
Alien call - a synchronization mechanism for
distributed processes

Boles law J. Ciesielski
Institute of Informatics
University of Warsaw

4 May 1989

Abstract

A new communication mechanism for parallel processes is pro-
posed. The alien call is designed primarily for high level languages fea-
turing distributed processes. It is based on the rendezvous schema, but
introduces some significant enhancements while omitting constructs
most difficult to implement. The alien call is particularly suitable
for object oriented languages because it uses a procedure call/mes-
sage sending as the main tool for information passing. The proposed
mechanism integrates in a simple way both synchronous and asyn-
chronous communication patterns, so separate mechanisms are not
needed (e.g. messages and rendezvous). Examples presented in the
paper demonstrate the use of the alien call in solutions of several typ-
ical synchronization problems. The alien call is strong enough to be
the only communication mechanism available in a programming lan-
guage. On the other hand the alien call may be efficiently implemented
using asynchronous messages as a primary hardware or system level
mechanism. A prototype implementation was done on the LAN of PC-
compatible computers using LOGLAN as an underlying language.

Key words: concurrency, distributed systems, synchronization, communica-
tion mechanism, programming languages

1 Introduction

The alien procedure call is an interprocess communication and synchroniza-
tion mechanism integrating both synchronous and asynchronous elements.

1

It was designed and implemented originally for the programming language
LOGLAN developed in the Institute of Informatics, University of Warsaw.
LOGLAN belongs to the family of object oriented programming languages
(SIMULA, SMALLTALK, ...). The main constructs for dealing with objects,
i.e. classes and the notion of inheritance are borrowed from SIMULA-67, in
LOGLAN however they are substantially extended. From our point of view
the most interesting is LOGLAN’s treatment of concurrency.

The parallelism in LOGLAN has an object oriented nature. Processes are
classes, so they define a type - a set of process objects of that type. Process
types are static and fixed in a given program while process objects may be
dynamically generated and are deallocated when no longer useful. Moreover
processes like all classes may inherit from other classes and may themselves
be inherited from by other processes. This provides good facilities for non-
system concurrent programming, especially for large distributed applications.

2 Processes in LOGLAN

The following example illustrates the use of processes in LOGLAN.

Listing 1: Simple processes without synchronization

\ t e x t b f {program} example1 ;

un i t powers : p roce s s (n : i n t e g e r) ;
(∗ d e c l a r a t i o n o f a proce s s type ∗)

var
x : i n t e g e r ;

begin
x := 1 ; (∗ con s t ruc to r ∗)
re turn ; (∗ thread ∗)
do (∗ i n f i n i t e loop ∗)

x := x ∗ n ;
w r i t e l n (x)

od
end powers ;

var
p1 , p2 , p3 : powers ;

begin (∗ the main program − a l s o a proce s s ∗)
p1 := new powers (5) ; resume (p1) ;
p2 := new powers (7) ; resume (p2) ;
p3 := new powers (1 1) ; resume (p3) ;
stop

2

end example1

The program in the Example 1 consists of the declaration of the process type
powers and the main program body. A process is a class, so it may have
parameters, local declarations and a body. Parameters of processes (as well
as of procedures and classes) may have input, output or inout passing modes
as in ADA. Processes are created dynamically with the help of the object
generator new. However the process generation does not complete after the
creation of the process object. The parent process executes the body of the
newly created process until the first return statement is encountered (it is
constructor phase). At that moment the process generation is completed.
Output parameters are transmitted back to the parent process which con-
tinues its execution. The new child process remains suspended. It may be
resumed (put into the execution) by another process using the resume state-
ment. The stop statement unconditionally suspends the process executing
it. In the above example the main program process creates three processes
of the type powers, resumes them and stops itself. Three processes run in
parallel continuously. They neither terminate nor communicate with each
other.

3 Communication mechanism

Distributed processes do not share memory, so they cannot communicate
through shared variables or semaphores. Instead an original communica-
tion and synchronization mechanism appropriate for distributed systems, the
alien procedure call, is proposed for LOGLAN. It is based on the rendezvous
but introduces some new concepts.

Regular (i.e. non-process) objects in LOGLAN may be accessed remotely
by means of a dot notation:
X.V := ... X.V ... or
call X.P(...)
where X is an object of some class A, V is a local variable and P is a local
procedure of A. For a process object only the second type of remote access
(a procedure call) is allowed. It is a direct consequence of the distribution
of processes. Remote access to a local variable of another process is not
permitted, although it may be defined using the proposed mechanism. A
process must just provide procedures for fetching and storing of the value of
the variable. Those procedures must be made accessible to other processes
by the alien call mechanism.

Syntax. Now we give the precise (yet informal) description of the se-
mantics of the alien call.

3

An alien call is either:

• a procedure (or function) call performed by a remote access to a process
object, or

• a call of a procedure which is a formal parameter of a process, or

• a call of a procedure which is a formal parameter of an alien-called
procedure (this is a recursive definition).

The latter two cases come from the fact that a procedure which is passed
as a parameter must be executed in the static environment of a process in
which it is declared (similarly to calling by a remote access). However that
form of an alien call is not used very often.

Every procedure declared directly inside a process or inherited from a
superclass may potentially be alien-called by another process, but a given
process object may selectively allow or inhibit alien calls to its own proce-
dures. For this purpose the notion of an enable mask is introduced.

Enable mask is a private process attribute whose domain is the power set
of all procedure names from the given process that may be potentially alien-
called. At any moment the enable mask contains the subset of all callable
procedures.

The receiving process allows alien calls only to the procedures contained in
its enable mask. It is important to realize that the enable mask is associated
with every process object (not a process type) and may be changed separately
for each of them during the execution of a program. In fact the enable mask
is a part of a process state.

A procedure is enabled in a process (an active object) if it belongs to the
enable mask of that process. A procedure is disabled if it does not belong to
that mask.

Immediately after generation of a process object its enable mask is empty
(i.e. all procedures are disabled). A process may change its own enable mask
using the constructs described below. The statement:

enable p1, ..., pn
enables the procedures with identifiers p1, ..., pn in the current process and
the statement:

disable p1, ..., pn
disables the procedures with identifiers p1, ..., pn.

The alien procedure call has similar syntax to Remote Procedure Call
(RPC) but its semantics is different. Both the calling process and the process
in which the procedure is declared (i.e. the called process) are involved in
an alien call. This way the alien call may be used as a synchronization
mechanism.

4

Semantic. An alien procedure call is initiated by a calling process usu- opisać
alien
call-
jako
pro-
tokó l

ally by means of a procedure call statement remotely accessing a procedure
declared in another (called) process:

call X.P(e, v);
where X is a process object, P is its local procedure and e and v represent
input and output parameters. A formal procedure call may also initiate an
alien call.

The alien-called procedure is executed by the called process (as in ren-
dezvous but not as in RPC). The calling process passes input parameters
and waits for the completion of the execution of the procedure. Then the
calling process reads back the output parameters and resumes the execution
at the next statement. Thus the calling process is suspended almost all the
time during an alien call.

The called process may not always be able to execute the procedure.
The execution of the procedure will not begin before certain conditions are
satisfied. First, the called process must not be suspended in any way. The
only exception is that it may be waiting for an alien call (see the accept
statement described below). Second, the given procedure must be enabled in
the called process. Hence the calling process remains suspended and nothing
happens until both of these conditions are satisfied. At any given moment
there may be many processes waiting for an ability to alien call of the same
procedure in the same process.

When the above two conditions are met one of the waiting processes
is chosen and its request is served. The called process is interrupted and
forced to execute the alien-called procedure in its own static and dynamic
environment but with parameters passed earlier by the calling process.

Upon entry to the alien-called procedure all procedures become disabled
in the called process (the enable mask is cleared). Therefore the procedure
cannot be immediately interrupted by another alien call. However it may
easily allow interrupts if it changes the enable mask by itself.

Upon exit from the alien called procedure the enable mask of the called
process is restored to that from before the call (regardless of how it has
been changed during the execution of the procedure). The called process is
resumed at the point of interruption and continues to do whatever it was
doing before. The calling process reads back the output parameters and
resumes its execution after the call statement.

As can be seen from the above description, if we consider each of the
processes separately, an alien call appears as a normal procedure call to the
calling process and as an interrupt to the called process.

Besides the above base mechanism there are some additional language
constructs associated with the alien call. A special form of the return state-

5

ment (which ends the execution of a procedure): return enable p1, ..., pn
disable q1, ..., qn; allows to enable the procedures p1, ..., pn and disable
the procedures q1,...,qn after the enable mask is restored on exit from the
alien-called procedure. That form of return is legal only in the alien-called
procedures and gives them the possibility to permanently change (not only
for the period of the execution of a procedure) the enable mask of the called
process.

Listing 2: Implementation of semaphores using the alien procedure call

uni t semaphore : p roce s s (compNo , n : i n t e g e r) ;
(∗ compNo i s the number o f the p r o c e s s o r on which the a c t i v e

ob j e c t o f semaphore w i l l be l o ca t ed . n i s the semaphore counter .
I t s i n i t i a l va lue i s passed as a
parameter by the c r e a t i n g proce s s (must be >= 0) . ∗)

un i t wait : procedure ;
(∗ enabled only i f n > 0 ∗)
begin

n := n − 1 ; (∗ decrement the semaphore counter ∗)
i f n = 0 (∗ i f we reached 0 ∗)
then (∗ then d i s a b l e f u r t h e r a l i e n c a l l s ∗)

re turn d i s a b l e wait (∗ o f procedure wait ∗)
f i

end wait ;

un i t s i g n a l : procedure ;
(∗ always enabled ∗)
begin

n := n + 1 ; (∗ increment the counter ∗)
re turn enable wait (∗ sure ly , n > 0 , so enable ∗)

(∗ a l i e n c a l l s o f wait ∗)
end s i g n a l ;

begin
re turn ; (∗ re turn to the c r e a t o r ∗)

(∗ Enable procedure s i g n a l because
t h i s operat i on i s always a l lowed . ∗)

enable s i g n a l ;

(∗ Enable procedure wait i f the i n i t i a l counter ’ s
va lue i s g r e a t e r than 0 . Otherwise i t may only

6

be enabled by an a l i e n c a l l to s i g n a l . ∗)
i f n > 0 then enable P f i ;

(∗ Now we wait i n d e f i n i t e l y f o r the a l i e n c a l l s .
For the moment a busy−wait ing loop s u f f i c e s . ∗)

do
od

end semaphore ;

. . .
(∗ example use o f the semaphore in main proce s s ∗)
var

s : semaphore ;
begin

s := new semaphore (no , 2) ;
resume (s) ;
. . .
c a l l s . wait ;
. . .
c a l l s . s i g n a l ;
. . .

end

In the above example a Dijkstra’s semaphore is implemented using the alien
procedure call. In a distributed system there are no shared variables so
semaphores must be processes themselves. Once a process is created, a ref-
erence to it may be passed as a parameter to another process so it may be
accessed by a number of processes. The process semaphore defined above
has two alien callable procedures: wait and signal which correspond to stan-
dard operations on semaphores. The enable mask is manipulated in such a
way that procedure signal is always enabled while procedure wait is enabled
only if the semaphore counter is positive. Explicit queuing of the processes
waiting for a semaphore to be open is not needed. It is done by the underly-
ing alien call mechanism. Note that after the required initialization process
semaphore has nothing to do except waiting for alien calls. It may do some-
thing else or loop as above. That follows from the fact that the alien callable
procedures synchronize themselves modifying the enable mask without the
need of a process body as a separate supervisor. This is not always the case,
as we will see in the next example. Another interesting property of this solu- albo

niepotrzebna
uwaga
albo
pog lebić

tion is that an arbitrary fixed number of semaphores can be implemented by
a single process. One must only repeat declarations of procedures wait and
signal and the parameter n changing their names (e.g. wait1, wait2, ...). This
is a direct consequence of the fact that the body of the process semaphore

7

only waits for alien calls and is not involved in the synchronization.
A special construct is introduced to allow the called process avoid the

busy waiting for an alien call of its procedure. The statement:
accept p1, ..., pn
adds the procedures p1, ..., pn to the current mask, and waits for an alien call
of one of the currently enabled procedures (possibly other than p1, ..., pn).
When such call occurs it is treated in a normal way but after the procedure
return the enable mask is restored to that from before the accept statement
(perhaps modified by return enable/disable). For example, suppose that
procedures P and Q are enabled in a given process. If this process executes
the statement accept Q, R the procedure R will become enabled (in addition
to P and Q) and the process will suspend awaiting alien calls of P, Q, or
R. Suppose that procedure Q is called and terminates with return enable R
disable Q. Now the procedures P and R are enabled in the process.

Note that the accept statement alone (i.e. without any enable/disable
statements or options) provides a sufficient communication mechanism. In
this case the called process may execute the alien-called procedure only dur-
ing the accept statement (because otherwise all procedures are disabled).
It means that the enable mask may be forgotten altogether and the alien
call may be used as a totally synchronous pure rendezvous (what it really is
without the enable mask and interrupts). Other constructs are introduced
to make partially asynchronous communication patterns possible: the called
process does not have to wait for a communication.

The following example illustrates the use of the alien call as a purely
synchronous mechanism:

Listing 3: Semaphores implemented by the alien call used as the pure ren-
dezvous

uni t semaphoreA : p roce s s (n : i n t e g e r) ;
(∗ n i s the semaphore counter . I t s i n i t i a l va lue i s

passed as a parameter by the c r e a t i n g proce s s
(must be >= 0) . ∗)

un i t wait : procedure ;
(∗ enabled only i f n > 0 ∗)
begin

n := n−1; (∗ decrement counter ∗)
end wait ;

un i t s i g n a l : procedure ;
(∗ always enabled ∗)
begin

8

n := n+1; (∗ increment counter ∗)
end s i g n a l ;

begin
re turn ;

(∗ We loop wai t ing f o r an a l i e n c a l l .
An accept statement i s used to s e t
proper enable mask and avoid busy wai t ing ∗)

do
i f n > 0 (∗ i f the counter i s p o s i t i v e ∗)
then (∗ both wait and s i g n a l are a l lowed ∗)

accept wait , s i g n a l
e l s e (∗ otherwi s e only s i g n a l i s a l lowed ∗)

accept s i g n a l
f i ;

od
end semaphoreA ;

In this example the alien procedures operate on the local variable only and
do not modify the enable mask. It is the process body that controls the
state of the enable mask. Since accept statement is used, there is no need
for explicit manipulations on the enable mask. In fact, the above program
can be understood without considering the enable mask at all.

4 The alien procedure call vs. other commu-

nication mechanisms

As we mentioned earlier, the alien procedure call is based on the rendezvous,
a synchronous communication mechanism best known from its ADA imple-
mentation . Let us consider the simpler case for a moment. The programming
language BNR Pascal contains the purest form of the rendezvous: only call
and accept statements. The alien call is a strict extension to the pure ren-
dezvous. It preserves all the features of the rendezvous and adds something
new: an ability to define partially asynchronous communication patterns by
means of the enable mask and alien calls acting as interrupts. This makes it
more convenient for the programmer and often reduces the required number
of processes (as we can see from the next example). On the other hand, the
whole mechanism is more complex to describe and to implement. It must
be used very carefully because of its low level constructs and non-structural
nature. We believe, however, that in many applications the greater flexibil-

9

ity in the communication mechanism results in simpler, more readable and
efficient programs. Rendezvous in ADA is even more flexible but also more
complex and difficult to implement . It is also an extension to the basic
rendezvous schema but goes into different direction. While remaining syn-
chronous it introduces timeouts and guarded calls and entries. Both these
extensions greatly increase the strength of the mechanism, particularly in
real-time systems. We will show later how some of those constructs can be
simulated by means of the alien call.

4.1 Using the alien call to define the asynchronous
message passing

Asynchronous messages are often the basic communication mechanism of-
fered by the hardware or the system level software (e.g. the data packets in
RSX-11). Because of their flexibility they are often incorporated into high
level programming languages (e.g. PLITS , CHILL). We will show how to
implement asynchronous messages using the alien procedure call. To make
the problem more concrete let us assume that we are implementing a print
spooler in a multiuser system. User processes may send to it requests for
printing files. They should not wait for the request to be serviced neither
they are interested in the fact that the file is already printed. It is important
that the user processes do not wait unless the print spooler queue is full. This
is essentially the classic producer-consumer problem in the case of multiple
producers but a single consumer.

Listing 4: Print spooler process

uni t queue : c l a s s (type element ; s i z e : i n t e g e r) ;
(∗ The a u x i l i a r y c l a s s implementing queues with

a l i m i t e d capac i ty . The c l a s s i s parameter ized by
the element type and the maximum queue s i z e ∗)

un i t i n s e r t : procedure (e : e lement) ; . . .
(∗ i n s e r t element in to the queue ∗)

un i t d e l e t e : f unc t i on : element ; . . .
(∗ remove the f i r s t element from the queue ∗)

un i t empty : func t i on : boolean ; . . .
(∗ check i f the queue i s empty ∗)

un i t f u l l : f unc t i on : boolean ; . . .
(∗ check i f the queue i s f u l l
(i . e . maximum s i z e i s reached) ∗)

end queue ;

10

. . .
un i t s p o o l e r : p roc e s s ;
(∗ The pr in t s p o o l e r p roce s s . Requests f o r p r i n t i n g f i l e s

are sent by a l i en−c a l l i n g procedure p r i n t ∗)

var
Q: queue , (∗ queue o f f i l e s to be pr in ted ∗)
f : f i l ename ,

un i t p r i n t : procedure (f : f i l ename) ;
(∗ Accept a r eques t f o r p r i n t i n g f i l e f . This procedure may

only be c a l l e d i f the queue Q i s not f u l l (f o r c ed by
the manipulat ions on the enable mask) ∗)

begin
c a l l Q. i n s e r t (f) ; (∗ queue the r eques t ∗)
i f Q. f u l l (∗ i f the queue i s f u l l now ∗)
then (∗ d i s a b l e f u r t h e r a l i e n c a l l s o f p r i n t ∗)

re turn d i s a b l e p r i n t
f i ; (∗ otherwi s e r e s t o r e the enable mask ∗)

end pr in t ;

begin (∗ the body o f the p r i n t s p o o l e r p roce s s ∗)
(∗ c r e a t e the f i l e queue ∗)
Q := new queue (f i l ename , 5 0) ;
(∗ end i n i t i a l i z a t i o n ∗)
re turn ;

(∗ main loop ∗)
do

(∗ get the f i r s t f i l e from the queue ∗)
d i s a b l e p r i n t ; (∗ ente r the c r i t i c a l s e c t i o n ∗)
i f Q. empty (∗ i f the f i l e queue i s empty ∗)
then

accept p r i n t (∗ wait f o r a r eques t ∗)
f i ;
(∗ here we are sure that the queue i s not empty ∗)
f := Q. d e l e t e ; (∗ remove the f i r s t f i l e from the queue ∗)
enable p r i n t ; (∗ now the queue i s not f u l l , so we may ∗)

(∗ accept r e q u e s t s ∗)

(∗ at l a s t copy the f i l e f to the p r i n t e r ∗)
. . .

od

11

end s p o o l e r ;

The possibility of defining asynchronous communication with the alien call
comes from the fact that the called process need not wait for the call. An
alien procedure call is accepted and serviced regardless of what the process is
doing at the given moment. The only requirement is that the called procedure
must be enabled. In the example above procedure print is enabled almost
all the time (except for the short critical section), so the request is accepted
immediately. Thus we can maintain the message queue (files to be printed)
directly within the receiving (spooler) process. This is not possible with the
pure rendezvous. One must define an auxiliary process acting as a buffer for
the messages. In the case of an unlimited capacity queue we can remove the
statement if Q.full then ... from the procedure print. Now we are simulating
exactly asynchronous messages as defined in PLITS. The statement: call
spool.print(f) corresponds to: send f to spool ,

while the sequence: disable print; (* enter the critical section *) if Q.empty
(* if the file queue is empty *) then accept print (* wait for a request *) fi;
(* here we are sure that the queue is not empty *) f := Q.delete; (* remove
the first file from the queue *) enable print; (* now the queue is not full,
so we may *) (* accept requests *) replaces the statement: receive f. By
using different procedures for different message types we can even define the
PLITS mechanism of selective (with respect to the type) message receiving.
However the selection of the message sender requires that each sending pro-
cess uses distinct procedure for the message passing. This method is not as
safe and elegant as in PLITS because it does not exclude the possibility of
sending a message with a wrong sender identification (by calling a wrong
procedure).

The dual problem of a single producer and multiple consumers can be
solved similarly. The queue must be declared in the producer process which
inserts products into the queue (with the similar critical section). The pro-
cesses of consumers request the products from the producer by calling a
procedure which removes the products from the queue. This procedure is
enabled only if the queue is not empty. Note that in this case both the syn-
chronous rendezvous and the asynchronous messages require an additional
buffer process. Buffering may be done directly in the producer process only
if we are able to interrupt it and force it to do some action (as in the case
of the alien procedure call). In the most complex case of multiple producers
and multiple consumers there is really a need of a separate buffer process.
The simplest solution is the same as with the rendezvous.

12

4.2 Avoiding the starvation using the alien call

The last example shows the solution of another classic problem: readers and
writers. There is a global resource to which writers can write and from
which readers can read. Several readers may read simultaneously but when
a writer is writing, nobody can access the resource. The straightforward so-
lution based on simple mutual exclusion suffers from the starvation problem.
If there are always readers ready to read, no writer can get access to the
resource . We will present a solution which avoids the starvation by forcing
certain discipline in the access to the resource. A special supervisor process
is introduced to synchronize reading and writing.

Listing 5: Readers and writers without starvation

uni t s u p e r v i s o r : p roce s s ;
(∗ The s u p e r v i s o r p roce s s (with a s i n g l e i n s t anc e) s e r v i c i n g
r e q u e s t s f o r s t a r t i n g a read ing or wr i t i ng . ∗)
var

wai t ing \ r e a d e r s : i n t ege r , (∗ number o f wa i t ing r eade r s ∗)
wr i t i ng : boolean , (∗ TRUE i f a w r i t e r i s wr i t i ng ∗)

(∗ the f o l l o w i n g v a r i a b l e s concern the group o f r eade r s s e r v i c e d
in a s i n g l e s u p e r v i s o r c y c l e ∗)

cr : i n t ege r , (∗ t o t a l number o f r eade r s ∗)
br : i n t ege r , (∗ number o f r eade r s which s t a r t e d ∗)

(∗ read ing ∗)
er : i n t e g e r ; (∗ number o f r eade r s which f i n i s h e d ∗)

(∗ read ing ∗)

un i t stamp : procedure ;
(∗ This procedure i s c a l l e d by a reader d i r e c t l y

be f o r e
r equ e s t i ng the read a c c e s s to the r e sou r c e . I t i s used

to
r e g i s t e r and count the wai t ing r eade r s . ∗)
begin

wai t ing \ r e a d e r s := wai t ing \ r e a d e r s +1;
end stamp ;

un i t s t a r t r e a d : procedure ;
(∗ Cal led by a reader be f o r e read ing . ∗)
begin

br := br +1; (∗ next reader s t a r t e d the read ing ∗)
wr i t i ng := f a l s e ; (∗ no w r i t e r i s wr i t i ng ∗)

end s t a r t r e a d ;

13

uni t endread : procedure ;
(∗ Cal led by a reader a f t e r read ing . ∗)
begin

er := er +1; (∗ a reader f i n i s h e s the read ing ∗)
end endread ;

un i t s t a r t w r i t e : procedure ;
(∗ Cal led by a w r i t e r be f o r e the wr i t i ng ∗)
begin

wr i t i ng := true ; (∗ a w r i t e r i s wr i t i ng ∗)
end s t a r t w r i t e ;

un i t endwrite : procedure ;
(∗ Cal led by a w r i t e r a f t e r the wr i t i ng ∗)
begin

(∗ No a c t i o n s are needed , t h i s procedure i s
f o r

synchron i za t i on purposes only . ∗)
end endwrite ;

begin
re turn ;
(∗ a l low the r eade r s to r e g i s t e r i t s e l f ∗)
enable stamp ;
do

(∗ s t a r t a new s e r v i c e c y c l e ∗)
br := 0 ; er := 0 ;

(∗ We al low the f i r s t r eader or w r i t e r to a c c e s s the r e sou r c e .
The a l i e n c a l l mechanism ensure s the s t rong f a i r n e s s . ∗)

accept s ta r t r ead , s t a r t w r i t e ;
i f wr i t i ng (∗ i f a w r i t e r was f i r s t ∗)
then (∗ then we wait u n t i l i t f i n i s h e s the ∗)

accept endwrite ; (∗ wr i t i ng and f i n i s h the s e r v i c e c y c l e ∗)
e l s e

(∗ I f the reader was f i r s t we remember how many reade r s
are a l r eady wai t ing to a c c e s s the r e sou r c e . ∗)

d i s a b l e stamp ;
cr := wait ing \ r e a d e r s +1; (∗ the number o f wa i t ing r eade r s ∗)
wa i t ing \ r e a d e r s := 0 ; (∗ a d d i t i o n a l r eade r s w i l l be ∗)

(∗ s e r v i c e d in the next r eade r s ∗)
(∗ group ∗)

14

enable stamp ;

(∗ We al low a l l c u r r e n t l y wai t ing r eade r s to s t a r t read ing .
At the same time we a l low them to end read ing . Readers which
become wai t ing in the meantime are not s e r v i c e d ∗)
whi l e br < cr
do

accept s ta r t r ead , endread ;
od ;
(∗ We al low a l l r eade r s to end t h e i r read ing ∗)
whi l e er < cr
do

accept endread
od ;
(∗ and f i n i s h the s e r v i c e c y c l e ∗)

f i ;
od

end s u p e r v i s o r ;
. . .
un i t r eader : p roce s s (sv : s u p e r v i s o r) ;
(∗ A template f o r the reader p roce s s . Sv i s the po in t e r to
the
s u p e r v i s o r p roce s s . ∗)
begin

re turn ;
do

c a l l sv . stamp ; (∗ r e g i s t e r a wai t ing reader ∗)
c a l l sv . s t a r t r e a d ; (∗ r eque s t a read ing a c c e s s ∗)
. . .
(∗ read ing ∗)
. . .
c a l l sv . endread ; (∗ read ing i s f i n i s h e d ∗)
. . .

od
end reader ;

un i t w r i t e r : p roce s s (sv : s u p e r v i s o r) ;
(∗ A template f o r the w r i t e r p roce s s . Sv i s the s u p e r v i s o r ∗)
begin

re turn ;
do

c a l l sv . s t a r t w r i t e ; (∗ r eque s t a wr i t i ng a c c e s s ∗)
. . .

15

(∗ wr i t i ng ∗)
. . .
c a l l sv . endwrite ; (∗ wr i t i ng i s f i n i s h e d ∗)

. . .
od

end w r i t e r ;
. . .
begin (∗ the main program ∗)

(∗ f i r s t we c r e a t e and resume the s u p e r v i s o r p roce s s ∗)
c := new s u p e r v i s o r ;
resume (c) ;

(∗ next we c r e a t e a number o f r eade r s and w r i t e r s . A l l o f
them

r e c e i v e the s u p e r v i s o r p roce s s as an argument . ∗)
f o r i := 1 to num\ r e a d e r s
do

resume (new reader (c)) ;
od ;
f o r i := 1 to num\ w r i t e r s
do

resume (new w r i t e r (c)) ;
od ;
(∗ now we may end the main program ∗)

end

The idea of the above solution is that during the reading cycle only those
readers are allowed to start reading which were waiting at the beginning of
the cycle. All others must wait for the next reading cycle and a writer may
be serviced before them. In this way the readers cannot starve the writers.
As can easily be seen the solution would be simpler and more elegant if the
alien call mechanism made available to a process the number of processes
waiting for an alien call of the given procedure. In that case the procedure
stamp and registration of waiting readers could be omitted. Instead a system
count of waiting readers should be consulted. A simple extension to the
alien call is described below. A solution using only the pure synchronous
rendezvous would be more complex because the supervisor should consist of
two separate processes: one of them for registering waiting readers and the
second for actually controlling reading and writing.

16

5 Extensions to the base alien call mecha-

nism

Two additional constructs are available when using the alien procedure call.
They are described here because they are not implemented in the proto-
type implementation, although their implementation should not rise much
problems. The standard function pending accepts a procedure identifier as
a parameter. The expression
pending(P)
where P is an alien callable procedure has the value equal to the number of
processes waiting for the service of alien calls of the procedure P. Besides
other uses this operation makes easier to avoid the starvation. In the above
example the statement:
cr := pending(startread)
replaces the sequence:
disable stamp;
cr := waiting readers+1;
waiting readers := 0;
enable stamp;
and procedure stamp may be deleted from the supervisor process.

The second extension introduces truly asynchronous messages. The state-
ment
send X.P(e)
where X is a process, P its procedure and e represent input parameters acts
like call X.P(e) except that the calling process does not wait for the com-
pletion of the alien called procedure. In this case the procedure P may have
input parameters only. In fact the send statement is the asynchronous mes-
sage sending. The message may be received either synchronously by means
of the accept statement or asynchronously by enabling the given procedure
and accepting an interrupt.

6 Conclusion

The proposed communication mechanism has both synchronous and asyn-
chronous features which are integrated in a simple and consistent manner.
The alien procedure call is flexible and convenient for the high level language
programmer. Moreover it can be efficiently implemented in a distributed en-
vironment. Although it lacks some features of the more complex mechanisms
(such as Ada’s rendezvous) it is strong enough to be the only communication
and synchronization mechanism available in a programming language.

17

References

[1] A. Kreczmar, A. Salwicki and M. Warpechowski, LOGLAN’88 - Report
on the Programming Language, LNCS vol. 414, Springer 1990.

[2] US Department of Defense, Ada Programming Language, Military Stan-
dard, ANSI/MIL-STD-1815A, Ada Joint Program Office, 1983

[3] N.D. Gammage, R.F. Kamel, L.M. Casey, ‘Remote Rendezvous’, Software
- Practice and Experience, vol. 17, no. 10 (October 1987), pp. 741-755.

[4] R.E. Filman, D.P. Friedman, Coordinated Computing: Tools and Tech-
niques for Distributed Software, McGraw-Hill, 1984

[5] DEC, RSX-11M/M-PLUS Executive Reference Manual, Digital Equip-
ment Corporation, Maynard, M.A., 1979

[6] J.A. Feldman, ‘High Level Programming for Distributed Computing’,
CACM, vol. 22, no. 6 (June 1979), pp. 353-368

[7] Recommendation Z.200 (CCITT High Level Language CHILL), CCITT
AP VII - No. 21-E, UIT, Geneva 1984

[8] M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall Inter-
national (UK) Ltd., 1983

18

