program Treegen;

(* Generates the language defined by a regular expression*)
(* Program written by A. Kreczmar 1982
proof written by A. Salwicki 1990 *)

unit REGEXP:coroutine;

(* an object in the hierarchy of subtypes of type REGEXP represents a regular expression *)

(*

Theorem

For every object o in the hierarchy of classes that inherit from Regexp class the program Pr (see below), when executed will print all the words of the regular language represented by the object o and then it will stop.
Pr: I:=0;

```
do
    attach(o);
    (* print the WORD *)
                                    for J:=1 to I
                                    do
                                    write(WORD(J))
                    od;
                    writeln;
                        if W.B then exit fi
                od
```


Lemma

Let i 0 be the value of the variable I. Suppose that the some words of the language $\mathrm{L}(\mathrm{o})$ were generated by the earlier activations of the coroutine o.
An execution of command attach(o) has the following effect: the subsequent word of the language $\mathrm{L}(\mathrm{o})$ is concatenated to the content of the $\operatorname{WORD}(1), \ldots, \operatorname{WORD}(\mathrm{I})$; i.e. the new word is placed beginning of the position $\operatorname{WORD}(\mathrm{I}+1)$. The value of B attribute becomes true iff all the words of the language $\mathrm{L}(\mathrm{o})$ were shown.

PROOF of the lemma is distributed in the subclasses of the class regexp, i.e. the proof goes by induction with respect to the length of a regular expression *)
var $\mathrm{B}: \mathrm{BOOL}$; ($\mathrm{B}_{\mathrm{B}} \equiv$ all the words of the language were shown *)
begin
return
inner;
B := true
end REGEXP;
unit ATOM: REGEXP class(C:CHAR);
(* an atomic regular expression consists of a letter
Proposition. An execution of attach statement applied to this object will place the letter C on I+1-th place in the table WORD and the value of B will be assigned to true. In this way the whole regular language is displayed at once.
in this way we proved the base of the induction proof of Lemma. *)

begin

do
$\mathrm{I}:=\mathrm{I}+1$; (* update the position *)
WORD(I):=C;
B:=TRUE;
detach
od
end ATOM;
(* Proposition. Assume that objects L and R enjoy the property expressed by the Lemma
then any time this coroutine will be attached we obtain a new word of the union of the languages L and R.
Consider, a regular expresion of the length k . By our definition it is either a union object or a concatenation
object.
Let o be a union object i.e. o is UNION. The structure of its commands assures the following
while not exhausted(L)
do
attach(L) -- by induction hypothesis this command returns a word of L language
od
(* L.B = true *) -- the exhaustion mark for L
while not exhausted(R)
do
attach(R) -- by induction hypothesis this command returns a word of R language
od
(* R.B = true
B = true *)
It is evident that in this way by repeated execution of attach(o) one obtains a sequence of words composed from the all words of L language followed by the sequence of all words from the R language. *)

```
var M: INTEGER;
begin
    do (* repeat : store I; generate one word (first from L next from R; detach; restore I until exhausted *)
    M:=I;
            (* I is the position of the lastly generated letter.
                *)
            (* M+1 is the position where the current UNION object *)
            (* will place the letters of the currently generated word. *)
    do
        attach(L); (* by the inductive assumption this statement causes that one word will be generated of the
                            language L and it will be concatenated to the content of WORD(1) , ... , WORD(I) *)
        if L.B then exit fi;
        detach;
        I:=M (* reestablish the position in the table WORD for the next word *)
    od;
    L.B:=FALSE; (* restart language L *)
    do
        detach;
        I:=M; (* reestablish the position in the table WORD for the next word *)
        attach(R); (* by the inductive assumption this statement causes that one word will be generated of the
                            language R and it will be concatenated to the content of WORD(1) , .., WORD(I) *)
        if R.B then exit fi;
    od;
    R.B:=FALSE; (* restart language R *)
    B:=TRUE;
    detach;
    od;
end UNION;
```

unit CONCATENATION: REGEXP class(L,R:REGEXP);
(* represents the concatenation ($\mathrm{L} \bullet \mathrm{R}$) of the languages represented by the regular expressions L and R *)
(* Suppose the object o is of the class CONCATENATION.

Now the loop of commands of object o assures basically the following
while not exhausted
do
store (I);
attach(L); -- a word from L
$\operatorname{attach}(\mathrm{R})$; -- followed by a word from R
detach; -- hence a word of ($\mathrm{L} R$) is given
restore(I)
od
with the necessary reactions to a case when one language (L or R) ends.
It is clear that if the object L and R enjoy the property mentioned in the Lemma then the object o enjoys it too*)

```
var N,M:INTEGER;
begin
    do
        M:=I; (*begin of first language word position *)
    do
        attach(L);
        N:=I; (* begin of the second language word position *)
        do
            attach(R);
            if R.B then if L.B then exit exit else exit fi fi;
            detach; I:=N (* restart language R word generation position *)
        od;
        R.B:=FALSE; (* restart language R *)
        detach; I:=M (* restart language L word generation position *)
    od;
    R.B,L.B:=FALSE; B:=TRUE; detach
    od;
end CONCATENATION;
```

const $\mathrm{N}=50$; (* DIMENSION FOR ARRAY WORD *)
var A,B,C,D,E,W,V,L,O,G,II,NN:REGEXP,
I,J,N,M:INTEGER;
(* I = GLOBAL POSITION POINTER FOR ARRAY WORD *)
var WORD: arrayof CHAR; (* BUFFER FOR WORDS GENERATION *)
begin
writeln(" LANGUAGE GENERATOR USING COROUTINES");
writeln(" LANGUAGE IS REPRESENTED AS A TREE WITH OPERATIONS IN NODES");
writeln(" OUR OPERATIONS ARE SET THEORETICAL JOIN AND CONCATENATION OF");
writeln(" LANGUAGES");writeln;
A:=new ATOM('A'); B:=new ATOM('B'); C:=new ATOM('C');
D:=new ATOM('D'); E:=new ATOM('E');
L:=new ATOM('L'); G:=new ATOM('G');
II:=new ATOM('I'); NN:=new ATOM('N');
O:=new ATOM('O');
W:=new UNION(A,L);
W:=new CONCATENATION(W, new UNION(D,O));
V:=new CONCATENATION(II,C);
$\mathrm{V}:=$ new UNION(V,new CONCATENATION(L, new CONCATENATION(A,NN)));
$\mathrm{V}:=$ new CONCATENATION(G,V);
V:=new UNION(A,V);
W:=new CONCATENATION(W,V);
writeln(" WE HAVE LANGUAGE DEFINED BY THE FOLLOWING EXPRESSION");
writeln;
writeln(" $(A \cup L) \bullet(D \cup O) \bullet(A \cup G \bullet(I \bullet C \cup L \bullet A \bullet N)) ") ;$
writeln; writeln;
array WORD $\operatorname{dim}(1: \mathrm{N})$;
do

attach(W);

write(" ");
for $\mathrm{J}:=1$ to I
do write(WORD(J))
od;
writeln;
if W.B then exit fi
od
end

```
(*
Theorem
Pr: I:=0;
    do
        attach(o);
        for J:=1 to I
        do
        write(WORD(J))
        od;
        writeln;
        if W.B then exit fi
    od
```

 For every object o in the hierarchy of classes that inherit from Regexp class the program \(\operatorname{Pr}\) (see below), when
 executed will print all the words of the regular language represented by the object o and then it will stop.

Lemma
Let i 0 be the value of the variable I. Suppose that the some words of the language $\mathrm{L}(\mathrm{o})$ were generated by the earlier activations of the coroutine o.
An execution of command attach(o) has the following effect: the subsequent word of the language $\mathrm{L}(\mathrm{o})$ is concatenated to the content of the WORD(1), ... , WORD(I); i.e. the new word is placed beginning of the position WORD $(\mathrm{I}+1)$. The value of B attribute becomes true iff all the words of the language $\mathrm{L}(\mathrm{o})$ were shown.

Proof.
Induction with respect to the length of the expression represented by the object o.
Base. Suppose the actual type of o is ATOM. Then the thesis of the lemma is satisfied.
Induction step. Suppose the lemma holds for every regular expression shorter than an integer k. Consider, a regular expresion of the length k . By our definition it is either a union object or a concatenation object.
case A. Let o be a union object i.e. o is UNION. The structure of its commands assures the following while not exhausted(L)
do
attach(L) -- by induction hypothesis this command returns a word of L language od L.B := true -- set the exhaustion mark for L
while not
do
attach(R) -- by induction hypothesis this command returns a word of R language od
L.R := true

B := true
It is evident that in this way by repeated execution of attach(o) one obtains a sequence of words composed from the all words of L language followed by the sequence of all words from the R language.
case B Suppose the object o is of the class CONCATENATION.
Now the loop of commands of object o assures basically the following while not exhausted
do
store (I);
attach(L); -- a word from L
attach(R); -- precedes a word from R
detach;
-- hence a word of ($\mathrm{L} R$) is given restore(I)
od
with the necessary reactions to a case when one language (L or R) ends.
It is clear that if the object L and R enjoy the property mentioned in the Lemma then the object o enjoys it too.
This ends the proof of the Lemma.

