class instantiation is done by the expression new. The result of class instantiation is
producing a class instance. A class instance consists of data fields for the instantiated class
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and data fields for all its superclasses. The expression new may be invoked in one of two
contexts
e.new C(...) or
new X(...) as top level expression
In both cases the first step is to determine the declaration of the class to be instantiated.
Static semantics analysis requires the declaration of the instantiated class while in run
time we are obliged to define the values of functions decl and Inh as well for data field
of the instantiated class as for data fields of all its superclasses, which are to be reserved
simultaneously.

Let we start with determination of the class to be instantiated. If the new expression is
in the first form then the expression e should be well typed to some class K. Class identifier
C is bound to the class L iff
L = (inhi(K)).C
for some i and i the least number ≥ 0 such that the right hand side of the equality is
defined.
For the second form we must first establish
L = bind(X in K)
where class K is the owner of the method instantiating class. Then we must check whether
for some i and j
decl(L) = inhideclj(K)

Lemma 6.2.1. Let new X(...) be an class instantiation expression within a class K, and
let length(X)=1 i.e. X=C where C is a class identifier. Then the type of the expression
new X(...) is equal bind(C in K)

The observation stated in the lemma above does not generalize. It is possible that if
the type of the expression new X(...) in K is L then L 6= bind(name(L) in K) as it can be
seen from the following

Example 6.2.2. Class instantiation.

class B1{
class A {}
class B2 {

class A {}
void f() {

new B1.A();
new A();

}
}

}

Expression new B1.A() instantiates class B1$A of an identifier A, while expression new
A() instantiates class B2$A.

6.2.2 How to generate class instance using class instance generator

Definition 6.2.3. Let κ be a data field of class K. This data field may be used as class
instance generator for any direct inner class of K.
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Figure 6.1: Finding a class instance generator τ for generation of class N instance η where
N = inh(L) and decl(L) = K κ = h(K) are known.

The aim of a class instance generator κ is to instantiate a direct inner class. Let it
be the class L with the name(L) = C. Each class instance consists of data field of an
instantiated class and data fields of its all superclasses. Each of the data fields should have
defined its Decl and Inh functions properly. So, the first task of class L generator is to
generate an instance for direct superclass of the class L. Since it is done we obtain instance
of superclass consisting of data field of all superclasses of L, each data field with functions
Decl and Inh already defined. Then we reserve new locations for data field λ of class L
and define Inh(λ) = η and Decl(λ) = κ where η is data field of the direct superclass of
the class L.

Hence it is only left to define how class instance generator instantiates the direct super-
class of a class to be instantiated. In other words the only problem is how to find a direct
superclass L generator when the class L generator is known as κ. We remain that it means
that Decl(L) = h(κ). In order to deal with this problem we have class L constructor of
the form.
C(...){ e.super(...)} or
C(...){ super(...)}
where it is assumed that name(L) = C and inh(L) = N
In order to better understand the second form its worth to remain that the expression super
should instantiate the superclass which is already known from the earlier stage of static
semantics analysis as N . Let we treat the super() expression as a fictious class generator
new N(), in a very specific form where the class identifier is changed by the class itself.
Now we check if a formula
decl(N) = inhideclj(K) (∗)
holds for any i, j ≥ 0. This test may be performed during static semantics analysis and
for well typed program at least one such formula should hold. However if we have more
candidates we have a problem how to define class instance generator for N. In fact we
choose, perhaps a little bit arbitrary, to set class N instance generator as data field τ of the
class T = h(τ) = decl(N) where τ = Inhi0Declj0(κ), such that and j0 is the least integer
such that the formula (∗) holds. Its worth to notice that for such j0 i0 is defined uniquely
since there is no cycle in the graph of the inheritance function inh(L)

If the L constructor is in the first form then we assume, as in the previous case that
the direct superclass of L is N and decl(N) = T . Then it is a static semantics analysis
responsibility that the static type E of e is the subtype of T . During run time we must
evaluate the expression e before class N is instantiated. The expression e is evaluated in
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the dynamic context of κ instance of class K which is the class instance generator of class
L. Let η designates the value of e. We assume the dynamic run time type correctness which
means that the type of h(η) is a subtype of E. In other words Inhj(h(η)) = inhi(E) = T
for some j ≥ i. So Inhj(η) = τ where h(τ) = T . Then τ is the instance generator of
superclass N .

6.2.3 How to find the proper class instance generator from the
place of class instantiation.

Let we assume that the class instantiation expression new X(...) occurs at the time of the
method M execution and at this time the value of the expression this within method M is
υ. Let M be a method of a class K. Then K = h(Inhk(υ)) for some k. Then assume that
static analysis has defined the class to be instantiated as L and j is the smallest integer
such that decl(L) = inhideclj(K). Note that for such j the number i is defined uniquely
while the existence of such j is guaranteed by static semantics analysis. Then the L class
instance generator is τ = InhiDecljInhk(υ)

Now it remains to define class instance generator for the expression of the form e.new
C(...). Let K be a static type of the expression e and C be bound to class L by static
semantics analysis. It means that decl(L) = inhi(K) for an uniquely defined i. Then let
h(ν) = E where ν is run time value of the expression e. So K = inhj(E) for some j due
to run time type correctness. Then the class L instance generator is τ = InhiInhj(ν)
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Chapter 7

Conclusions

The Java programmers and the compilers of Java must resolve the problem of which of
possibly many classes B is extended by the class A extends B{. . . }. This problem is not
trivial because Java admits inner classes. The problem becomes even more complicated,
when we recall more general form of class declaration

class A extends B.C.D {. . . }.

In the specification of Java language [7] one may find conditions which must be satisfied
by the proper solution. This specyfication however doesn’t help to find a proper solution.
It also doesn’t guarantee nor that a solution exists neither that the solution is unique.

The problem, treated informally in JSL[7] was was given an algebraic formulation in
Chapter 2. Chapter 3 brings a non deterministic algorithm and the proof of its correctness.
Next chapter presents a deterministic algorithm together with its analysis. Chapter 5
discusses earlier works on this problem in various Object Oriented languages. A special
attention was given to the work of Igarashi & Pierce [11]. This paper contains a system of
axioms and inference rules which were invented in order to give reduction semantics of the
subset of Java. We proved that this work has a flaw.

There are at least two possible applications of the results of this dissertation. First,
the algorithm determining the extended classes may and should be a part of any Java
compiler. Second, the theoretical work made in the context of the problem may constitute
a good foundation for the future research of the semantics of Java programming language.
Chapter 6 may be treated as a first step of such research. The research which may lead to,
among the others, an extension of the Eclipse environment and an axiomatic definition of
the Java programming language.
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