
Draft! 28th October 2012

Some methodological remarks inspired by the

paper ”On inner classes” by A. Igarashi and B.

Pierce

Hans Langmaack

Institut für Informatik, Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4, D-24098 Kiel, Germany

Andrzej Salwicki

National Institute of Telecommunication, Warsaw
Szachowa 1, 04-894 Warszawa, Poland

Running title:
Some methodological remarks ...

Address for correspondence:
Andrzej Salwicki
salwicki@mimuw.edu.pl
National Institute of Telecommunication
Szachowa 1,
04-894 Warszawa, POLAND
tel. 00 48 22-512-83-62
fax 00 48 22-512-84-00

1

Abstract
In [IP02] an axiomatic approach towards the semantics of FJI,

Featherweight Java with Inner classes, essentially a subset of the

Java-programming language, is presented. In this way the authors

contribute to an ambitious project: to give an axiomatic definition of

the semantics of programming language Java. a At a first glance the

approach of reducing Java’s semantics to that of FJI seems promising.

We are going to show that several questions have been left unanswered.

It turns out that the theory how to elaborate or bind types and thus

to determine direct superclasses as proposed in [IP02] has different

models. Therefore the suggestion that the formal system of [IP02]

defines the (exactly one) semantics of Java is not justified. We present

our contribution to the project showing that it must be attacked

from another starting point. Quite frequently one encounters a set of

inference rules and a claim that a semantics is defined by the rules.

Such a claim should be proved. One should present arguments: 10 that

the system has a model and hence it is a consistent system, and 20 that

all models are isomorphic. Sometimes such a proposed system contains

a rule with a premise which reads: there is no proof of something. One

should notice that this is a metatheoretic property. It seems strange to

accept a metatheorem as a premise, especially if such a system does

not offer any other inference rules which would enable a proof of the

premise. We are going to study the system in [IP02]. We shall show that

it has many non-isomorphic models. We present a repair of Igarashi’s

and Pierce’s calculus such that their ideas are preserved as close as

possible.

a A similar project with a partly axiomatic flavour, with so called
Abstract State Machines ASM, was initiated by E. Boerger and his
colleagues[Boe01] in 2001, but did not yet include inner classes.

Key words: object oriented programming, semantics, inheri-
tance, inner classes, direct superclass, static semantics analysis,
static binding, derivation calculus, model, minimal resp. least
model

2

1 Introduction

The Java-programming language is one of a few languages which
allow inheritance and inner classes. The combination of these two
features makes the language interesting for software engineers.
To make a very short resumé: two classes A and B nested in a
class C share the resources of C, two classes D and E extending
(inheriting) a class F obtain each a private copy of resources
defined in F. It is not astonishing that it is a challenge to define
the semantics of Java. In [IP02] Igarashi and Pierce presented an
axiomatic approach towards the semantics of the language Java,
namely an axiomatic way to reduce Java’s semantics to that one
of FJI (Featherweight Java with Inner classes). One inference
Rule (ET-SimpEncl) works with a metatheoretic property as a
premise, whereas the system does not offer any rules which would
enable a proof of the premise.

A declaration of a class may contain the keyword extends fol-
lowed by the type X naming the direct superclass. An example
declaration may look like this:

class A extends B.C { . . . }.
Now, since classes may be declared inside classes (and methods),
it may happen that there are several classes named B resp. C in
one program. Which of the classes named C is the direct super-
class of class A? Which of the classes named B should be used
in the process of identification of the direct superclass of class A?
Notice, it may happen that no correct direct superclass exists,
even if there are many candidates.

Subsection 5.2.1 of Section 5 of [IP02] is devoted to the elab-
oration of types which shall enable the identification of direct
superclasses. Table Fig. 14 of paper [IP02, section 5.2.1] cites six
inference rules. The authors define a calculus ; we name it IPET-
calculus and analyze it. The calculus’ aim is to help identifying
the direct superclasses in any syntactically correct Java-program.
This identification is required to check I&P’s sanity conditions

3

so that these static semantically correct resp. well-formed (in the
sense of I&P) programs can be assigned reasonable dynamic se-
mantics as I&P do in [IP02].
We present some observations:

• The calculus is not determinate. It means that it is possible to
derive two or more different classes as a direct superclass of a
certain class.
• Moreover, there exist at least two different models of the cal-

culus.
• Moreover, the models do not enjoy properties of this kind: the

intersection of two models is or contains a model; or there is a
least model; or there is at most one minimal model.

Therefore it is difficult to say what the meaning of the calculus
is. The authors of [IP02] are aware that a straightforward elab-
oration algorithm obtained by reading the rules in a bottom-up
manner might diverge. But a supplemented check for such diver-
gent recursive calls is not an obvious method: Is every divergence
always generated by a circular call from a recognizable finite set
of patterns as the authors of [IP02] suggest? Does a divergent call
mean that every former unfinished call has an undefined result as
we know this phenomenon from classical recursive functions? Or
does a divergent call mean that the algorithm proceeds with the
most recent (or with a certain earlier) not yet finished applica-
tion of the critical Rule (ET-SimpEncl)? We shall show that the
method can be specified in at least two different manners, i.e. the
IPET-calculus may be used to define resp. deduce at least two
different inheritance resp. direct superclassing functions inh from
classes to classes.

We can go another approach and ask: has the IPET-calculus one
or more models? It turns out that it has several non-isomorphic
models. (Let us remark that every model can be constructed by a
corresponding algorithm.) Hence it is necessary to add some hints
of metatheoretical nature. Frequently, a calculus (or a theory) is

4

accompanied by the metatheoretical hint: choose the least model.
We are going to show that this does not work easily. For the
intersection of two models needs not contain any model and there
are at least two different minimal models.

The main source of the problems is in admitting a special infer-
ence Rule (ET-SimpEncl) in combination with Rule (ET-Long
Sup). One of the premises of (ET-SimpEncl) is a metatheorem:
P ` X.D ⇑.
The formula P ` X.D ⇑ expresses the following property: for
every class T there is no proof of the formula P ` X.D ⇒ T or,
more general, in a position of a premise, there is no valid formula
P ` X.D ⇒ T . The last formula P ` X.D ⇒ T says: Type X.D
in (i.e. directly enclosed by the body of) class occurrence P elab-
orates (is bound) to class occurrence T. One remedy would be
to eliminate the rule and to replace it by some rules that do not
introduce metatheoretic premises and such that the premises are
positive formulas. Another approach would consist in extending
the language of the theory such that the expression P ` X.D ⇑
were a well-formed expression of the language and in adding some
inference rules to deduce formulas of this kind. Nothing of this
kind happens in [IP02].

Since a long time expression nesting and static scoping are well
established notions in predicate logics [Fre1879] and lambda cal-
culus [Chu41]. The notions were transferred to programming es-
sentially by the Algol60-Report [Nau+60/63]. In order to move
Java into a direction where object orientation is in concordance
with nesting of program structures, static scoping and embedded
software design [Bjo09] and thus to follow the lines of Simula67
[DaNy67], Loglan82/88 [Bar+82,KSW88] and Beta [MMPN93]
the authors of Java[GJS96] have created their new Java Language
Specification in 2000 [GJSB00] and allow inner classes. Igarashi
and Pierce supported this development by their article [IP02] and
earlier contributions.
Understanding and implementing nested program structures com-
bined with static scoping has turned out to be quite a subtle topic

5

in Algol- and Lisp-like languages [Dij60,GHL67,McG72,Lan73,Kan74,Ich80,Old81,WaGo84,?,Lan10,McC+65,Sto84,Ste84].
Establishing static scope name binding and direct superclassing
in the external language of the object oriented Java with inner
classes is an as difficult and subtle task as the present article
demonstrates.

The structure of our paper is as follows: Section 2 presents the
calculus IPET of Igarashi and Pierce and raises questions. A deci-
sive one is: does P ` X ⇒ T denote a relation or a function? We
present a seemingly evident, properly relational model of IPET,
but realistic programming cannot accept multi valued types elab-
oration.
In Section 3 we translate the inference rules of IPET in such a
way that the phrase “the meaning of type X in environment P is
class T ” is now expressed by the formula bindfn(X in P) = T .
We show the Examples 5 and 6 of well-formed programs, each
one with different models, even minimal models, so that only one
least model cannot exist. So IPET resp. the equivalent calculus
BIPET does not guarantee unique language semantics even if we
restrict to functional (single valued) models.
The succeeding (Sub-)Sections justify our claims on the program
Examples 5 and 6: Subsections 4.1 and 4.2 construct an infinite
(!) family of binding functions bindνinhν0 , 1 ≤ ν ≤ ∞, so that the
proof of Theorem 4 can show: each one is a model of IPET resp.
BIPET. Subsection 5.1 goes further: each model has a minimal
submodel and there are different minimal models. Every program
which is well-formed w.r.t. one of these binding functions satisfies
Igarashi’s and Pierce’s sanity conditions. So these conditions are
no criterion to single out the right binding function and model.
Experienced researchers have conjectured that the sanity condi-
tions single out the right model.
Subsection 5.2 presents a first repair of IPET’s resp. BIPET’s
shortcomings by a modified calculus BIPET´. The essential idea
is to decompose undefinednesses (failures) of binding function
applications into finite failures, represented by the so called fi-
nite failure class Fc, fictitiously joined to every program, and

6

properly infinite failures, represented by impossible derivability.
Strict Fc-extension of Java’s official binding function bind1

inh10
(named bindinh0 in [LSW09]) turns out to be the least model of
BIPET´(Theorems 32,38, Corollary 39) in case the considered
programs are binding well-formed.
Section 6 represents calculus BIPET´and its least model by an
equivalent recursive function definition (or recursive program in
the sense of [LoSi84]), Definition 40. If a Java-program is well-
formed every valid formula bind1

inh10
(X in P) = T can be calcu-

lated by a successfully terminating call of bindfn(X in P) and
vice versa. Above this every call of bindfn(X ′ in P) is terminat-
ing even if type X ′ does not denote any class occurrence. But
the recursive program does not decide whether a Java-program
is well-formed (i.e. the domain dominh10

is the full set C of user de-
clared classes) or not. Algorithm LSWA in [LSW08,LSW09] does
so. A second, more profound repair BIPET�simulates ideas in
LSWA, BIPET� ’s least model is even the only model and the as-
sociated recursive function definition is a semideciding algorithm
which can be readily transformed towards a deciding algorithm
(Theorems 43,45, Corollary 46, Definitions 47,49).

In order to make our article better receptive by readers we have
moved three detailed rigorous proofs into the Appendix. This
concerns Theorem 4, i.e. on correctness (satisfaction of model
property) of all binding functions bindνinhν0 w.r.t. I&P’s calculus
IPET resp. the equivalent BIPET, Theorem 32, i.e. on correct-
ness of Java’s official binding function bind1

inh10
w.r.t. the repaired

calculus BIPET´ and Theorem 35, i.e. on weak completeness of
bind1

inh10
w.r.t. BIPET´ .

I&P’s paper [IP02] has become rather influential in the devel-
opment of object oriented Java. So it is especially important to
rectify unclear resp. erroneous points in that paper and to work
out the deeper reasons which allow to repair I&P’s calculus so
that I&P’s spirit is captured most closely and the repaired cal-
culus leads to the same result which Java Language Specificaton

7

JLS [GJSB00] requires. The claim that the program Examples 5
and 6 are really counter examples to I&P’s cannot be understood
by mere inspection of these Examples and of IPET. It can be per-
ceived only by support of the investigations in Sections 4 and 5.
At the beginning of Section 3, beside our questions about I&P’s
IPET, we provide some background about the remarkable dif-
ference on how JLS versus I&P specify binding and inheritance.
We explain why our investigations are necessarily more involved
than a reader might expect.

2 Igarashi’s and Pierce’s calculus IPET for elaboration of types

Igarashi and Pierce [IP02, 5.2.1] are presenting a calculus IPET
of derivation rules for a so called elaboration relation of types.
The formulae of the calculus have the form (are written as)

P ` X⇒ T to be read: The simple or qualified class type X (i.e.

a non-empty sequence of class identifiers separated by periods)
occurring inside the directly enclosing body of class declaration
occurrence P is elaborated to (resp. is bound to) class declaration
occurrence T. In other and shorter words: the meaning of type X

in class P is class T. For clarification: we have to differ between
a syntactical entity and its occurrences, see the Algol68-report
[Wij+68], because one and the same class declaration text (class
for short) may occur several times at different places in a given
program .

Observe that there is a bijection between class occurrences like P

(or T) and their so called absolute types (paths) C1. · · · .Cn where Cn
is the name of class P, Cn−1, · · · ,C1 are the names of the successive
class occurrences which enclose class occurrence P and C1 names a
top-level class. To understand this phenomenon one should notice
that the classes of a program form a tree. The root of the tree
is a fictitious class Root which directly encloses all the top level
classes of the program. Let nd be an internal node of the tree.
It can be identified with the path leading from the root to it.

8

Such a path consists of the names of enclosing classes. All direct
inner classes decl in the class which is node nd are the sons of
node nd. Therefore we are entitled to identify an occurrence of
a class declaration and the absolute path of it. FJI requires that
the extends clause has an extends type which is the absolute path
of the denoted class occurrence whereas the external language of
Java allows abbreviated extends types which are not necessarily
absolute paths. Beside the user declared class occurrences in a
Java-program there are two implicit, fictitious class occurrences:

(1) Root = {· · · }, which is enclosing all top level classes (and
implicitly all other class occurrences) of the Java-program
and which has no name nor extends clause. The authors of
[IP02] represent Root by its fictitious name ? which users are
not allowed to write. ?.C1. · · · .Cn is identified with C1. · · · .Cn.

(2) Object = class Object {· · · } the name of which is Object,
which is directly enclosed by Root (so it is a top level class)
and which has no extends clause either. There are no classes
declared inside the body of Object (see [GJSB00,GJSB05]).

(3) To relieve our present investigations we neglect the implicit
class occurrences of the Java utility package resp. we consider
its classes as user declared ones.

Let us explain the meaning of some premises in the inference
rules. In three rules one finds a premise of the form CT (P.C) =
class C extends X {· · · }. In this way the authors Igarashi and
Pierce express the fact that user declared class P.C extends type
X, i.e. extends that class which is the meaning of type X in the
place where the declaration of class P.C occurs ? . Formulas of
the form P.C ∈ Dom(CT) mean: the program contains the class
named C in its directly enclosing class which is identified with
path P . Obviously, the formula of the form P.C.D /∈ dom(CT)
expresses the fact that the class to be identified with the path

? Igarashi and Pierce require that every user declared class has an extends clause
with a non-empty extends type. Java Language Specification [GJS96,?,GJSB05]
allows empty extends clauses, and [LSW09] does so as well. In the following text we
join Igarashi’s and Pierce’s practice.

9

P.C does not contain any class named D. In Table 1 we present
Igarashi’s and Pierce’s calculus IPET for elaboration of types.
Below we collect some observations and comments.

10

Table 1
Igarashi’s & Pierce’s rules of elaboration

I. (ET-Object) P ` Object⇒ Object

II. (ET - In CT)
P.C ∈ dom(CT)

P ` C ⇒ P.C

III. (ET-SimpEncl)
P.C.D /∈ dom(CT) P ` D ⇒ T

CT (P.C) = class C extends X {· · · } P ` X.D ⇑
P.C ` D ⇒ T

IV. (ET-SimpSup)
P.C.D /∈ dom(CT) CT (P.C) = class C extends X {· · · }
P ` X.D ⇒ T

P.C ` D ⇒ T

V. (ET-Long)
P ` X ⇒ T T.C ∈ dom(CT)

P ` X.C ⇒ T.C

VI. (ET-LongSup)

P ` X ⇒ P ′.D P ′.D.C /∈ dom(CT)

CT (P ′.D) = class D extends Y {· · · } P ′ ` Y.C ⇒ U

P ` X.C ⇒ U

(1) It is not fully clear what the denotation P ` X ⇒ T denotes!
Should it be a binary function or a ternary relation? Observe
that the above system has an unexpected model. Let π be a
Java program. By Cπ we denote the set of all user declared
class occurrences of program π. By SCT π we denote the set
of simple class types occuring in π (Object included) and
by CT π = SCT π+ the set of (simple or qualified) class types
of the program π. Consider the following subrelation of the
product

(Cπ ∪ {Root, Object})× CT π × (Cπ ∪ {Root, Object}),
namely the set of all triples (P,X, T) with X ∈ CT π, P, T ∈
Cπ∪{Root, Object} where the name of class T coincides with
the rightmost simple type in X. This subrelation satisfies
all six rules. Hence one acceptable meaning of the predicate
P ` X ⇒ T is this subrelation. In the context of Java (or any
programming language) such interpretation is of no worth as

11

different classes with the same name D are allowed in a pro-
gram and so every applied occurrence of D denotes different
classes simultanuously. Practical programmers and compiler
builders expect that predicate P ` X ⇒ T denotes a single
valued function. Some extra mechanism must be added to
the six rules which reminds us to interpret the denotation
in a functional sense. Featherweight Java with Inner classes
FJI does so by using absolute paths as applied occurrences
of class types (names).

(2) Rule I.(ET-Object) reveals a slight inconsistency resp. re-
striction w.r.t. official Java with inner classes. I.o.w. [IP02] re-
quires that the user is not allowed to choose the name Object
for anyone of his declared classes. We have to respect this in
our considerations and to discuss.

(3) Rule III. (ET-SimpEncl) has four premises. The fourth pre-

mise of the form P ` X ⇑ is in fact a metatheorem “there

is no class T such that the triplet P ` X ⇒ T has a formal
proof” or “there is no class T such that the triplet P ` X ⇒ T
is valid”. This rule in combination with Rule VI. (ET-LongSup)
is a source of severe problems as we shall see below. Closer
investigation of the calculus shows up that the more appro-
priate meaning of P ` X ⇑ is not a general failure of binding
to any class T , but is a specific binding to an additional fic-
titious finite failure class (see Subsection 5.2) in concordance
with theory of recursive programs [LoSi84], see Section 6.

(4) There is no definition of the notion of (formal) proof in the
system IPET of inference rules. Should one accept the clas-
sical definition of the notion of formal proof then the lack of
possibilities to derive premises of the form P ` X ⇑ becomes
evident. We know, the standard answer to this remark is:
“but everything is finite and therefore one can control the sit-
uation”. Is this one person added to the definition of proof?
What instructions are given to her/him which enable the task
to recognize the impossibility of any proof?

(5) A reader may hesitate to perceive what the following sen-
tence is meaning: “A straightforward elaboration algorithm

12

obtained by reading the rules in a bottom-up manner might
diverge.” [IP02, 5.2.1, p.82]. Section 1 has already posed de-
cisive critical questions.

(6) The authors of [IP02] are aware that proof construction is
not always possible. They make evident that their method
may loop without exit [IP02, 5.2.1, p.82].

(7) In fact, the task of type elaboration is divided in three sub-
tasks: a) to find out whether the program is a well-formed
one, b) to define a function inh which for every user declared
class P returns the direct superclass of P, c) to find a bind-
ing function such that inheritance function inh is determined
by the extends clauses of class declarations. It turns out that
IPET does not help to solve task a) and to detect the possible
errors in typing.

(8) Seeing the incompleteness of the IPET-calculus (c.f. Rule III.
together with Rule VI.) one may ask a slightly different ques-
tion: is it true that IPET has exactly one model? We shall
see that there are several models. In Sections 3 and 4 we
prove that algorithm LSWA proposed in [LSW09] defines one
IPET-modelM1 = bind1

inh10
which is the official Java-binding

function propagated in
[GJSB00,GJSB05]. Above that in these sections we show up
even further methods which lead to entirely different models
Mν = bindνinhν0 , 2 ≤ ν ≤ ∞, of IPET.

(9) The next question: Is it possible to equip the calculus with
an extra hint of the kind: consider the least one of all models
as THE model of the (original) IPET-calculus? This hope
should be abandoned in the light of Section 5.

(10) Our investigations lead to reasonable repairs of IPET which
are conform to the type elaboration in the official Java Lan-
guage Specification with inner classes [GJSB00,?,LSW09],
see Subsection 5.2 and Section 6.

13

3 Binding functions, well-formedness, Igarashi’s and Pierce’s san-
ity conditions, models of calculus IPET resp. BIPET

The average user of a programming language expects that stan-
dard language specification provides a constructive, algorithmic
definition of a binding (types elaboration) function bindfn which
for any syntactically correct program π and applied occurrence
of a name (type) X directly occurring in an environment (e.g.
class body) P uniquely assignes a declaring occurrence T of X.
If bindfn is total, i.e. if T is defined for every pair X,P in π
then the program is called binding well-formed ; now the user can
proceed to check π for general well-formedness (static semantical
correctness).
Surprizingly, JLS [GJSB00] has specified the most successful and
widely used programming language Java with inner classes, al-
though JLS-well-formedness (see the more formalized Definition
23 in our present article) is characterized in an unconventional,
non-standard way: JLS’s conceptions of binding and inheritance
and their mutual dependings are unusual, a mere totality check
I1 does not suffice, additional cycle freeness I2 of the induced
(non-augmented) dependency relation must hold. JLS does not
describe any algorithmic way towards bindings and inheritances;
to find them in flat programs is a simple task, but in non-flat
ones it is a non-trivial task (see examples in [LSW09]).
The authors of the paper [IP02] seem to feel the complications
around the unusual mutual dependencies and the neglected re-
gard to constructivity. So the authors formulate calculus IPET
which avoids to define bindings via inheritances by a kind of in-
heritance inlining which is a clever exploitation of how to bind
qualified names. Unfortunately, IPET still is not fully construc-
tive (Rule III. (ET-SimpEncl)) and has several minimal models
(Theorems 4,28). Not even I&P’s sanity conditions help to decide
for binding well-formedness of a program and to single out the
right, the official model which JLS precribes, namely bind1

inhwf
in

case of JLS-well-formedness (Lemma 24 and Theorem 25).
Single valuedness of the complying function bindfn and unique-

14

ness of this model are no problems for the repaired calculus
BIPET´ . Main problem is to show that bindfn and bind1

inhwf
coin-

cide. JLS’s non-standard proceeding how to define well-formedness
is a primary cause why proofs of Theorems 32,35,38 are complex.
Section 4’s careful investigation on the models bindνinhν0 of IPET
resp. BIPET, parameterized by the fixed point inheritance func-
tions inhν0 , is obligatory. The investigation shows the fundamen-
tal cycle freeness of the augmented dependency relation (proof in
Remark 21)

decl ∪ depbindν
inhν

0

,

i.e. validity of binding well-formedness condition J2 (in Defini-
tion 2) which is stronger than condition I2 (in Definition 23)
originally formulated in Java’s official definition of binding well-
formedness [GJSB00]. This more general cycle freeness actually
allows to prove strong completeness of Java’s official binding func-
tion bind1

inh10
w.r.t. the repaired calculus BIPET´ (Theorem 38).

Program Example 42 demonstrates that calculus BIPET´ resp.
its equivalent recursive Definition 40 of bindfn work correctly
only if a considered program is JLS-well-formed. This bindfn can-
not help to decide whether a program is well-formed or not. But
we are able to present a modified calculus BIPET� with its equiv-
alent recursive function Definitions 47 and 49 which do the de-
sired deciding. So we have managed to change I&P’s name bind-
ing specification into standard shape where a program’s binding
well-formedness is valid iff name binding is total.

Let us go into the technical part of Section 3. Section 2 has
pointed out that type elaboration or binding relations P ` X ⇒
T in

P(CπRO × CT π × CπRO)

with CπRO df
= Cπ ∪ {Root, Object} should be partial single valued

binary functions bindfnπ(X in P) = T in

CT π × CπRO part−→ CπRO
which for given class type X and class occurrence P determine
class occurrence T – namely the meaning of class type occurrence

15

X directly (immediately) enclosed by class occurrence P . We may
say also: type (name) X, considered to be directly contained in
the body of class (occurrence) P , is bound to (is elaborated to)
class (occurrence) T . If binding function bindfnπ, applied to X
and P , is undefined (has no result value) then no correct mean-
ing of class type X inside class occurrence P can be found. In
the sequel we shall omit the superscript π as always at most one
program will be discussed.

Beside binding functions we consider inheritance or direct (im-
mediate) superclassing functions

inh : CRO part−→ CRO
with its inherent conditions

inh(Root) and inh(Object) undefined,
inh(P) 6= Root

for all P ∈ C (with inh(P) ∈ CO in case inh(P) is defined). These
inheritance functions form a subcpo

INH df
= CRO inherit−→ CRO

of the full cpo

CRO part−→ CRO.
The domain of inh is

dominh
df
= {K ∈ C : inh(K) ∈ CO},

CO df
= C ∪ {Object}, with its following extensions

domR
inh

df
= dominh ∪ {Root},

domO
inh

df
= dominh ∪ {Object},

domRO
inh

df
= domR

inh ∪ {Object}.

Definition 1: The structure of a syntactically correct program
π is the tree CRO of all its class occurrences, including Root and
Object, together with the operations decl and ext. Operation
decl represents the tree’s edges; P ′ = decl(P) reads: P ′ is directly
declared in P ; decl(Object) is Root and decl(Root) is undefined.
ext(P) is the type (simple or qualified name) in class P ’s extends-
clause. ext is defined for all P ∈ C and is undefined for Root and
Object. 2

16

Definition 2: A program π resp. its structure is called binding
well-formed w.r.t. binding function bindfn iff three conditions are
fulfilled:
J1) on totality of induced inheritance function inhbindfn:

inhbindfn(K)
df
= bindfn(ext(K) in decl(K))

is total on all user declared classes K ∈ C, dominhbindfn = C (If
ext(K) or decl(K) is undefined then so is inhbindfn(K) as is the
usual understanding of function application).
J2) on non-existence of cycles in

decl ∪ depbindfn,
i.e. the induced dependency relation depbindfn augmented (united)
by the directly declared in-relation decl where:

depbindfn
df
= {〈K, bindfn(ext(K)|i in decl(K))〉 :

K ∈ C, 1 ≤ i ≤ length(ext(K))}
and all values bindfn(ext(K)|i in decl(K)) have to exist as ele-
ments of CO.
J3) on non-paradoxical binding : Let type X ∈ CT explicitly oc-
cur or be thought to occur applied directly in the body of class
K ∈ CRO and let bindfn(X in K) be defined to be T ∈ CRO.
Then T is different from Root (Root has no name) and T ’s name
C is the rightmost simple type in X. If X is explicitly written
down in the program or in its structure then bindfn(X in K)
must be defined ∈ CO. 2

Definition 2 generalizes the definition of well-formedness of a pro-
gram structure as we know it from the official Java Language
Specification JLS with inner classes [GJSB00,?], formalized in
[LSW04,?]. In case of JLS-Java the definition in the literature
and our Definition 2 w.r.t. the JLS-Java-binding function are
equivalent; a proof will be given in Subsection 4.2, Theorem 25.

Binding well-formedness implies the sanity conditions (1) to (7)
in [IP02], Definition 2 is stronger than binding well-formedness
in the sense of I&P where in FJI every applied occurrence of a
class type X in any P is the absolute path of the denoted class
bindfn(X in P) ∈ CO:

17

(1), (4), (5) are immediate implications of this latter fact.
(2) expresses: If L is an inner class named D and directly nested
in the body of P then L = P.D what follows from the definition
of the selection operator . (dot).
(3) expresses: Object /∈ name(C) what expresses I&P ’s language
restriction which does not allow Object as a user declared class
name.
(6) says: there are no cycles in the subtyping relation <: what is
an implication of J2) because

K<: L means inh?bindfn(K) = L.
(7) is prohibiting a class from extending one of its inner classes,
i.e. decl+(inh+

bindfn(T)) 6= T , what is an implication of J2). (7)
implies especially T ≮: T.U .

Binding well-formedness is a necessary condition of well-formed
(i.o.w. static semantically correct) programs π, i.e. those syntacti-
cally correct programs which language specification has assigned
dynamic semantics to. Often we shall drop the word “binding”
in “binding well-formedness”.

Since calculus IPET shall be employed to establish a distinguished
binding function and because a system of rules might have seve-
ral complying functions or models we are interested in extreme
ones, preferably least ones. As IPET turns out not to have just
one least complying function or model we try to search for mini-
mal models, then to see which one is especially appropriate and
to look for repaired calculi which come up with exactly one least
model or even exactly one model.

In order to have an easier way of comparison we translate IPET’s
rules to the mode of expression in [LSW08,LSW09] what is yield-
ing calculus BIPET in Table 2.

18

Table 2
Rules of calculus IPET are interpreted into calculus BIPET

I. (BET-Object) bindfn(Object in P) = Object

II. (BET - InCT)
class P has a direct inner class ∈ CO named C

bindfn(C in P) = P.C

III. (BET-SimpEncl)

bindfn(D in P) = T

class P.C ∈ C has no direct inner class named D

bindfn(ext(P.C).D in P) undefined

bindfn(D in P.C) = T

IV. (BET-SimpSup)

class P.C ∈ C has no direct inner class named D

bindfn(ext(P.C).D in P) = T

bindfn(D in P.C) = T

V. (BET-Long)

bindfn(X in P) = T

class T has a direct inner class named C

bindfn(X.C in P) = T.C

VI. (BET-LongSup)

bindfn(X in P) = P ′.D

class P ′.D ∈ C has no direct inner class named C

bindfn(ext(P ′.D).C in P ′) = U

bindfn(X.C in P) = U

Variables P, P ′ range over CRO, T,U over CO, X over CT and C,D over simple types SCT

Definition 3: Let us consider a program π which is binding well-
formed w.r.t. bindfn. We say bindfn is a model of calculus BIPET
iff bindfn satisfies all six BIPET-rules. 2

Although a definition of the family of different binding functions
bindνinhν0 , 1 ≤ ν ≤ ∞, will be pre- sented only later in Definition
8 and Corollary 22 we anticipate Theorem 4 because it is central
due to its consequences. Theorem 4 is a correctness proposition
on bindνinhν0 w.r.t. BIPET.

Theorem 4: Let a program be well-formed w.r.t. bindνinhν0 . Then
the single valued function bindνinhν0 is satisfying all six rules of

19

BIPET, i.e. is a model. We may even say: bindνinhν0 is a uniform
model of BIPET. We speak of a uniform model because the model
property is not restricted to some special programs, but refers to
the variety of all program structures well-formed w.r.t. bindνinhν0 .

Theorem 4’s proof will be given in Appendix A1. Among the con-
sidered models there is Java’s official binding function bind1

inh10
[GJSB00,GJSB05,LSW08,LSW09], see the later Definition 23,
Lemma 24 and Theorem 25. In order to understand better the
translation from IPET to BIPET the following discussion might
be a good exercise.

Let us shortly consider the following premise of IPET in the
three Rules III., IV., VI.:

CT (P.C) = class C extends X{. . . } resp.
CT (P ′.D) = class D extends Y {. . . } .

In BIPET this premise is to be formulated fully as follows:
class P.C has a defined extends type X ∈ CT which is

ext(P.C) resp.
class P ′.D has a defined extends type Y ∈ CT which is

ext(P ′.D).
Since ext is undefined only if applied to Root or Object and since
P.C resp. P ′.D is different from Root the premise in BIPET is
equivalent to

class P.C is different from Object or P.C ∈ C resp.
class P ′.C is different from Object or P ′.C ∈ C.

In the two Rules IV., VI. this being different from Object may
be deleted as it is an implication of the other premises:

Since bindfn(ext(P.C).D in P) is defined = T ∈ CO
ext(P.C) is also defined ∈ CT and

so P.C is different from Object.
Similar reasoning holds for P ′.D .

In Rule III. this implication is not valid. Consider the following
user written part of a program structure

class D extends Object {. . . },
which obeys I&P’s language restriction, and the official Java-

20

binding function bind1
inh10

. The structure is well-formed w.r.t. this
binding function which complies with all six rules. Three premises
in Rule III. are holding:

bind1
inh10

(D in Root) is class D above;
class Root.Object is Object and has no direct inner class

named D ;
bind1

inh10
(ext(Root.Object).D in Root) is undefined as ext(Object)

is undefined.
But the fourth premise

Root.Object ∈ C = {D}
does not hold.

The serious dilemma with IPET resp. BIPET is that there are
programs where each one of them has different models, even dif-
ferent minimal models, so that there is no least model. Conse-
quence: IPET resp. BIPET in its present shape is no recommend-
able help to assign appropriate dynamic semantics to a Java-
program with inner classes.

21

Example 5:
πa: class A extends Object {

class E extends Object { }
class C extends Object { }

}
class B extends A {

class E extends Object { }
class D extends C {

class F extends E { }
}

}

πa has at least two different models, namely bind1
inh10

and bind2
inh20

(= bindνinhν0 , 2 ≤ ν ≤ ∞), defined in Subsection 4.2, Corollary 22.
These are two binding functions such that their induced inheri-
tance functions (see totality property J1) in Definition 2 are

inhbind1
inh1

0

= inh1
0 and

inhbind2
inh2

0

= inh2
0 (= inhbind∞

inh∞
0

= inh∞0 in our Exam-

ple 5).
We have identical inheritances

inh1
0(A) = inh2

0(A) = Object
inh1

0(B) = inh2
0(B) = A

inh1
0(A.E) = inh2

0(A.E) = Object

inh1
0(C) = inh2

0(C) = Object
inh1

0(B.E) = inh2
0(B.E) = Object

inh1
0(D) = inh2

0(D) = C,
but also different ones

inh1
0(F) = B.E 6= inh2

0(F) = A.E

(see Definitions 8,13 and Corollary 22. A,B,C,D,A.E, B.E, F de-
note the seven classes which are named A, B, C, D, E, E, F and which
may be characterized by their absolute paths (others say full
names)

A, B, AC, BD, AE, BE, BDF
). As all these inheritances remain preserved (see Definition 2) as
soon as we go to minimal submodels (which always exist due to

22

Theorem 28 in Subsection 5.1) we have even at least two differ-
ent minimal models. So at the end of Subsection 5.1 we shall get
back to this statement gained from Example 5.

Comparison of two models i.e. of two semantics.

inh1
0 = inhbind1

inh1
0

inh2
0 = inhbind∞

inh∞
0

= inh∞0

root

A B ext A

ED ext CCE

F ext E

object

Where class F inherits from?
F has no sibling.

Class object can not contain E. Omitting it.

inh0
1

inh0
1

root

A B ext A

ED ext CCE

F ext E

Where class F inherits from?

inh0
2

inh0
2

root

A B ext A

ED ext CCE

F ext E

Moving up to the enclosing class D.

inh0
1inh0
1inh0
1

inh0
1

root

A B ext A

ED ext CCE

F ext E

Moving up to the enclosing class D.

inh0
2

inh0
2

root

A B ext A

ED ext CCE

F ext EMoving along inh.
Class C has no son E.
Where to continue?

inh0
1

inh0
1

root

A B ext A

ED ext CCE

F ext EMoving along inh path.
 None of visited classes has E inside.
Class C has no son E either.

inh0
2

inh0
2

root

A B ext A

ED ext CCE

F ext E
Retreat along inh path to D and
continue moving up to the enclosing class B.

inh0
1

inh0
1

root

A B ext A

ED ext CCE

F ext E
Moving up from class C to
the enclosing class A.

inh0
2

inh0
2

root

A B ext A

ED ext CCE

F ext E
Class E declared inside B is our goal.
Class F inherits from B$E

inh0
1inh0
1

inh0
1

inh0
1

root

A B ext A

ED ext CCE

F ext EClass A has a son E.
Class F inherits from class A$E.

inh0
2

inh0
2

inh0
2

23

Type elaboration or binding in Java with inner classes pursues
a strategy of preference of inheriting over surrounding classes.
Our intuition and motivating observation for this article has been
that Java’s official binding function bind1

inh10
which due to Theo-

rem 4 complies with I&P’s rules does not pursue strongest pos-
sible preference, only a weak preference, where in our Example
5 class F = BDF inherits class B.E = B$E . On the other
hand, strongest possible preference of inheriting over surround-
ing classes is practiced in such a way that class F inherits class
A.E = A$E . Why? D’s inheritance chain

D −−− > C −−− > Object
has no member (attribute) class named E. Searching in official
Java returns from Object to the beginning D of the chain and
enters the surrounding class B in order to find B.E = B$E.
Strongest preference returns only to class C in the chain, enters
its surrounding class A and finds A.E = A$E. Theorem 4 shows
that all other strategies of preference of inheriting over surround-
ing classes comply also with I&P’s rules in IPET resp. BIPET.2

We have at least two different minimal models even if all in-
heritances are identical. To see this fact we change Example 5
towards

Example 6: We exchange the body of class D in πa by a body
without any class declarations inside. We delete class F and as-
sume there is an applied occurrence of simple type E in D which
is not declared inside the body of D. So we get program

πb: class A extends Object {
class E extends Object { }
class C extends Object { }

}
class B extends A {

class E extends Object { }
class D extends C {

. . . E . . .

24

}
}.

Here again we have an inequality
(?) bind1

inh10
(E in D) = B.E 6= bind2

inh20
(E in D) = A.E

(for analogous reasons as above in Example 5).
In order to conclude once again that we have different minimal
models we can reason as follows with the help of the Theorems 4
and 29: If we had only one minimal model bindfnmin, this would
be a minimal submodel both of bind1

inh10
and of bind2

inh20
. So due

to (?) bindfnmin(E in D) is necessarily undefined (??). But in
Subsection 5.2 we shall construct a concrete bindfn1 which is a
minimal submodel of bind1

inh10
and which in case of our program

Example 6 is even just the same as bind1
inh10

; so bindfnmin is iden-

tical bindfn1. So we can calculate bindfn1(E in D) = B.E due to
Algorithm LSWA = LSWA1 and Definition 8 what is contradict-
ing the undefinedness (??) above. 2

4 Langmaack’s, Salwicki’s and Warpechowski’s way to construct
different type elaboration or binding functions and their prop-
erty to be models of IPET resp. BIPET

Elaboration or binding of applied type occurrences towards de-
clared ones in Java is done with preference of inheriting over sur-
rounding classes. Every binding function bindνinh follows this prin-
ciple , where inh denotes any parameterizing inheritance function
and 1 ≤ ν ≤ ∞ holds. But we realize that there are different
levels of preference. Index ν = ∞ means strongest preference
whereas index ν = 1 , i.e. Java’s official binding, pursues weak
preference. We have made this motivating observation by look-
ing at the diagram of program Example 5. The series of indices
1 < ν < ∞ in between represent a kind of continuous transi-
tion from weak towards strong preference. Maybe, intermixing of
these numerous possible ways to do reasonable type elaborations
or bindings have seduced towards calculus IPET resp. BIPET

25

which, unfortunately, has not just one least complying binding
function bindfn but several minimal ones. Therefore IPET resp.
BIPET does not single out the right level of preference.

4.1 Definition of a family of binding functions bindνinh

Consider the ordered alphabet A of the two operator symbols
in and de, where we define in to be less than de: in ≺ de. This
is the order theoretical explication of the principle: preference of
inheriting over surrounding classes. This order is inducing a lex-
icographical (from the right) order in the set A? of all words over
A. E.g., the words

in ≺ de_in ≺ de ≺ in_de

are in this order. Notice, this order is total, but not well-founded.
So we have to be careful; an infinite set of words might have no
least one.

Let w = id_1 id
_
2 · · ·_ idn be a word ∈ A?, n ≥ 0, idj ∈ A. Let P

be a class. The word w applied to class P w.r.t. the semantical
operation inh is the class

w(P)
df
= id1(id2(· · · (idn(P)) · · ·)) ∈ CRO

in case of definedness where idj = de is interpreted by the se-
mantical “directly declared in” function decl and idj = in by
a semantical inheritance function inh. The empty word λ with
n = 0 yields λ(P) = P .

Now we consider the following pairs (Adν,Aiν) of special subsets
of A? such that each pair will induce a model of BIPET:

(1) (Ad1,Ai1) = (in?_de?, in?) is responsible for the BIPET-
model bindinh0 in [LSW09], i.e. for the official language spec-
ification of Java with inner classes [GJSB00,?]. Here we have
weakest preference of inheriting over surrounding classes.

(2) (Ad∞,Ai∞) = (A?,A?) is responsible for the BIPET-model
BindinhB0

in [LSW08b]. Here strongest preference is exer-

26

cised.
(3) (Adν,Aiν) = ((in?_de?)ν, (in?_de?)ν−1_in?) is responsible

for further models of BIPET for every natural number 2 ≤
ν < ∞. Here preference is between weakest and strongest
one.

These pairs (Adν,Aiν) have characteristic properties which are
used in later proofs.

(1) Adν is de-closed, i.e. λ ∈ Adν and w ∈ Adν implies w_de ∈
Adν.

(2) Aiν is in-closed, i.e. λ ∈ Aiν and w ∈ Aiν implies w_in ∈ Aiν.
(3) Adν = Aiν_de?.
(4) Aiν_in ⊆ Aiν ∩ Adν.
(5) w_in ∈ Aiν implies w ∈ Aiν.
(6) w_de ∈ Adν implies w ∈ Adν.

Every such pair (Adν,Aiν) induces a binding function

bindνinh : CT × CRO part−→ CRO
associated to and parameterized by a given inheritance function
inh.

We need auxiliary binding functions

bdινinh : SCT × CRO part−→ CRO
where the index ι ranges over d and i so that Aιν is either the
subset Adν or Aiν of A?. If we have ν = ∞ then superscript
ι acts in the same way for both possible values d or i because
Ad∞ = Ai∞ = A?:

Definition 7:

27

bdινinh(C in P)
df
=

T.C if C ∈ SCT , P ∈ domRO
inh and

• there is a lexicographically least word

w ∈ Aιν such that

• the w -associated path from P to T has no

repeated nodes and is fully located in domRO
inh ,

w(P) = T, and

• T.C is defined ∈ CO for the end node T of the

path (T.C is not necessarily in domRO
inh) and

• there are only finitely many words v ∈ Aιν

lexicographically less than w with v -associated

paths from P fully located in domRO
inh,

v(P) ∈ domRO
inh

undefined otherwise 2

We call a whole w-associated path from P ∈ domRO
inh via T ∈

domRO
inh to T.C ∈ CO least C-admissible w.r.t. Aιν.

Definition 8 inductively over the length of types X: Let a pair
(Adν,Aiν) be given ?? (Observe that we need superscript ι = d

in the induction beginning and ι = i in the induction step):

?? We could try to define bindνinh with the help of recursive function definitions.
But such endeavour requires careful preparations and it is difficult to formulate
sound proofs.

28

bindνinh(X in P)
df
=

bddνinh(X in P) if length(X) = 1 and

bddνinh(X in P) is defined ∈ CO

bdiνinh(C in P ′) if X = X ′.C, length(X ′) ≥ 1, length(C) = 1,

P ′ = bindνinh(X
′ in P) is defined ∈ CO and

bdiνinh(C in P ′) is defined ∈ CO

undefined otherwise 2

Remark 9: Every resulting class T.C = bindνinh(X in P) ∈ CO has as
its name the rightmost simple type C in (qualified) type X ; so bindνinh
is non-paradoxical, see J3) in Definition 2. Root cannot occur as a result
as Root has no name. This new and more general binding function
bindνinh should not be intermixed with the old bindinh in [LSW09]. The
latter one corresponds to the newer one with parameters Ad1,Ai1, ν =
1. 2

Remark 10: Let X = C1. · · · .Cn, Ci simple types ∈ SCT , n ≥ 1,
C = Cn. Then

T.C = bindνinh(X in P) ∈ CO
holds if and only if there is a chain of n least Ci-admissible paths, i.e.
the first path from P = P1 via T1 to T1.C1 = P2 is least C1-admissible
w.r.t. Adν and the i-th path, 2 ≤ i ≤ n, from Ti−1.Ci−1 = Pi via Ti
to Ti.Ci = Pi+1 is least Ci-admissible w.r.t. Aiν with Tn = T, Tn.Cn =
Pn+1 = T.C. All nodes are in domRO

inh with the possible exception of
T.C. We call such whole path from P = P1 via T1, T1.C1 = P2, · · · , Tn
to Tn.Cn = Pn+1 = T.C least X-admissible. 2

Remark 11: The styles of definitions for bindinh in [LSW09] and
Bindinh in [LSW08b] deviate slightly from the present style. Adap-
tation to the present style leads to slightly different functions. But
these variants lead to the same monotonous functionals Bdfl′ = bdfl′1

and BDfl′ = bdfl′∞, see Definition 13, and fixed points inh0 = inh1
0

and inhB0 = inh∞0 , see Corollary 22. The two Lemmas 11 and 12 in
[LSW09] turn out to be immediately evident in our present presenta-
tion (due to stronger usage of the notion “admissibility”). 2

29

4.2 Continuous binding functionals bdfl′ν, their least fixed points inhν0 and
BIPET-models bindνinhν0

The binding functions, which are to be singled out as models of
IPET resp. BIPET, are determined by specific inheritance func-
tions inhν0. We might try to do so via a fixed point of the so called
natural functional bdflν with

bdflν(inh)(A)
df
= bindνinh(ext(A) in decl(A))

for A ∈ C and bdflν(inh)(A) undefined for A ∈ {Root, Object}.
But these bdflν are endangered to be not continuous functionals
so that we might have no “natural” least fixed points in the sense
of D. Scott’s fixed point theory compare Example 28 in [LSW09].

So we consider specific inheritance functions, called states ? ? ? ,
the set

ST S = CRO state−→ CRO
of which is a subcpo of the subcpo

INH = CRO inherit−→ CRO
of the full cpo

CRO part−→ CRO.

Definition 12: An inheritance function inh is called a state iff
for all classes K ∈ dominh the following two relations

inh(K) ∈ domO
inh,

decl(K) ∈ domR
inh

and the equation
inh(K) = bindνinh(ext(K) in decl(K))

are holding. So all node classes in an associated least ext(K)-
admissible path are in domRO

inh. 2

Let’s come to the desired functional bdfl′ν. We introduce the fol-
lowing logical formula ανinh(A):

decl(A) ∈ domR
inh ∧ A 6= Root ∧ A 6= Object ∧

? ? ? Algorithm LSWA [LSW09] is running through states which are special inher-
itance functions. This fact has motivated us towards the notion of “state”.

30

bindνinh(ext(A) in decl(A)) ∈ domO
inh

with A ∈ CRO.

Definition 13: The desired functional is

bdfl′ν(inh)(A)
df
=

bindνinh(ext(A) in decl(A)) if ανinh(A)

undefined otherwise 2

Lemma 14: If inh is a state then inh′
df
= bdfl′ν(inh) is an in-

heritance function and is an extension of inh.

Proof: Let A ∈ dominh. Claim: inh(A) = inh′(A).
Then A 6= Root, A 6= Object, decl(A) ∈ domR

inh, inh(A) =
bindνinh(ext(A) in decl(A)) ∈ domO

inh because inh is a state. So
ανinh(A) is holding and inh′(A) is equal bindνinh(ext(A) in decl(A))
by definition of bdfl′ν and inh′. So inh′(A) = inh(A), i.e. inh′ is
an extension of inh. �

Remark 15: Let inh be a state and A ∈ C \ dominh with decl(A) ∈
domR

inh (i.e. A is a so called candidate w.r.t. algorithm LSWA, see
[LSW09]) and bindνinh(ext(A) in decl(A)) ∈ domO

inh (i.e. A is a so called
generating candidate). Then let us denote the extension inh′ of inh by
inhA where the undefined resulting value inh(A) (A /∈ dominh !) is

replaced by inh′(A)
df
= bindνinh(ext(A) in decl(A)). 2

Lemma 16: If inh is a state then inh′
df
= bdfl′ν(inh) is also a

state.

Proof: Let A ∈ dominh′. We have to show that
inh′(A) ∈ domO

inh′ and
decl(A) ∈ domR

inh′ and
inh′(A) = bindνinh′(ext(A) in decl(A)).

Because inh′(A) is defined ανinh(A) is holding and
inh′(A) = bindνinh(ext(A) in decl(A)) ∈ domO

inh.
Since inh′ is an extension of inh we have

inh′(A) ∈ domO
inh′.

31

Since decl(A) ∈ domR
inh we have

decl(A) ∈ domR
inh′.

As decl(A) ∈ domR
inh and inh′ is an extension of inh and

bindνinh(ext(A) in decl(A)) ∈ domO
inh all least ext(A)-admissible

paths from decl(A) w.r.t. inh′ are also least ext(A)-admissible
w.r.t. inh (and trivially vice versa)

bindνinh(ext(A) in decl(A)) = bindνinh′(ext(A) in decl(A))
is holding. So we have

inh′(A) = bindνinh′(ext(A) in decl(A)). �

Remark 17 on direct and indirect successors of states: If in this proof
of Lemma 16 A is a generating candidate and if we replace inh′ by
inhA then we have a proof for: inhA is a state. We call inhA a direct
successor state of inh and write inh ≺DS inhA with the transitive
closure ≺S of ≺DS which is an irreflexive partial order in the set of
states

ST S = CRO state−→ CRO. 2

Theorem 18: bdfl′ν is a monotonous functional (and conse-
quently is continuous because ST S is finite).

Proof: Let inh1, inh2 be two states and inh2 an extension of
inh1.
Claim: bdfl′ν(inh2) = inh′2 is an extension of bdfl′ν(inh1) = inh′1.
I.e. let A ∈ dominh′1

.
Claim: inh′2(A) = inh′1(A).
As inh′1(A) is defined ανinh1(A) is holding. So

decl(A) ∈ domR
inh1
⊆ domR

inh2
,

inh′1(A) = bindνinh1(ext(A) in decl(A)) ∈ domO
inh1
⊆ domO

inh2
.

Case 1: A ∈ dominh1.
Then A ∈ dominh2, inh1(A) = inh2(A) = inh′1(A) = inh′2(A).
Case 2: A ∈ dominh′1

\ dominh1.
Then inh′1(A) = bindνinh1(ext(A) in decl(A))

= bindνinh2(ext(A) in decl(A)) = inh′2(A)
for the same reasons as in Lemma 16. �

32

Remark 19 on modular confluence: The relation ≺DS is modularly
confluent, i.e. if inh ≺DS inhA, inh ≺DS inhA′ and inhA 6= inhA

′
then

there is a common direct successor state sst with inhA ≺DS sst and
inhA

′ ≺DS sst, especially sst = inhAA
′

= inhA
′A (due to an easy

consideration on admissible paths). If a ≺DS-chain
inh = sst0 ≺DS sst1 ≺DS · · · ≺DS sstn, n ≥ 0,

ends up in a maximal sstn then sstn is uniquely determined by inh.
Every state inh has such a uniquely determined maximal successor
state inhmax. Obviously

bdfl′ν(inh) = inh ∪ ⋃
inh≺DSsst sst

is holding. Therefore a state inh is maximal w.r.t. ≺S if and only if
inh is a fixed point of bdfl′ν. The maximal successor state inhmax⊥ is
the least fixed point of bdfl′ν, obviously, where inh⊥(A) is undefined
for all A ∈ CRO (inhmax⊥ depends on ν implicitly!). 2

Remark 20: If state inh has no cycle then inhA has none as well since
A is a generating candidate. inhmax⊥ is single valued, has no cycles and
there are even no repeated nodes in paths associated to w ∈ A? and
starting from P ∈ domRO

inhmax⊥
. Especially no inheritance chain of such

class P leads to an enclosed (inner) class of it. 2

33

Remark 21 on the dependency relation: If inh is an inheritance func-
tion then the associated induced dependency relation depbindνinh is de-
fined due to J2) in Definition 2 as
{〈A, bindνinh(ext(A) |i in decl(A))〉 : A ∈ dominh, 1 ≤ i ≤

length(ext(A))}.
Relation depbindνinh may be multi valued even if inh is single valued.
If inh is a state and depbindνinh has no cycle then so it is for relation
depbindν

inhA
, because we may easily deduce

depbindν
inhA

= depbindνinh∪{〈A, bind
ν
inh(ext(A) |i in decl(A))〉 : 1 ≤ i ≤ length(ext(A))}

where A ∈ C\dominh with decl(A) ∈ domRO
inh ⊆ CRO is the generating

candidate. Relation depbindν
inhmax⊥

has no cycles and even the augmented

dependency relation decl ∪ depbindν
inhmax⊥

has no cycles. This statement

will be most important in Corollary 22 and in Theorems 25, 38 and
45.

2

D.Scott’s fixed point theorem [LoSi84] applied to continuous func-
tional bdfl′ν of Theorem 18 assures the existence of (the) least

fixed point µ bdfl′ν (we name it inhν0) in cpo ST S = (CRO state−→
CRO) which can be approximated by repeated applications of
bdfl′ν to the bottom inheritance function inh⊥.

Corollary 22 of Theorem 18: The functional

bdfl′ν : (CRO state−→ CRO)
tot,cont−→ (CRO state−→ CRO)

has exactly one least fixed point (κ = card(C))
inhν0

df
= µ bdfl′ν =

⋃
j ∈Nat0 bdfl

′ν j(inh⊥) = bdfl′ν κ(inh⊥)
which is, due to Remark 19,

=
⋃
inh⊥

≺S
= inh

inh = inhmax⊥
and which allows an influential characterization of well-formedness:
A Java-program is

binding well-formed w.r.t. binding function bindνinhν0 iff
dominhν0 = C.

Supplement: In case of binding well-formedness inhν0 is the in-
heritance function inhbindν

inhν
0

induced by bindνinhν0 .

34

Proof : Let dominhν0 = C and K ∈ C. Then
CO 3 inhν0(K) = bdfl′ν(inhν0)(K)

= bindνinhν0(ext(K) in decl(K))
= inhbindν

inhν
0

(K)

due to fixed point property, Definition 13 and induced inheritance
in J1). So

inhν0 = inhbindν
inhν

0

and J1) holds. J2) and J3) hold due to Remarks 21 and 9.
Vice versa, let the program be well-formed w.r.t. bindνinhν0 . Then
for the induced inheritance
dominhbindν

inhν
0

= C holds and inhbindν
inhν

0

is a state. Assume dominhν0

were strictly smaller than C. Consider any candidate K ∈ C \
dominhν0 with decl(K) ∈ domR

inhν0
(there is at least one such K)

and
inhbindν

inhν
0

(K) = bindνinhν0(ext(K) in decl(K)) = M ∈ C. M is

/∈ domO
inhν0

; otherwise inhmax⊥ were strictly larger than inhν0. So M
is also a candidate. So inhbindν

inhν
0

and depbindν
inhν

0

had a cycle what

is contradicting J2).
Now a proof of the supplement can easily be done by ideas in the
first direction’s proof. �

Due to Remark 19 algorithm LSWA in [LSW08,LSW09] is a
refined algorithm of the fixed point approximation to compute
function inh1

0 in case ν = 1. Analoguous algorithms LSWAν are
available for all indices 1 ≤ ν ≤ ∞ to determine the least fixed
points inhν0, see Appendix A1. 2

We see: Every pair Adν,Aiν of word sets induces a binding func-
tional bindν, a continuous functional bdfl′ν, its least fixed point
inhν0, its domain dominhν0 ⊆ C and binding function bindνinhν0 .

Now we would like to clarify the relation between well-formedness
of programs and program structures w.r.t. binding functions (Def-
inition 2) and well-formedness in the sense of the official Java

35

Language Specification with inner classes JLS.

Definition 23: Official Java Language Specification, case ν = 1,
defines a program π’s structure to be well-formed (so called JLS-
well-formed) iff the following holds:
There is an inheritance function inhwf with the two properties:
I1) inhwf(K) = bind1

inhwf
(ext(K) in decl(K)) ∈ CO

is valid for all K ∈ C;
I2) the induced dependency relation depbind1inhwf

(defined in J2 of

Definition 2) has no cycles. 2

Lemma 24: In a JLS-well-formed program structure inhwf is
uniquely determined and is equal to the least fixed point inh1

0 of
bdfl′1 and is equal to the result of algorithm LSWA1 applied to
the program structure.

Proof : Uses similar ideas of proof of characterization in Corol-
lary 22 (see Theorem 32 and Remark 33 in [LSW09]). �

Theorem 25: A program structure is JLS-well-formed iff it is
binding well-formed w.r.t. the concrete binding function bindfn =
bind1

inh10
. ? ? ??

Proof : Let binding well-formedness w.r.t bind1
inh10

be given. Then

due to Corollary 22 inh1
0 is a state with dominh10

= C. With

inhwf
df
= inh1

0 I1) and I2) are immediate implications of J1) and
J2).
Let JLS-well-formedness be given. Then I1) implies J1), Remark
21 implies J2), Remark 19 implies J3).

? ? ??Consequence: A syntactically correct program structure is JLS-well-formed iff the
unextended binding function bind1

inh10
is total, i.e. bind1

inh10
(X in P) is defined ∈ CO

for every applied occurrence of a class name X directly occurring in a user declared
class body P . The partially defined bind1

inh10
exists in every syntactically correct

program whereas JLS’s bind1inhwf is defined only in case of JLS-well-formedness. So

[LSW09] presents a standard approach towards name binding as the average user
expects, whereas JLS’s approach is unconventional, i.e. non-standard.

36

�

Now we can do the Proof of Theorem 4, announced already
in Section 3, what justifies the claim: every bindνinhν0 is a BIPET-
model. The proof together with Remarks 26 and 27 is in Ap-
pendix A2.

5 The dilemma with BIPET’s Rule III. (BET-SimpEncl) in com-
bination with Rule VI. (BET-LongSup)

5.1 General existence of different minimal models

For a given index ν and a well-formed Java-program π’s struc-
ture the binding function bindνinhν0 might be infinite. bindνinhν0 is a
BIPET-model (Theorem 4), but might not be minimal. A proof
of existence of a minimal submodel would be trivial if bindνinhν0
were finite. So we have to procede with a little care towards a
minimal submodel.

We consider those restricted subfunctions restrsubbdfn of bindνinhν0
the first arguments of which are no longer than the maximum M

of
length(ext(K)) + 1

for all K ∈ C. We look at those finitely many restrsubbdfn which
satisfy the equations

restrsubbdfn(ext(K)|i in decl(K)) = bindνinhν0((ext(K)|i in decl(K)),
K ∈ C, 1 ≤ i ≤ length(ext(K)), and fulfill the Rules I’. to VI’.,
where the rules I’. to IV’. are the same as I. to IV. and the Rules
V’. and VI’. have got the additional premise

1 ≤ length(X) ≤M − 1.
Consequence: A minimal restrsubbdfnmin exists and can be found
effectively in finitely many steps.

Now we apply the Rules V. and VI. for length(X) ≥ M and

37

derive all triples (X.C, P, T), C a simple type ∈ SCT , from
the “axioms”, namely all triples in restrsubbdfnmin; each triple
(X.C, P, T) is derived in finitely many steps. The resulting rela-
tion is a single valued function due to Theorem 4, it is a minimal
submodel subbdfnmin of bindνinhν0 which satisfies all Rules I. to VI.
and fulfills the equations

subbdfnmin(ext(K)|i in decl(K)) = bindνinhν0((ext(K)|i in decl(K)),
K ∈ C, 1 ≤ i ≤ length(ext(K)). So we have:

Theorem 28: Every model bindνinhν0 , 1 ≤ ν ≤ ∞, contains a
minimal submodel. 2

Now, after Theorem 28, we have all means at hand to justify rigor-
ously what we have claimed about program Example 5 in Section
3, namely that bind1

inh10
and bind2

inh20
inside Example 5 have two

different minimal submodels. Hence satisfaction of IPET resp.
BIPET plus minimality is no sufficient prescription to prefer a
specific model as the most appropriate one. Especially Java’s of-
ficial binding function bind1

inh10
is not the unique result of I&P’s

election process due to their calculus IPET. Experienced soft-
ware researchers have claimed that I&P’s sanity conditions single
out the most appropriate minimal model. But that claim cannot
hold because binding well-formedness implies validity of the san-
ity conditions, see Section 3.

We have different minimal models even if all inheritances in a
program coincide w.r.t. these different models. Program Exam-
ple 6 and the results of the following Subsection 5.2 show this
phenomenon.

38

5.2 Extension of Java’s official binding function bind1inh10
which is the least

model of preliminarily repaired calculus BIPET´

In the proof of Theorem 4 and in Subsection 5.1 we have taken
into consideration that Igarashi and Pierce work with Java-programs
where no user declared class is named Object; only the standard
class Object is named so, see Remark 26. Theorem 4 and Subsec-
tion 5.1 show that there is an infinite family of minimal models
of IPET resp. BIPET, namely minimal submodels of bindνinhν0 ,
1 ≤ ν ≤ ∞.

Question 29: Can we drop Igarashi’s and Pierce’s language re-
striction and modify BIPET towards a new calculus BIPET´ such
that Java’s official binding function bind1

inh10
turns out to be the

(exactly one) least model of BIPET´ ?

For an answer we extend every Java-program by a third stan-
dard class (beside Root and Object), the so called finite failure
class Fc:

CROF df
= CRO ∪ {Fc}

and we extend CT and SCT by the so called finite failure type
Ft :
CT F df

= CT ∪ {Ft}, SCT F df
= SCT ∪ {Ft}.

Then we extend every partially defined function bdινinh resp. bindνinh:
In case an old application

bdινinh(C in P) resp. bindνinh(X in P)
is undefined the new application
(?) bdινinh(C in P) resp. bindνinh(X in P)
is allowed to yield Fc as its result for certain arguments C ∈
SCT F , X ∈ CT F , P ∈ CROF . We denote the extended functions
(?) by the same designators bdινinh resp. bindνinh as the unextended
ones; the circumstances will indicate implicitly which functions
are meant. inh is a variable for any partially defined inheritance
function as before in Sections 3 and 4.

Firstly we define:

39

Definition 30: bdινinh : SCT F × CROF part−→ CROF

bdινinh(C in P)
df
=

Fc if C = Ft or P = Fc

bdινinh(C in P) otherwise if the old bdινinh(C in P)

is defined to be ∈ CO

Fc otherwise if there are only finitely many words

v ∈ Aιν with v-associated paths from P ∈ domRO
inh

fully located in domRO
inh, v(P) ∈ domRO

inh

undefined otherwise 2

Secondly we define:

Definition 31: bindνinh : CT F × CROF part−→ CROF

bindνinh(X in P)
df
=

Fc if X = Ft or P = Fc

bddνinh(X in P) otherwise if length(X) = 1 and bddνinh(X in P)

is defined ∈ COF

bdiνinh(C in P ′) otherwise if X = X ′.C, length(X ′) ≥ 1,

length(C) = 1, P ′ = bindνinh(X
′ in P) is defined

∈ COF and bdiνinh(C in P ′) is defined ∈ COF

undefined otherwise 2

We formulate the rules of calculus BIPET´ in Table 3. BIPET´

seems to be rather long. The calculus can be condensed, but this
needs some preparations, see Table 4 in Section 6. The longer
version is better for didactical reasons, for a good understanding
of the necessary proofs.

40

Table 3
Rules of calculus BIPET´

0.1. (BET’-Fc1) bindfn(X in Fc) = Fc

0.2. (BET’-Fc2) bindfn(Ft in P) = Fc

0.3. (BET’-Fc3) bindfn(Ft in Fc) = Fc

II. (BET’ - InCT) class P has a direct inner class ∈ CO named C
bindfn(C in P) = P.C

II.2. (BET’ - InCT2) class Root has no direct inner class ∈ CO named C
bindfn(C in Root) = Fc

III. (BET’-SimpEncl)

bindfn(D in P) = T

class P.C ∈ CO has no direct inner class named D

bindfn(ext(P.C).D in P) = Fc

bindfn(D in P.C) = T

III.2. (BET’-SimpEncl2)

bindfn(D in P) = Fc

class P.C ∈ CO has no direct inner class named D

bindfn(ext(P.C).D in P) = Fc

bindfn(D in P.C) = Fc

IV. (BET’-SimpSup)
class P.C ∈ CO has no direct inner class named D

bindfn(ext(P.C).D in P) = T

bindfn(D in P.C) = T

V. (BET’-Long)
bindfn(X in P) = T

class T has a direct inner class ∈ CO named C

bindfn(X.C in P) = T.C

V.2. (BET’-Long2) bindfn(X in P) = Fc
bindfn(X.C in P) = Fc

VI. (BET’-LongSup)

bindfn(X in P) = P ′.D

class P ′.D ∈ CO has no direct inner class named C

bindfn(ext(P ′.D).C in P ′) = U

bindfn(X.C in P) = U

VI.2. (BET’-LongSup2)

bindfn(X in P) = P ′.D

class P ′.D ∈ CO has no direct inner class named C

bindfn(ext(P ′.D).C in P ′) = Fc

bindfn(X.C in P) = Fc

- Variables P, P ′ range over CRO, T,U over CO, X over CT (types) and C,D over SCT (simple types).

We drop Igarashi’s and Pierce’s language restriction and prove
the following Theorem 32:

Theorem 32: Let a program be well-formed w.r.t. bind1
inh10

(ex-
tended or not, both views amount to the same notion of well-

41

formedness). Then the extended single valued function bind1
inh10

is satisfying all twelve rules of BIPET´ , i.e. it is a model of
BIPET´ (see Table 3).

The Proof together with Remarks 33 and 34 is in Appendix
A3.

Theorem 32 (which is a correctness proposition on bind1
inh10

w.r.t.
calculus BIPET´) can be extended by a completeness proposi-
tion, actually a weak completeness:

Theorem 35 (on weak completeness): In case index ν is 1 and
dominh10

= C every triple (X,P, T) ∈ CT F × CROF × CROF with
bind1

inh10
(X in P) = T

is the conclusion of a Rule of BIPET´ such that all premises are
satisfied, Rule and premises uniquely determined.

The Proof of Theorem 35 together with Remarks 36 and 37
is in Appendix A4.

Theorem 38 (on (strong) completeness): In case ν = 1 and
dominh10

= C every valid triple (X,P, T) ∈ CT F × CROF × CROF
with

bind1
inh10

(X in P) = T

is derivable by BIPET´ with a finite derivation tree.

Proof : In this proof we drop the superscript 1 and write sim-
ply bfn for bind1

inh10
.

Theorem 32 allows to construct a (possibly infinite) proof tree
for every valid formula

bfn(X in P) = T

with (X,P, T) ∈ CT F × CROF × CROF in case dominh0 = C. T is
necessarily ∈ COF .

Claim: The proof tree is finite.

42

Due to König’s Lemma it suffices to prove: There is no infinite
path from the root node

bfn(X in P) = T .

If we assume the contrary then only the Rules III., III.2., IV.,
V.,V.2., VI.,VI.2. are applied in such a path. It is obvous that
there is at least one occurring of a node of the kind

bfn(ext(P).C in decl(P)) = U or = Fc
as a premise of a Rule III. or III.2. or IV. or V. or V.2. or VI. or
VI.2., P ∈ C, U ∈ CO, C ∈ SCT .

Let such a node be given. We are looking for a next node of
this kind in the path upward. There are two possibilities:
First:
bfn(ext(P) |i in decl(P)) = T i bfn(ext(T i).ext(P)i+1 in decl(T i)) = T i+1 or

= Fc

\ | Rules VI. or VI.2.

bfn(ext(P) |i+1 in decl(P)) = T i+1 or = Fc

|
... Rules V. or V.2. or VI. or VI.2.
... (1 or more times)

|
bfn(ext(P).C in decl(P)) = U or = Fc

with 1 ≤ i < length(ext(P)). This implies the existence of an
edge from P to T i in the dependency relation depbfn.
Second:
bfn(ext(declµ+1(P)).ext(P) |1 in decl(declµ+1(P))) = Tµ or = Fc

| Rules IV. or III. or III.2.

bfn(ext(P) |1 in declν+1(P)) = Tµ or = Fc

|
... Rules III. or III.2. (0 or more times)

|
bfn(ext(P) |1 in decl(P)) = T 0 or = Fc

|
... Rules V. or V.2. or VI. or VI.2. (1 or more times)

|

43

bfn(ext(P).C in decl(P)) = U or = Fc

with µ ≥ 0. This implies the existence of a chain of edges from
P via decl(P) via . . . to declµ+1(P)

in the relation decl.

Because the path is infinitely long there is necessarily a cycle
in the united relation

decl ∪ depbfn
what is contradicting Remark 21. So every valid

bfn(X in P) = T
is derivable by BIPET´with a finite derivation tree. �

Corollary 39: Let a program be well-formed w.r.t. bind1
inh10

.

Then the extended binding function bind1
inh10

is the least model
of BIPET´ (is even the only one model of BIPET´) and the
unextended bind1

inh10
is a minimal model of a calculus BIPETsm.

BIPETsm is defined as a slight modification of BIPET:
Rule I. is deleted from BIPET and
Rule III. has deleted premise

class P.C is different from Object (or P.C ∈ C)
from Rule III. of BIPET.

Continuation Example 6: Now we are in a position to prove
the claim in Example 6 from Section 3, namely the existence of
bindfn1 which in program πb is a minimal submodel of the unex-
tended bind1

inh10
of calculus BIPET.

We restrict the extended total function (dominh10
= C !)

bind1
inh10

: CT F × CROF tot−→ CROF
to the unextended partial function

bind1
inh10

: CT × CRO part−→ CRO,
obviously a minimal model of BIPETsm because all valid triples
are derivable in BIPETsm. Now we delete from the function table
of bind1

inh10
all those triples (X,P, T) the derivation trees of which

apply Rule III. where the premise
class P.C is not different from (is equal) Object

44

is needed. So the remaining collection of triples, a subfunction
bindfn1, is a minimal submodel of bind1

inh10
w.r.t. BIPET if we

restrict Java in the sense of Igarashi and Pierce and do not allow
Object as a name of a user declared class.

bindfn1 is different from the unextended bind1
inh10

but not very
different. Their induced inheritances are the same:

inhbindfn1 = inhbind1
inh1

0

, namely = inh1
0.

bindfn1 and bind1
inh10

differ at most for types X in the body of
class Object:

bindfn1(Object in Object)
is Object equal bind1

inh10
(Object in Object)

bindfn1(X in Object) is undefined
for all X ∈ CT \ {Object}, whereas bind1

inh10
(X in Object) may

be defined ∈ CO. 2

So if the authors of [IP02] (due to the fact that IPET resp. BIPET
cannot have a least model) would have liked to present bindfn1 at
least as a minimal model of BIPET then they must concede that
the body of Object cannot have applied occurrences of class types
X different from Object. On the other hand: we see in the defi-
nition of class Object in the official Java Language Specification
[GJSB00,GJSB05] that there are indeed applied occurrences of
simple class types in Object referring to classes in the Java-utility
package.

6 The repaired calculi BIPET´ and BIPET� and their equivalent
recursive function definitions resp. recursive programs

BIPET´ in Table 3 is a proper calculus which allows to derive
exactly those formulas

bindfn(X in P) = T

for which formula
bind1

inh10
(X in P) = T

is valid in case of binding well-formedness of the Java-program,

45

i.e. dominh10
= C. Theory of recursive function definitions (resp.

recursive programs in the sense of [LoSi84], see also [Man74,BaWo82])
allows to rewrite BIPET´ as a recursive function definition be-
cause the runtime stack contents of a regularly terminating call
bindfn(X in P) with a result T represent the finite derivation
tree of bindfn(X in
P) = T in a 1-1-manner. Precise treatment requires that all stan-
dard operations are total. So it is advised to extend the four
standard operations decl, ext, . (dot as a selector), . (dot as a
concatenator) in a strict manner:

decl(Root) is Fc

decl(Fc) is Fc

ext(Root) is Ft

ext(Object) is Ft

ext(Fc) is Ft

P.C is Fc for all P ∈ CRO, C ∈ CT where the original P.C is undefined i.e.

there is no class ∈ CO named C directly contained in class P

Fc.C is Fc for all C ∈ CT F

P.F t is Fc for all P ∈ CROF

X.Ft is Ft for all X ∈ CT F

Ft.C is Ft for all C ∈ SCT F

The set of Boolean values IB
df
= {true, false} is not extended and

so the Boolean standard operations ¬ , ∧ , ∨ are not changed.
The standard operations like = , ∈ SCT , ∈ CO,
let = in endlet, if then else fi keep their naturally
known meanings. ? ? ? ? ?

? ? ? ? ?Precedences do not play any role since we are talking about semantical operations
and not about syntactical operators.

46

Before we write bindfn as a recursive function we may write
BIPET´ in a condensed form in Table 4 because we may ex-
ploit the extension of standard operations:

Table 4
Rules of calculus BIPET´ condensed

0. (BET’-Fc)
P̃ = Fc or X̃ = Ft

bindfn(X̃ in P̃) = Fc

II. (BET’ - InCT)
(P = Root and P.C = Fc) or P.C ∈ CO

bindfn(C in P) = P.C

III. (BET’-SimpEncl)

bindfn(D in P) = T̃

P.C ∈ CO , P.C.D = Fc

bindfn(ext(P.C).D in P) = Fc

bindfn(D in P.C) = T̃

IV. (BET’-SimpSup)

P.C ∈ CO , P.C.D = Fc

bindfn(ext(P.C).D in P) = T

bindfn(D in P.C) = T

V. (BET’-Long)

bindfn(X in P) = T̃

T̃ = Fc or T̃ .C ∈ CO

bindfn(X.C in P) = T̃ .C

VI. (BET’-LongSup)

bindfn(X in P) = P ′.D

P ′.D ∈ CO , P ′.D.C = Fc

bindfn(ext(P ′.D).C in P ′) = Ũ

bindfn(X.C in P) = Ũ

Variables P, P ′ range over CRO, P̃ over CROF , T̃ , Ũ over COF , T over CO , X over CT , X̃ over CT F

and C,D over simple types SCT .

Non-Boolean standard operations are extended towards total operations, Boolean standard operations

remain total.

47

Definition 40:
Recursive definition of the function bindfn is programmed below.

Rules Code

Rules 0.1.-0.3.

Rule II.,II.2.

Rule IV.
Rule III.,III.2.

Rule V.,V.2.
Rule VI.,VI.2.

bindfn(X in P) =
if P = Fc ∨ X = Ft
then Fc
else if X ∈ SCT

then if P.X ∈ CO ∨ P = Root ∧ P.X = Fc
then P.X
else let T = bindfn(ext(P).X in decl(P))

in if T ∈ CO
then T
else bindfn(X in decl(P))
fi

endlet
fi

else let X = X ′.C, C ∈ SCT
T ′ = bindfn(X ′ in P)

in if T ′.C ∈ CO ∨ T ′ = Fc
then T ′.C
else bindfn(ext(T ′).C in decl(T ′))
fi

endlet
fi

fi
end bindfn �

See how elegantly the twelve rules of BIPET´ are mirrored in
this recursive function definition.

Theorem 41: The recursive function bindfn is an algorithm
which determines the associated class (declaration occurrence)
bind1

inh10
(X̃ in P̃) ∈ COF for every type X̃ ∈ CT F directly occur-

ring in the body of class (declaration occurrence) P̃ ∈ CROF in a
given binding well-formed Java-program with dominh10

= C. Espe-
cially for every user declared class P ∈ C a call of bindfn(ext(P) in decl(P))
terminates regularly with the result inh1

0(P) ∈ CO.

Proof : To Definition 40 of bindfn there is associated a formal ex-

48

ecution or call tree [Lan73,Old81] generated by copy rule expan-
sion of the body of bindfn, compare also [Man74,BaWo82,LoSi84].
Every computation of bindfn applied to arguments X̃ and P̃ has
a computation path through the tree from left to right which
starts at the root and either finishes successfully at the root with
a result T̃ ∈ COF or is not successful and infinitely long and as-
cends an infinite copy rule applications path of the tree. There is
no non-successful finite computation because all standard opera-
tors are interpreted as total operations.

A successful computation describes a finite initial tree of the
whole formal execution or call tree (the then- resp. else-branches
which are not entered are simply deleted) and represents in a 1-
1-manner the BIPET´-derivation tree of a valid formula

bind1
inh10

(X̃ in P̃) = T̃ , X̃ ∈ CT F , P̃ ∈ CROF , T̃ ∈ COF
and vice versa. As we have assumed well-formedness of the con-
sidered Java-program there are no non-successful computations
of bindfn. �

Let us apply our recursive function bindfn to a syntactically cor-
rect, but not binding well-formed Java-program so that dominh10

6=
C. Again for P ∈ dominh10

a call of bindfn(ext(P) in decl(P)) ter-
minates regularly with the result inh1

0(P) ∈ domO
inh10

.

As we would like to have this recursive function bindfn as a
semideciding algorithm bindfn(ext(P) in
decl(P)) should either terminate regularly with a result Fc or run
infinitely long for at least one user declared class P ∈ C\dominh10

.
But this conjecture is not true as the following program Example
42 demonstrates:

Example 42:
πnwf : class A extends B { }

class B extends A { }
class C extends Object { }

inh1
0 is the function {〈C,Object〉}, so dominh10

= {C}
⊂
6= C =

49

{A,B,C},
bindfn(ext(A) in decl(A)) = bindfn(B in Root) = B ∈ C,
bindfn(ext(B) in decl(B)) = bindfn(A in Root) = A ∈ C.
bindfn(ext(C) in decl(C)) = bindfn(Object in Root) = Object ∈
CO. 2

Because bindfn does not decide whether a Java-program is bind-
ing well-formed with dominh10

= C and because bindfn is not even
a semideciding algorithm we want to modify BIPET´ towards
BIPET� and to make corresponding modifications of function
bindfn together with an auxiliary predicate indom so that the
following equivalences hold for all P̃ ∈ CROF :

(1) P̃ ∈ domRO
inh10

(2) indom(P̃) is derivable in BIPET�

(3) predicate call indom(P̃) terminates successfully (regularly)
to true

P̃ /∈ domRO
inh10

means non-derivability of indom(P̃) resp. a calcula-
tion which is not terminating successfully with result true. Let’s
mention: If construction of indom is going to be done such that
the set of possible results is only {true} then P̃ /∈ domRO

inh10
means

infinite calculation since all standard operations are total. Even
P̃ = Fc means infinite calculation.

Also the following equivalences should hold for all P ∈ CRO,
X ∈ CT , T̃ ∈ COF :

(1) bind1
inh10

(X in P) = T̃

(2) bindfn(X in P) = T̃ is derivable in BIPET�

(3) function call bindfn(X in P) terminates successfully to result
T̃ .

Furtheron we remind: If P ∈ domRO
inh10

, X ∈ CT then there is a

T̃ ∈ COF with
bind1

inh10
(X in P) = T̃ and if P ∈ CRO, X ∈ CT , T̃ ∈ COF , bind1

inh10
(X in P) =

50

T̃ then P ∈ domRO
inh10

.

The calculus BIPET� has the predicate

indom : CROF part−→ IB
beside the function bindfn. The rules are in Table 5.

We can prove analoguously to Theorem 32:

Theorem 43: Let a syntactically correct program be given. Then
the extended single valued binding function bind1

inh10
and the pred-

icate ∈ domRO
inh10

satisfy all nine rules of BIPET� , i.e. are a model
of BIPET� where the binding well-formedness condition is re-
stricted to the subset dominh10

of C instead of the whole set C of
user declared classes.

Proof : Restricted well-formedness holds due to Remark 9, Re-
mark 21 and Corollary 22.
Satisfaction of Rules VII.1. and VII.2. is trivial.
Satisfaction of Rule VII.3. holds due to Remarks 15, 19 and Corol-
lary 22.
Satisfaction of Rule 0. is due to Definition 31 of bind1

inh10
and

due to properties of the parameterizing inheritance function inh1
0

given by its fixed point construction in Corollary 22.
Satisfaction of Rules II. to VI. can be proved as for Thereom 32
where the added indom-premises are helping in our generalized
situation of syntactically correct instead of well-formed programs.

�

We can prove analoguously to Theorem 35:

Theorem 44: Every valid equation
bind1

inh10
(X̃ in P̃) = T̃

with X̃ ∈ CT F , P̃ , T̃ ∈ CROF and every valid predicate
P̃ ∈ domRO

inh10

51

Table 5
Rules of calculus BIPET�

0. (BET”-Fc)
P̃ = Fc or X̃ = Ft

bindfn(X̃ in P̃) = Fc

II. (BET”-InCT)
(P = Root and P.C = Fc) or (P.C ∈ COand indom(P))

bindfn(C in P) = P.C

III. (BET”-SimpEncl)

bindfn(D in P) = T̃

P.C ∈ CO , P.C.D = Fc, indom(P.C)

bindfn(ext(P.C).D in P) = Fc

bindfn(D in P.C) = T̃

IV. (BET”-SimpSup)
P.C ∈ CO , P.C.D = Fc, indom(P.C)

bindfn(ext(P.C).D in P) = T

bindfn(D in P.C) = T

V. (BET”-Long)

bindfn(X in P) = T̃

T̃ = Fc or (T̃ .C ∈ CO and indom(T̃))

bindfn(X.C in P) = T̃ .C

VI. (BET”-LongSup)

bindfn(X in P) = P ′.D

P ′.D ∈ CO , P ′.D.C = Fc, indom(P ′.D)

bindfn(ext(P ′.D).C in P ′) = Ũ

bindfn(X.C in P) = Ũ

VII.1. (BET”-Ind1) indom(Root)

VII.2. (BET”-Ind2) indom(Object)

VII.3. (BET”-Ind3)

bindfn(ext(P) in decl(P)) = T̃

indom(T̃)

indom(P)

Variables P, P ′ range over CRO, P̃ over CROF , T̃ , Ũ over COF , T over CO , X over CT , X̃ over CT F

and C,D over simple types SCT .

Non-Boolean standard operations are extended towards total operations, Boolean standard operations

remain total.

with P̃ ∈ CROF is conclusion of a rule of BIPET� such that all
premises are satisfied where bindfn is interpreted by bind1

inh10
and

indom by ∈ domRO
inh10

.

52

Proof : If bind1
inh10

(X̃ in P̃) = T̃ holds then P̃ is necessarily

∈ domROF
inh10

and the proof works as for Theorem 35 including the
extra premises on indom in BIPET� .
If P̃ ∈ domRO

inh10
then in the first two cases P̃ = Root or P̃ = Object

the Rules VII.1. and VII.2. apply. The third case P̃ ∈ dominh10
can exploit the fact that inh1

0 is a state (see Definition 12, Lemma
16 and Corollary 22) so that Rule VII.3. is applicable. �

We can prove analoguously to Theorem 38:

Theorem 45: Every valid equation
bind1

inh10
(X̃ in P̃) = T̃

with X̃ ∈ CT F , P̃ , T̃ ∈ CROF and every valid predicate
P̃ ∈ domRO

inh10

with P̃ ∈ CROF is derivable by BIPET� with a finite derivation
tree.

Proof : If we have an infinite derivation tree then there is an
infinite path. There is at least one node of the kind

bfn(ext(P).C in decl(P)) = T or
bfn(ext(P) |i in decl(P)) = T, 1 ≤ i ≤ length(ext(P)).

As in the proof of Theorem 38 there is always a next node of this
kind in the path upward

bfn(ext(P ′).C ′ in decl(P ′)) = T or
bfn(ext(P ′) |i′ in decl(P ′)) = T ′, 1 ≤ i′ ≤ length(ext(P ′))

such that
〈P, P ′〉 ∈ decl+ ∪ depbfn

(bfn = bind1
inh10

) and decl∪depbfn has a cycle what is contradict-
ing Remark 21. �

Corollary 46: Let a syntactically correct program be given.
Then the extended binding function bind1

inh10
and the predicate

∈ domRO
inh10

are the least model of BIPET� (and even the only
model of BIPET�) where the binding well-formedness condition

53

is restricted to the subset dominh10
of C.

The BIPET�-corresponding recursive function bindfn and pred-
icate indom look as follows:

Definition 47:

Rules Code

Rule 0.

Rule II.

Rule IV.
Rule III.

Rule V.
Rule VI.

bindfn(X in P) =
if P = Fc ∨ X = Ft
then Fc
else if X ∈ SCT

then let b = indom(P)
in if P.X ∈ CO ∨ P = Root ∧ P.X = Fc

then P.X
else let T = bindfn(ext(P).X in decl(P))

in if T ∈ CO
then T
else bindfn(X in decl(P))
fi

endlet
fi

endlet
else let X = X ′.C, C ∈ SCT

T ′ = bindfn(X ′ in P),
b = indom(T ′)
in if T ′.C ∈ CO ∨ T ′ = Fc

then T ′.C
else bindfn(ext(T ′).C in decl(T ′))
fi

endlet
fi

fi
end bindfn

54

Rule VII.1,VII.2

Rule VIII.3

indom(P) =
if P = Root ∨ P = Object
then true
else let T = bindfn(ext(P) in decl(P)),

b = indom(T)
in true
endlet

fi
end indom

There are occurrences of the letter b which simply denote local
Boolean variables just as T, T ′ denote local class variables and
X ′, C denote type variables 2

The proof of Theorem 48 is analoguous to that one of Theorem
41:
Theorem 48: The recursive function bindfn plus predicate indom
form an algorithm which computes the associated class bind1

inh10
(X̃ in P̃) ∈

COF for every type X̃ ∈ CT F directly occurring in the body
of class P̃ ∈ domROF

inh10
(or exceptionally X̃ = Ft in class P̃ ∈

C \ dominh10
) in a given syntactically correct Java-program with

dominh10
⊆ C. In caseX ∈ CT in class P ∈ C\dominh10

bind1
inh10

(X in P)
is undefined and call of bindfn, applied to X and P , does not ter-
minate.

Continuation Example 42: Let us check bindfn and indom
of Definition 47. Call of

indom(C) yields true.
Call of

indom(A) yields indom(B) yields indom(A) . . . ,
so this calculation is running infinitely long.
These calculations confirm our equivalences mentioned in con-
nection with Example 42. 2

Now we would like to turn our function bindfn and predicate
indom over into ones which terminate for all arguments X and

55

P . bindfn and indom are provided with an additional call by
value integer parameter d which keeps track of the depth of calls
of indom(P̃) in the run time stack.

Definition 49:
indom(P, d) =

if d > card(C) + 2
then error: original calculation is infinitely long
else if P = Root ∨ P = Object

then true
else let T = bindfn(ext(P) in decl(P), d),

b = indom(T, d+ 1)
in true
endlet

fi
fi

end indom

bindfn(X in P, d) =
if

...
as in indom every call of bindfn is augmented by an
actual parameter d and every call of indom by d+ 1

...
fi

end bindfn 2

Usages of bindfn and indom are started by calls bindfn(X in P, 0)
and indom(P, 0) instead of bindfn(X in P) and indom(P). All
these calls terminate, either successfully (regularly) with a result
∈ COF resp. true or with an error report. Result Fc or error report
in case X ∈ CT and P ∈ CRO mean: the given program is not
binding well-formed. A decision process on JLS-well-formedness
of a given program structure π can be based on the proposition: π
is JLS-well-formed if and only if indom(P, 0) terminates success-
fully for all (finitely many) user declared class occurrences P in π.

56

So we have succeeded to change I&P’s name binding specifica-
tion [IP02] for the external language of Java (with inner classes)
into user expected standard shape where a program π’s bind-
ing well-formedness (as characterized by JLS [GJSB00,GJSB05])
holds if and only if the algorithmic name binding function appli-
cation bindfn(X in P, 0) yields a declaring occurrence T for ev-
ery applied name occurrence X directly occurring in environment
(class body) P inside π. The heavy interdependence of binding
and inheritance in JLS’s definition of binding well-formedness
has boiled down to a quite usual system of two mutually recur-
sive definitions of function bindfn and predicate indom with a
clear algorithmic evaluation strategy.

7 Concluding remarks

The identification of a declaring occurrence T of a class which
is binding an applied occurrence of a (class) type X within a
class P is basic for the understanding how a program works. The
paper [IP02] offers the IPET-calculus for deducing the values of
the function bindfn(X in P) = T ; in the original paper it is
written P ` X ⇒ T .

In order to be useful in practice, both for programmers and users
and for compilers, a programming language requires that its bind-
ing function is algorithmic, effective. So IPET is required that all
its deduction rules are effectively applicable. Unfortunately, Rule
III. (ET-SimpEncl) does not satisfy this important requirement.
Beyond that, IPET has many different models, even minimal
models. So it is a challenge to tune up the system appropriately
so that it generates exactly Java’s (with inner classes) binding
function.

The discussion of the present paper shows how important it is to
state a few questions known already in metamathematics, ques-
tions which have not been addressed in paper [IP02]:

57

(1) (determinacy or consistency) It is obvious that a formal sys-
tem may allow to prove a sentence in many alternative ways.
However, a sound system does not allow to deduce mutu-
ally negating answers. In this case the question should be:
is it true that for every class P and for every type X if
calculus IPET allows to deduce two triplets P ` X ⇒ T and
P ` X ⇒ U then T = U? We should be sure that the re-
lation P ` X ⇒ T is a function, which binds an applied
occurrence of type X inside class P to just one declaration
T of a class.

(2) (categoricity or completeness) How many models has a pro-
posed formal system? In our case the question is: are there
different functions bindfn which are models of the IPET-calculus?
The positive answer tells us that something important has
escaped our attention, in our case the existence of the dif-
ferent models bindνinhν0 , 1 ≤ ν ≤ ∞, and minimal submodels
in them. Java’s official binding function bind1

inhwf
is among

them, it is equal bind1
inh10

. It is a drawback of I&P’s paper that
I&P’s sanity conditions cannot single out this binding func-
tion. Namely all binding functions proposed in the present
paper fulfill the sanity conditions and all of these functions
pursue the principle of preference of inheriting over surround-
ing classes as it is characteristic in object orientation.

(3) (repairing an incomplete system) If there are several (mini-
mal) models, one should try to repair the formal specification
either by adding and changing axioms and inference rules
(this way, we believe, is the correct one; so we have presented
calculus BIPET´ and BIPET�) or by adding some metatheo-
retic rule like, for example, among all possible models choose
the least one. Or better, among all possible models choose
the one calculated by a certain algorithm, e. g. LSWA which
delivers bind1

inh10
with the parameterizing inheritance function

inh1
0 either with dominh10

= C or delivers “the given program

is not well-formed” because dominh10

⊂
6= C. The authors of

[IP02] have felt quite correctly that the official JLS does not

58

offer fully effective types elaboration or binding. BIPET� is a
satisfying solution in I&P’s spirit because BIPET� envisages
(and must envisage) JLS’s official characterization, especially
equality of bindfn and bind1

inhwf
.

A few words on the problems formulated in the questions above

We stop here with some additional remarks: one should consider
the requirement that the formal theory of binding should allow
to distinguish between well-formed programs and those which are
not well-formed. The present authors do not know how to formu-
late an appropriate condition in terms of metamathematics. A
candidate formulation like: “if there exists a type X and class P
such that the formula pbindfnπ(X,P) = null resp. is undefined
q is valid (compare BIPET�) then the program π is not well-
formed (does not satisfy the sanity conditions)” is far from being
satisfactory.
Conventional software engineering and research urgently recom-
mends to execute standard reasoning as far as possible, in our case
to employ (mutually) recursive (inductive) function definitions
and deduction calculi. On the other hand, it is a surprize that
JLS has specified a most successful and widely used programming
language Java although JLS-well-formedness is characterized in
an unconventional way. Therefore different conceptions of types
elaboration or binding have come up. I&P’s calculus IPET admits
even different kinds of preference of inheriting over surrounding
classes, kinds which – maybe unexpected by the authors – lead
to different program semantics. This is not acceptable in realis-
tic practice due to dramatic consequences. The more widely Java
is used, the more it is advantageous and well justified to have
several conceptions of a notion available. But it must be clari-
fied how far they are equivalent, if need be, by difficult rigorous
mathematical/logical deliberations.
History of implementations of programming languages since 1960
has shown that decent understanding of the meanings of nested

59

program structures is a great problem, not only for users, but
even for language designers and compiler builders who are ex-
pected to have a higher education in informatics than users. A
thorough pervasion of static binding of names, most natural since
the origins of predicate logic and lambda calculus, by concepts of
theoretical informatics, mathematics and mathematical logics is
an absolute must. The more theoretical knowledges of binding we
have the higher is the chance that all three – programmers, users
and compilers – conceive program semantics in the same manner.
Strong theoretical connections assure that ideas of programming
language designers and practicioners will achieve lasting impor-
tance.

Acknowledgement. We would like to thank the anonymous re-
viewers of article [LSW09] who have encouraged us to write a full
paper on our observations of types elaboration in Java with inner
classes in Igarashi’s and Pierce’s article [IP02]. We appreciate the
suggestions of the anonymous reviewer of the present article.

Appendix A1: Algorithm LSWAν to construct inheritance function
inhν0 and to decide binding well-formedness

Algorithm LSWAν, 0 ≤ ν ≤ ∞, computes for a given Java-
program structure a chain
inhν⊥ = sstν0 ≺DS sstν1 ≺DS · · · ≺DS sstνn = inhν max⊥ = inhν0,

0 ≤ n ≤ card(C), of direct successor states beginning with the
bottom(empty) state and ending with the unique maximal suc-
cessor state which is the least fixed point inhν0 = µbdfl′ν (Remark
19 and Corollary 22). The main part of algorithm LSWAν is the
same as of LSWA in [LSW09] for all 1 ≤ ν ≤ ∞:

var INH inh, P(C) Candidates, C K, CO M ;
inh := ∅;

60

while dominh 6= C
do Candidates := {K ∈ C : decl(K) ∈ domR

inh ∧K /∈ dominh};
if (∃K ∈ Candidates) bindrst νinh (ext(K) in decl(K)) ∈ domO

inh

then K := one of such generating candidates;
M := bindrst νinh (ext(K) in decl(K));
inh := inh ∪ {〈K,M〉}

else error: irregular termination with a final value of
inh which is the maximal successor state inhν max⊥ =
inhν0 with dominhν0 6= C

fi
endwhile
regular, successful termination of LSWAν with a final value of
inh which is inhν max⊥ = inhν0 with dominhν0 = C, i.e. the given
program structure is binding well-formed w.r.t. binding function
bindνinhν0 .

We write down the programmed restricted binding function bindrst νinh (X in P)
only for index ν =∞ and ν = 1 because bind∞inh∞0 is the most sur-
prizing model of IPET resp. BIPET which is essentially different
from Java’s official binding function and model bind1

inh10
. If the

two preconditions 1) inh is a state and 2) P ∈ domRO
inh hold then

invocation of bindrst νinh (X in P) terminates regularly such that re-
sult T ∈ domOF

inh satisfies the postcondition T = bindνinh(X in P).
I.o.w. bindrst νinh is totally correct w.r.t. these pre- and postcondi-
tions, ν =∞ or = 1 . Remind that all standard operations have
been extended by Fc resp. Ft towards total operations.

61

bindrst∞inh (X in P) =
if X ∈ SCT
then if P.X is defined ∈ CO, i.e. 6= Fc
then P.X
else if P ∈ dominh

then let T = bindrst∞inh (X in inh(P));
in if T is defined ∈ CO, i.e. 6= Fc

then T
else bindrst∞inh (X in decl(P))
fi

endlet
else if P = Object

then bindrst∞inh (X in Root)
else Fc
fi

fi
fi

else let X = X ′.C, C ∈ SCT
T ′ = bindrst∞inh (X ′ in P)

in bindrst∞inh (C in T ′)
endlet
fi
end bindrst∞inh

bindrst1inh (X in P) =
if X ∈ SCT
then if P ∈ dominh

then let T = bindrst
′1

inh (X in P)
in if T is defined ∈ CO, i.e. 6= Fc

then T
else bindrst1inh (X in decl(P))
fi

endlet
else P.X
fi

else let X = X ′.C, C ∈ SCT
T ′ = bindrst1inh (X ′ in P)

in bindrst
′1

inh (C in T ′)
endlet

fi
end bindrst1inh

bindrst
′1

inh (C ′ in T ′) =
if T ′ ∈ dominh
then if T ′.C ′ ∈ CO, i.e. 6= Fc

then T ′.C ′

else bindrst
′1

inh (C ′ in inh(T ′))
fi

else T ′.C ′

fi

end bindrst
′1

inh

62

Appendix A2: Proof of Theorem 4, correctness of all binding func-
tions bindνinhν0 w.r.t. calculus BIPET

Theorem 4 is formulated already in Section 3. Here is the

Proof of Theorem 4: We begin with a

Remark 26: Rule I. (BET-Object) works restrictively compared to
official Java with inner classes. Satisfaction of Rule I. requires that
standard class Object is the only class named Object. I.e. there is no
user declared class allowed to be named Object. It is agreeing with
official Java with inner classes to drop Rule I. and to subsume it under
Rule II. (BET-InCT). But at this moment we procede as Igarashi and
Pierce do, until we repair their calculus in Subsection 5.2 and Section
6.

2

I. (BET-Object)
Claim: bindνinhν0(Object in P) = Object.
There is an Object-admissible path from P viaRoot toRoot.Object
= Object because de? ⊆ Adν. Only the “least”-condition might
be violated. But as there are no node repetitions (see Remark
20) only finitely many words in Adν are involved and so there is
also a least Object-admissible path from P via Root to Object

w.r.t. Adν.

II. (BET-InCT)
Let P have the direct inner class named C, i.e. P.C ∈ CO.
Claim: bindνinhν0(C in P) = P.C.

λ is the least word in Adν. So we have the λ-associated path from
P via P to P.C and this path is least C-admissible w.r.t. Adν.

III. (BET-SimpEncl)
Let (?) bindνinhν0(D in P) = T ,

(??) there be no direct inner class ∈ CRO named D in P.C
∈ C, i.e. (P.C).D is undefined for the simple type D,

63

(? ? ?) bindνinhν0(ext(P.C).D in P) is undefined.
Claim: bindνinhν0(D in P.C) = T .
Due to (?) there is a least D-admissible path from P via P1 to
P1.D = T w.r.t. Adν. So there is a D-admissible path from P.C
via P and P1 to P1.D = T . The path from P.C via P to P1 is in
Adν because Adν is de-closed. Claim: This path from P.C via P
and P1 to T is least w.r.t. Adν.

The very least word λ ∈ Adν does not lead to any D-admissible
path from P.C via P1 = P.C to P1.D = (P.C).D = T because of
(??).

Assume we had a least D-admissible path from P.C via P̃ to
P̃ .D which is beginning with inhν0(P.C) = P ′. Then

P ′ = bindνinhν0(ext(P.C) in decl(P.C))
due to C = dominhν0 and we had a least ext(P.C)-admissible path
from decl(P.C) = P to P ′. Then we had a least ext(P.C).D-
admissible path from P via P ′ and P̃ to P̃ .D (because of w_in ∈
Adν ⇒ w ∈ Aiν) what would mean

P̃ .D = bindνinhν0(ext(P.C).D in P)
what is impossible due to (? ? ?). So the least D-admissible path
from P.C starts with decl(P.C) = P and is that one considered
above.

Remark 27: Please realize that the premise P.C is different from
Object or P.C ∈ C has not been employed. Hence all binding functions
satisfy the stronger Rule III without this premise, i.e. P.C may be
∈ CO. 2

IV. (BET-SimpSup)
Let there be no direct inner class named D in P.C ∈ C (i.e.
(P.C).D is undefined),

bindνinhν0(ext(P.C).D in P) = T .
Claim: bindνinhν0(D in P.C) = T .
There is a least ext(P.C).D-admissible path from P via T ′ and P ′

to P ′.D = T , where the prefix path from P to T ′ is least ext(P.C)-
admissible and the postfix path from T ′ via P ′ to P ′.D = T is
least D-admissible w.r.t. Aiν. As P = decl(P.C) we have

64

T ′ = bindνinhν0(ext(P.C) in P) = inhν0(P.C).
Claim: The path from P.C via T ′ and P ′ to P ′.D = T is least
D-admissible.
Namely the only “less” path would be the one from P.C via P.C
to (P.C).D, but that is impossible.

V. (BET-Long)
Let bindνinhν0(X in P) = T ,

class T have a direct inner class named C, i.e. T.C ∈ CRO.
Claim: bindνinhν0(X.C in P) = T.C.
There is a least X-admissible path from P to T .
Claim: If we prolong this path to T.C then we have a least X.C-
admissible path from P via T to T.C.
This is true because λ ∈ Aiν.

VI. (BET-LongSup)
Let (?) bindνinhν0(X in P) = P ′.D,

(??) class P ′.D ∈ C have no direct inner class named C, i.e.
(P ′.D).C is undefined,
(? ? ?) bindνinhν0(ext(P

′.D).C in P ′) = U .
Claim: bindνinhν0(X.C in P) = U .
There is a leastX-admissible path from P via P ′ to P ′.D whereD
is the rightmost simple type inX (?). There is a least ext(P ′.D).C-
admissible path from P ′ via T ′ to U where there is a prefix-
ing least ext(P ′.D)-admissible path from P to T ′ (? ? ?). Since
P ′ = decl(P ′.D) we have inhν0(P ′.D) = T ′ due to domRO

inhν0
= CRO.

Claim: The path from P via P ′ and P ′.D and T ′ to U is least
X.C-admissible, i.e. the path from P ′.D via T ′ to U is least C-
admissible w.r.t. Aiν.
The path from T ′ to U is least C-admissible w.r.t. Aiν (? ? ?). So
the path from P ′.D via T ′ to U is also least C-admissible because
Aiν is in-closed and the second premise (??) is holding. �

65

Appendix A3: Proof of Theorem 32, correctness of Java’s official
binding function bind1inh10

w.r.t. the repaired calculus BIPET´

Proof of Theorem 32: We begin with

Remark 33: We are trying to prove Theorem 32 for all functions
bindνinhν0 , 1 ≤ ν ≤ ∞, in order to find out which rules are not satisfied
by all functions. 2

0.1. (BET’-Fc1)
0.2. (BET’-Fc2)
0.3. (BET’-Fc3)
These rules are axioms and hold because, due to Definition 31,
bindνinhν0 is strict in Ft, Fc.

II. (BET’-InCT)
See the corresponding place in the proof of Theorem 4

II.2. (BET’-InCT2)
Let class Root have no direct inner class ∈ CO named C , i.e.
Root.C is undefined.
Claim: bindνinhν0(C in Root) = Fc.

There is only one path from Root associated to Adν inside CRO,
namely that one associated to λ ∈ Adν. As Root.C is undefined
bddνinhν0(C in Root) is defined to be Fc and so is bindνinhν0(C in Root).

III. (BET’-SimpEncl)
See the proof of Theorem 4. The premise “class P.C is different
from Object” of Rule III. of BIPET is not exploited in that proof.
So the changed premise P.C ∈ CO is allowed in BIPET´. See Re-
mark 27.

III.2. (BET’-SimpEncl2)
Let (?) bindνinhν0(D in P) = Fc,

(??) there be no direct inner class named D in
P.C ∈ CO (equivalent: P.C ∈ CRO),

66

(? ? ?) bindνinhν0(ext(P.C).D in P) = Fc.
Claim: bindνinhν0(D in P.C) = Fc.

Due to well-formedness there are only finitely many Adν-associa-
ted paths from P.C inside CRO. Assume the claim were wrong, i.e.
there were a least D-admissible path from P.C via P1 to T ∈ CO
with P1.D = T . Due to (??) P1 is different from P.C. So the path
starts with inhν0(P.C) = P ′ or decl(P.C) = P . The latter case is
impossible due to (?). So we have

P ′ = bindνinhν0(ext(P.C) in P)

due to C = dominhν0 . Because the Adν -associated path from P.C
via P ′ to P1 starts with inhν0 the path is necessarily also an Aiν-
associated path and so is the path from P ′ to P1. But then we
had

bindνinhν0(ext(P.C).D in P) = T

what is contradicting (? ? ?). So the assumption is wrong, the
claim is holding.

IV. (BET’-SimpSup)
See the corresponding place in the proof of Theorem 4. The
premises P.C ∈ CO and P.C ∈ C are equivalent here.

V. (BET’-Long)
See Proof of Theorem 4.

V.2. (BET’-LongSup2)
This is an immediate consequence of Definition 31 of bindνinhν0 .

VI. (BET’-LongSup)
See the proof of Theorem 4. The premises P ′.D ∈ CO and P ′.D ∈
C are equivalent here.

VI.2. (BET’-LongSup2)
Let (?) bindνinhν0(X in P) = P ′.D,

(??) class P ′.D ∈ CO have no direct inner class named C,
(? ? ?) bindνinhν0(ext(P

′.C).D in P ′) = Fc.
Claim: bindνinhν0(X.C in P) = Fc .

67

Due to well-formedness there are only finitely many Adν-, Aiν-
associated paths from any class in CRO. Assume the claim were
wrong, i.e. there were a least X.C-admissible path from P via P ′

to P ′.D and the postfixing path from P ′.D via T 0 to U is least
C-admissible w.r.t. Aiν. Because of premise (??) this postfixing
path is starting with inhν0(P ′.D) = T ′ or decl(P ′.D) = P ′. We
have due to wellformedness

inhν0(P ′.D) = bindνinhν0(ext(P
′.C) in P ′) = T ′.

inhν0(P ′.D) = T ′ is impossible due to in-closedness of Aiν and
premise(? ? ?). In case ν = 1
decl(P ′.D) = P ′ is also impossible because Ai1 is equal in? and
the postfixing path cannot start with decl. �

Remark 34: In case 2 ≤ ν ≤ ∞ this last impossibility cannot be
verified. Namely we have a disproof of Rule VI.2. (BET’-LongSup2)
inside program Example 5. All three premises are fulfilled for 2 ≤ ν ≤
∞:
(?) bindνinhν0(F in D) = D.F = F ,
(??) class F has no direct inner class named D,
(? ? ?) bindνinhν0(ext(F).D in D)

= bindνinhν0(E.D in D)

= bdiνinhν0(D in

bddνinhν0(E in D))

= bdiνinhν0(D in A.E)
= Fc.

Nevertheless, the claim is wrong:
bindνinhν0(F.D in D) = D. 2

Appendix A4: Proof of Theorem 35, weak completeness of bind1inh10
w.r.t. calculus BIPET´

Proof of Theorem 35: We begin with

68

Remark 36: We try to prove Theorem 35 for all indices ν. Eleven
Rules 0.1. to V.2. and VI.2. work out. But Rule VI. is an obstacle
in case 2 ≤ ν ≤ ∞. So only case ν = 1 works out for all twelve Rules. 2

Case 0: X = Ft or P = Fc.
One of the Rules 0.1. to 0.3. is applying.
From now on X ∈ CT and P ∈ CRO.
Case 1: length(X) = 1.
Case 1.1: P.X ∈ CRO.
Due to Theorem 32 the conclusion of Rule II.

bindνinhν0(X in P) = P.X
holds. Since bindνinhν0 is single valued we have P.X = T .
Case 1.2: P.X is undefined and P = Root.
Due to Theorem 32 the conclusion of Rule II.2.

bindνinhν0(X in Root) = Fc

holds. Single valuedness yields Fc = T .
Case 1.3: P.X is undefined and P ∈ CO.
Then P = P .C for an appropriate simple type C and (P .C).X
is undefined (??).
Case 1.3.1: bindνinhν0(ext(P .C).X in P) = T ∈ CO.
Due to Theorem 32

bindνinhν0(X in P .C) = T

holds as the conclusion of Rule IV. Because bindνinhν0 is single val-

ued we have T = T .
Case 1.3.2: bindνinhν0(ext(P .C).X in P) is Fc (? ? ?).

Case 1.3.2.1: ext(P .C) is undefined.
Then P .C = Object, P = Root, C = Object. Due to definition
of bindνinhν0 we have

T = bindνinhν0(X in P) = bindνinhν0(X in P) (?),

let T ∈ CO or T = Fc. Due to Theorem 32 and (?), (??), (? ? ?)
we have as the conclusion of Rule III. resp. III.2.

bindνinhν0(X in P) = T .

Case 1.3.2.2: ext(P .C) is defined ∈ CT .
So P .C = P is user declared and different from Object. We have
due to assumption domRO

inhν0
= CRO and state inhν0

(◦) inhν0(P .C) = bindνinhν0(ext(P .C) in P) = T̃ ∈ CO.

69

So there is no least X-admissible path from T̃ to any T̂ such that
T̂ .X is defined ∈ CO w.r.t. Aiν. As we want to derive

bindνinhν0(X in P) = T

with T ∈ COF by the help of Rule III. or Rule III.2. we ask: What
is the result of

bindνinhν0(X in P)?
We have

bindνinhν0(X in P .C) = T .

Case 1.3.2.2.1: Let T ∈ CO. Since (◦) and (P .C).X is undefined
the least X-admissible path from P .C via a T to T .X = T starts
with decl(P .C) = P or with inhν0(P .C) = T̃ . In the latter case
the path is not only associated to Adν but also to Aiν which con-
tradicts our statement above. So we conclude

bindνinhν0(X in P) = T (?1).
Due to Theorem 32 and (?1), (??), (? ? ?) we have as the conclu-
sion of Rule III.

bindνinhν0(X in P .C) = T

what is to be shown due to P .C = P .
Case 1.3.2.2.2.: Let T = Fc.
Claim: bindνinhν0(X in P) is Fc (?3).

Assume we had a least X-admissible path from P to T ? ∈ CO in
CRO (w.r.t. Adν), i.e. we had

bindνinhν0(X in P) = T ? ∈ CO (?2)
then due to Theorem 32, Rule III. with (?2), (??), (? ? ?), we con-
clude

bindνinhν0(X in P .C) = T ?.
But this contradicts

bindνinhν0(X in P .C) = T = Fc.
So the claim above holds.
Again due to Theorem 32, Rule III.2. with (?3), (??), (? ? ?), we
conclude

bindνinhν0(X in P .C) = Fc

what is to be shown due to P .C = P and T = Fc.
Case 2: length(X) ≥ 2, X = X.C.
We have

70

(?) bindνinhν0(X in P) = T ∈ COF .

Case 2.1: T = Fc.
Then

bindνinhν0(X.C in P) = Fc
and Rule V.2. applies.
Case 2.2: T ∈ CO (?2), i.e. T = P ′.D for appropriate P ′ and D.
Case 2.2.1: T .C ∈ CO.
Due to Theorem 32 we have as the conclusion of Rule V.

bindνinhν0(X.C in P) = T .C,
so we have also derived

bindνinhν0(X in P) = T
due to single valuedness of bindνinhν0 .

Case 2.2.2: T .C is Fc and T ∈ CO (??2).
There is a least C-admissible path from T via a T̃ to T̃ .C = T

w.r.t. Aiν. In case ν = 1 we are sure T is not equal Object.
Otherwise T were = Fc. We have due to assumption dominh10

= C
and inh1

0 being a state
inh1

0(P
′.D) = bind1

inh10
(ext(P ′.D) in P ′) = T̂ .

What is bdi1inh10(C in T̂)?

As T .C is undefined the least Ai1-associated path from T via T̃
to T̃ .C = T starts with inh1

0(T) = T̂ because, due to Ai1 = in?,
we are sure it is an inheritance chain (for Aiν with ν ≥ 2 we
are not sure!). So the path from T̂ via T̃ to T̃ .C = T is least
C-admissible w.r.t. Ai1 = in?. So

bdi1inh10(C in T̂) = T .
So
(? ? ?2) bind1

inh10
(ext(P ′.D).C in P ′) = T

and
bind1

inh10
(X in P) = T

holds due to Theorem 32 as the conclusion of Rule VI. with valid
premises (?), (?2), (??2), (? ? ?2).
Case 2.2.3: T .C is Fc and T = Fc (??3).
If T is Object then P ′ is Root and

bindνinhν0(ext(P
′.D).C in P ′) is

bindνinhν0(Ft in Root) is Fc (? ? ?3)

71

Rule VI.2. with premises (?), (?2), (??3), (???3) yields due to The-
orem 32

bindνinhν0(X.C in P) = Fc
what is to be shown.
Now let T 6= Object. As earlier we have

inhν0(P ′.D) = bindνinhν0(ext(P
′.D) in P ′) = T̂ ∈ CO.

What is the result U of
bdiνinhν0(C in T̂)?

Is it Fc as we hope, as we want to apply Rule VI.2. ?
Claim: bdiνinhν0(C in T̂) = Fc.

Assume we had a least C-admissible path from T̂ to a result
U ∈ CO w.r.t. Aiν. Then we have a least C-admissible path from
T = P ′.D to a result U ∈ CO w.r.t. Aiν and

bindνinhν0(X.C in P) were = U .
Contradiction!
So the claim holds and Rule VI.2. applies with valid premises
(?), (?2), (??3), (? ? ?4) where
(? ? ?4) bindνinhν0(ext(P

′.D).C in P ′) = Fc.
The conclusion is

bindνinhν0(X.C in P) = Fc. �

Remark 37: Let us return to Case 2.2.2 in the proof of Theorem
35. In case ν ≥ 2 we would like to see a program example where our
reasoning does not work, i.e. where the least C-admissible path w.r.t.
Aiν from T via T̃ to T̃ .C = T does not start with inhν0(T) but with
decl(T).
Look at program Example 5. The corresponding classes are

abstract in the proof concrete in the Example
T F
T̃ B
T̃ .C = T B.D = D

So the least D-admissible path from F to D w.r.t. Aiν
decl(F) = D, decl(D) = B, B.D = D

starts with decl(F) and not with inhν0(F). 2

72

References

[Bar+82] W. M. Bartol et al.. The Report on the Loglan’82 Programming
Language. PWN, Warszawa, 1984

[BaWo82] F.L.Bauer, H.Wössner. Algorithmic Language and Program
Development. Springer, 1982

[Bjo09] D.Bjoerner. Domain Engineering – Technology Management,
Research and Engineering. COE Research Monograph Series, Vol.
4, JAIST Japan, 2009

[Boe01] R. Staerk, J. Schmid, E. Boerger. Java and the Java Virtual Machine-
Definition, Verification, Validation, Springer-Verlag, June 2001

[Chu41] A.Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941

[DaNy67] O.-J.Dahl, K.Nygaard. Class and Subclass Declarations. In:
J.N.Buxton (ed.). Simulation Programming Languages. Proc. IFIP
Work. Conf. Oslo 1967, North Holland, Amsterdam, 158-174, 1968

[Dij60] E.W. Dijkstra. Recursive Programming. Numerische Mathematik 2,
312-318, 1960

[Fre1879] G.Frege. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Halle a.S., 1879

[GHL67] A.Grau, U.Hill, H.Langmaack. Translation of ALGOL60. Handbook
for Automatic Computation, Vol. I, Part b (chief ed. K.Samelson),
Springer 1967

[GJS96] J. Gosling, B. Joy, G. Steele. The Java Language Specification. First
edition, Addison-Wesley 1996

[GJSB00] J. Gosling, B. Joy, G. Steele, G. Bracha. The Java Language
Specification. Second edition, Addison-Wesley 2000

[GJSB05] J. Gosling, B. Joy, G. Steele, G. Bracha. The Java Language
Specification. Third edition, Addison-Wesley 2005

[Ich80] J.D. Ichbiah. Ada Reference Manual. LNCS 106, Springer-Verlag,
Berlin, Heidelberg, New York 1980

[IP02] A. Igarashi, B. Pierce. On inner classes. Information and
Computation 177, 56-89, 2002

[Kan74] P.Kandzia. On the “most recent”-property of ALGOL-like programs.
In Proc. 2nd Coll. Automata Languages and Programming (J.Loeckx,
ed.). LNCS 14, 97-111. Berlin, Heidelberg, New York, Springer 1974

[KSW88] A.Kreczmar, A.Salwicki, M.Warpechowski. Loglan’88 - Report on the
Programming Language. LNCS 414, Springer, Berlin 1990

73

[Lan73] H.Langmaack. On Correct Procedure Parameter Transmission in
Higher Programming Languages. Acta Informatica 2, 2, 110-142,
1973

[Lan10] H.Langmaack. Dijkstras fruchtbarer, folgenreicher Irrtum. Informatik
Spektrum Band 33, Heft 3, 302-308, Heft 4, 384-392, Heft 6, 634-646,
2010

[LoSi84] J. Loeckx, K. Sieber. The Foundation of Program Verification. Wiley-
Teubner 1984

[LSW04] H.Langmaack, A. Salwicki, M.Warpechowski. On correctness and
completeness of an algorithm determining inherited classes and on
uniqueness of solutions. In: G.Lindemann et al., Proc. CS&P’2004,
Caputh Sept. 24-26, Vol. 2, 319-329, Informatik-Berichte, Humboldt
Univ. Berlin, 2004

[LSW08] H.Langmaack, A.Salwicki, M.Warpechowski. On a deterministic
algorithm identifying direct superclasses in Java, Fundamenta
Informaticae 85, 343-357, 2008

[LSW08b] H.Langmaack, A.Salwicki, M.Warpechowski.Some methodological
remarks inspired by the paper “On inner classes” by A.Igarashi and
B.Pierce. Proc. CS&P’2008, Groß Väter See. Informatik-Berichte,
Humboldt-Univ. Berlin, 448-462, 2008

[LSW09] H.Langmaack, A.Salwicki, M.Warpechowski. On an algorithm
determining direct superclasses in Java-like languages with inner
classes – its correctness, completeness and uniqueness of solutions.
Information and Computation 207, 389-410, 2009

[Man74] Z.Manna. Mathematical Theory of Computation. McGraw-Hill, 1974

[McC+65] J.McCarthy et al.. LISP 1.5 Programmer’s Manual. The M.I.T.Press,
Cambridge, Mass., 1965

[McG72] C.L.McGowan. The “most recent”-error: its causes and correction. In:
Proc. ACM Conf. on Proving assertions about programs. SIGPLAN
Notices 7, No.1, 191-202, 1972

[MMPN93] O.L.Madsen, B.Moeller-Pedersen, K.Nygaard. Object Oriented
Programming in the BETA Programming Language. Addison Wesley
/ ACM Presss, 1993, see also: Beta Programming Language, 2001,
available from: http://www.daimi.au.dk/∼beta/

[MSST2001] G.Mirkowska, A.Salwicki, M. Srebrny, A. Tarlecki. First-order
Specifications of Programmable Data Types, SIAM Journal on
Computing, 30, pp. 2084-2096, 2001

[Nau+60/63] Naur, P. (ed.) et al.: Report on the Algorithmic Language ALGOL60.
Revised, Num. Math. 2, 106-136 (1960); Num. Math.4, 420-453, 1963

74

[Old81] E.R.Olderog. Charakterisierung Hoarescher Systeme für ALGOL-
ähnliche Programmiersprachen. Dissertation, Inst. F. Informatik u.
Prakt. Math., Univ. Kiel, Bericht 5/81, 1981

[Ste84] G.L.Steele jr.. Common LISP - The Language. Digital Press 1984

[Sto84] H.Stoyan. Early LISP History (1956-1959). LFP’84 Proceedings of
the 1984 ACM Symposium on LISP and Functional Programming,
Austin, 5-8 August, 299-310. ACM 1984

[WaGo84] W.M.Waite, G.Goos. Compiler Construction. Springer, New York
Berlin Heidelberg Tokyo 1984

[Wij+68] A.van Wijngaarden et al. (eds.). Report on the Algorithmic Language
ALGOL68. Numerische Mathematik 14, 79-218, 1969

[WiMa92/97] R.Wilhelm, D.Maurer. Übersetzerbau - Theorie, Konstruktion,
Generierung. Springer, Berlin Heidelberg New York 1992, 2. Aufl.
1997

75

	Introduction
	Igarashi's and Pierce's calculus IPET for elaboration of types
	Binding functions, well-formedness, Igarashi's and Pierce's sanity conditions, models of calculus IPET resp. BIPET
	 Langmaack's, Salwicki's and Warpechowski's way to construct different type elaboration or binding functions and their property to be models of IPET resp. BIPET
	Definition of a family of binding functions bindinh
	Continuous binding functionals bdfl', their least fixed points inh0 and BIPET-models bindinh0

	The dilemma with BIPET's Rule III. (BET-SimpEncl) in combination with Rule VI. (BET-LongSup)
	General existence of different minimal models
	Extension of Java's official binding function bind1inh10 which is the least model of preliminarily repaired calculus BIPET

	The repaired calculi BIPET and BIPET and their equivalent recursive function definitions resp. recursive programs
	Concluding remarks
	References

