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LOGLAN-82  is  a  universal  programming  language  designed  at  the  Institute  of 
Informatics,  University  of  Warsaw.  Its  syntax  is  patterned  upon  Pascal's.  Its  rich 
semantics includes the classical constructs and facilities offered by the Algol-family 
programming languages as well  as more modern facilities,  such as concurrency and 
exception handling.

The basic constructs and facilities of the LOGLAN-82 programming language include:

1)  A convenient set of structured statements,

2)  Modularity (with the possibility of module nesting and extending),

4) Classes (as a generalization of records) which enable to define  complex structured 
types, data structures, packages, etc.,

5)  Adjustable arrays whose bounds are determined at  run-time in such a  way that 
multidimensional arrays may be of various shapes, e.g.  triangular, k-diagonal, streaked, 
etc.,

6)  Coroutines and semi-coroutines,

7)  Prefixing  -  the  facility  borrowed  from  Simula-67,  substantially   generalized  in 
LOGLAN-82 -  which enables to  build up hierarchies of  types and data structures, 
problem-oriented languages, etc.,

8)  Formal types treated as a method of module parametrization,

9)  Module protection and encapsulation techniques,

10) Programmed deallocator - a tool for efficient and secure garbage collection, which 
allows the user to implement the optimal strategy of storage management,

11) Exception handling which provides facilities for dealing with   run-time errors and 
other exceptional situations raised by the   user,

12) Concurrency easily adaptable to any operating system kernel and allowing parallel 
programming in a natural and efficient way.

 The  language  covers  system  programming,  data  processing,  and  numerical 
computations. Its constructs represent the state-of-art and are efficiently implementable. 
Large  systems consisting  of  many  cooperating  modules  are  easily  decomposed and 
assembled, due to the class concept and prefixing(i.e. inheritance).
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 LOGLAN-82 constructs and facilities have appeared and evolved simultaneously with 
the  experiments  on  the  first  pilot  compiler  (implemented  on  Mera-400  Polish 
minicomputer).   The research on LOGLAN-82 implementation engendered with new 
algorithms for static semantics,  context analysis,  code generation,  data structures for 
storage management etc.

The LOGLAN-82 compiler provides a keen analysis of syntactic and semantic errors at 
compilation as well as at run time. The object code is very efficient with respect to time 
and space.  The completeness of  error  checking guarantees full  security  and ease of 
program debugging.

1. Compound statements

 Compound  statements  in  LOGLAN-82  are  built  up  from  simple  statements  (like 
assignment statement e.g. x:=y+0.5, call statement e.g. call P(7,x+5) etc.) by means of 
conditional, iteration and case statements.

  The syntax of conditional statement is as follows:

   if boolean expression
   then

   
     sequence of statements
   else

  
     sequence of statements
   fi

  

where "else part" may be omitted:

   if boolean expression

 
   then

  
     sequence of statements
   fi
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 The semantics of conditional statement is standard. The keyword fi
 allows to nest conditional statements without appearence of "dangling else" ambiguity.

Example:

  if delta>0

    
  then
    x2:=sqrt(delta)/a/2;
    if b=0
    then

 
      x1:=x2
    else

 
      x1:=-b/a/2+x2; x2:=x1-2*x2
    fi

 
  else

 
    if delta=0

  
    then

 
      x1:=-b/a/2; x2:=x1
    else

 
      write(" no real roots")
    fi

 
  fi

  

 The statements in a sequence of statements are separated with semicolons (semicolon 
may  end  a  sequence  ,  and  then,  the  last  statement  in  the  sequence  is  the  empty 
statement).

 The  short  circuit  control  forms  are  realized  in  LOGLAN-82  by  the  conditional 
statements with orif (or andif) list. A conditional
  statement with orif list has the form:
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        orif 

  if wb1 orif wb2 ... orif wbk

  
  then

 
    sequence of statements
  else
    sequence of statements
  fi

 

and corresponds somehow to a conditional statement:

  if wb1 or wb2 ... or wbk

  
  then

  
    sequence of statements
  else

  
    sequence of statements
  fi

  

 The above conditional statement (without orif list) selects for
  execution one of two sequences of statements, depending on the truth value of the 
boolean expression:

wb1 or wb2 or ... wbk

   

which is always evaluated till the end. For the execution of the conditional statement 
with orif list the specified conditons
 wb1,...,wbk are evaluated in succession, until the first one evaluates to true. Then the 
rest of the sequence wb1,...,wbk is abandoned and "then part" is executed. If none of the 
conditions wb1,...,wbk evaluates to true "else part" is executed (if any).

  Conditional statements with orif list facilitate to program those con_ditions, which 
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evaluation to the end may raise a run-time error.

Example:

  The execution of the statement:

if i>n or A(i)=0 then i:=i-1 else A(i):=1 fi

 

where the value of i  is greater than  n, and A is an array with upper bound n, will raise 
the run-time error. Then the user can write:

if i>n orif A(i)=0 then i:=i-1 else A(i):=1 fi

what  allows to avoid this run-time error and probably agrees with his intension.  

  Conditional statement with andif list has the form:

  if wb1 andif wb2 ...  andif wbk
  then

  
    sequence of statements
  else

  
    sequence of statements
  fi

  

 For the execution of this kind of statements, the conditions wb1,...,wbk are evaluated 
in succession, until the first one evaluates to false; then "else part" (if any) is executed.  
Otherwise "then part" is executed.

Iteration statement in LOGLAN-82 has the form:

do sequence of statements od

An iteration statement specifies repeated execution of the sequence of statements and 
terminates with the execution of the simple statement exit

Example:
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  s:=1; t:=1; i:=1;
  do

  
    i:=i+1; t:=t*x/i;
    if abs(t) < 1.0E-10 then exit fi; 
    s:=s+t
  od;

  

 If two iteration statements are nested, then double exit in the
  inner one terminates both of them.

Example:

r,x:=0;
do

  
  s,t:=1; i:=1; x:=x+0.2;
  do

    
    i:=i+1; t:=t*x/i;
    if i > n then exit exit fi; (* termination of both loops *)

  
    if t < 1 then exit fi;      (* termination of the inner loop *)
    s:=s+t
  od

    
od

  

 In the example above simultaneous assignment statements are illustrated (e.g. r,x:=0) 
and comments, which begin with a left parenthesis immediately followed by an asterisk 
and end with an asterisk immediately followed by a right parenthesis.

 Triple exit terminates three nested iteration statements, four exit terminates four nested 
iteration statements etc.

The iteration statement with while condition:
  while  

  while boolean expression 
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  do

  
    sequence of statements
  od

  

is equivalent to:

  do

  
    if not boolean expression then  exit  fi; 
    sequence of statements
  od

  

 The iteration statements with controlled variables (for statements)
  have the forms:

  for j:=wa1 step wa2 to wa3

  
  do

  
    sequence of statements
  od

  

or

  for j:=wa1 step wa2 downto wa3 
  do

  
    sequence of statements
  od

  

 The type of the controlled variable j must be discrete. The value of this variable in the 
case of the for statement with to is increased, and in the case of the for statement with 
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downto is decreased. The
  discrete range begins with the value of wa1 and changes with the step equal to the 
value of wa2. The execution of the for statement with to terminates when the value of j 
for the first time becomes greater than the value of wa3 (with downto when the value of 
j for the first time
 becomes less than the value of wa3). After the for statement
 termination the value of its controlled variable is determined and equal to the first 
value exceeding the specified discrete range. The values of expressions wa1, wa2 and 
wa3 are evaluated once, upon entry to the iteration statement. Default value of wa2 is 
equal 1 (when the keyword step and expression wa2 are omitted).

  For or while statements may be combined with exit statement. 

Example:

  for j:=1 to n
  do

 
     if x=A(j) then exit fi; 
  od

  

 The  above iteration  statement  terminates  either  for  the  least  j,  1<=j<=n,  such that 
x=A(j) or for j=n+1 when x=/=A(j), j=1,...,n.

 To enhance the user's comfort, the simple statement repeat is provided. It may appear 
in an iteration statement and causes the current iteration to be finished and the next one 
to be continued (something like jump to CONTINUE in Fortran's DO statements).

Example:

  i:=0;  s:=0;
  do

  
    i:=i+1;
    if A(i)<0 then repeat fi; (* jump to od,iterations are contd.*)
    if i > m then exit fi;    (* iteration statement is terminated*) 
    s:=s+sqrt(A(i));
  od;

  

 Just as exit,  repeat  may appear  in  for  statement  or while  statement.  Then the next 
iteration begins with either the evaluation of a new value of the controlled variable (for 
statement) or  with the
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  evaluation of the condition (while statement). 

  Case statement in LOGLAN-82 has the form:

  case WA

  
    when L1 : I1

    
    when L2 : I2

    
       ...
    when Lk : Ik

    
    otherwise  I

    
  esac

  

where WA is an expression , L1,...,Lk are constants and I1,...,  Ik,I are sequences of 
statements.

 A case statement selects for execution a sequence of statements Ij, 1≤j≤k, where the 
value of WA equals Lj. The choice otherwise covers
  all values (possibly none) not given in the previous choices. The execution of a case 
statement chooses one and only one alternative (since the choices are to be exhaustive 
and mutually exclusive).

2. Modularity

 Modular structure of the language is gained due to the large set of means for module 
nesting  and  extending.  Program  modules  (units)  are  blocks,  procedures,  functions, 
classes, coroutines and processes. Block is the simplest kind of unit. Its syntax is the 
following:

  block

  
    lists of declarations
  begin

  
    sequence of statements
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  end

  

 The sequence of statements commences with the keyword begin (it may
  be omitted when this sequence is empty). The lists of declarations define the syntactic 
entities  (variables,  constants,  other  units),  whose  scope is  that  block.  The  syntactic 
entities are identified in the sequence of statements by means of names (identifiers).

Example:

  block

  
    const n=250;

    
    var x,y:real, i,j,k: integer, b: boolean;

  
    const m=n+1;

    
  begin

  
    read(i,j);            (* read two integers *)
    x,y:=n/(i+j);         (* simultaneous assignment *)
    read(c) ;             (* read a character *)
    b:= c = 'a';          (* 'a'  a character *)
    for k:= 1 to m

  
    do
      write(x+y/k:10:4);  (* print the value of x+y/k in the
        field of  10 characters, 4 digits after the point *)
    od
  end

  

 In the lists of declarations semicolons terminate the whole lists, not the lists elements. 
Any declaration list must begin with the pertinent keyword (var for variables, const for 
constants etc.). The
  value  of  an  expression  defining  a  constant  must  be  determinable  statically  (at 
compilation time).

  Program in LOGLAN-82 may be  a block or alternatively may  be of the following 
form:
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   program name;

   
     lists of declarations
   begin

   
     sequence of statements
   end

   

 Then the whole program can be identified by that name (the source as well as the 
object code).

 A block can appear in the sequence of statements (of any unit), thus it is a statement.  
(Main block is assumed to appear as a statement of the given job control language.)

 For the execution of a block statement the object of block is created in a computer  
memory,  and  then,  the  sequence  of  statements  is  performed.  The  syntactic  entities 
declared in the block are allocated in its object. After a block's termination its object is 
automatically deallocated (and the corresponding space may be immediately reused).

 The modular structure of the language works "in full steam" when not only blocks, but 
the other kinds of units are also used. They will be described closer in the following 
points.

 Unit  nesting  allows  to  build  up  hierarchies  of  units  and  supports  security  of 
programming.  It  follows from the general visibility  rules;  namely,  a syntactic entity 
declared  in  an  outer  unit  is  visible  in  an  inner  one  (unless  hidden  by  an  inner 
declaration). On the other hand, a syntactic entity declared in an inner unit is not visible 
from an outer one.

Example:

  program test;

  
    var a,b,c:real, i,j,k:integer;

 
  begin

  
    read(a,b,c,i);
    block

    
      var j,k:real;
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    begin

    
      j:=a; k:=j+b; write(" this is the inner block ",j,k)
    end;

    
    write(" this is the outer block ",i,a:20)
  end;

  

 In this program, first the main block statement is executed (with variables a,b,c,i,j,k). 
Next, after the read statement, the inner block statement is executed (with variables j,k). 
In the inner block the global variables j,k are hidden by the local ones.

3. Procedures and functions

 Procedures and functions are well-known kinds of units. Their syntax is modelled on 
Pascal's,  though  with  some  slight  modifications.  Procedure  (function)  declaration 
consists of a specification part and a body.

Example:

    unit Euclid: function(i,j:integer):integer;

  
    var k:integer;
    begin

    
      do

      
        if j=0 then exit fi;

 
        k:=i mod j; i:=j; j:=k

  
      od;

      
      result:=i
    end;
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 Procedure or function specification begins with its identifier preceded by the keyword 
unit. (The same syntax concerns any other
 module named unit.) Then follows its kind declaration, its formal parameters (if any),  
and the type of the returned value (only for functions). A body consists of declaration 
lists for local entities and a sequence of statements. The keyword begin commences the 
sequence of statements, and is omitted, if this sequence is empty. The value returned by 
a function equals to the most recent value of the standard variable "result", implicitly 
declared in any function. This variable can be used as a local auxiliary variable as well.

Example:

    unit Newton: function(n,m:integer):integer;

   
    var i:integer; 
    begin

    
      if m > n then return fi;

  
      result:=n;
      for i:=2 to m do result:=result*(n-i+1) div i od

 
    end Newton;

 The optional identifier at the end of a unit must repeat the identifier of a unit. It is 
suggested  that  the  compilers  check  the  order  of  unit  nesting,  so  these  optional 
occurrences of identifiers would facilitate program debugging.

 All the local variables of a unit are initialized (real with 0.0, integer with 0, boolean 
with false etc.). Thus , for instance, the value of function Newton is 0 for m>n, since 
"result" is also initialized, as any other local variable.

  The  return  statement  (return)  completes  the  execution  of  a  procedure  (function) 
body,i.e. return is made to the caller. If return does not
 appear explicitly, return is made with the execution of the final end
 of a unit. Upon return to the caller the procedure (function) object is deallocated.

 Functions are invoked in expressions with the corresponding list of actual parameters. 
Procedures are invoked by call  statement  (also with the corresponding list  of actual 
parameters).

Example:
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    i:=i*Euclid(k,105)-Newton(n,m+1);
    call P(x,y+3);

  

 Formal parameters are of four categories: variable parameters, procedure parameters, 
function parameters and type parameters (cf p.8). Variable parameters are considered 
local variables to the unit. A variable parameter has one of three transmission modes: 
input, output or inout. If no mode is explicitly given the input mode is assumed. For 
instance in the unit declaration:

 unit P: procedure(x,y:real,b:boolean;
            output c:char,i:integer;inout :integer);

x,y,b are input parameters , c,i are output parameters , and j is inout parameter.

 Input parameter acts as a local variable whose value is initialized by the value of the 
corresponding actual parameter. Output parameter acts as a local variable initialized in 
the standard manner (real with 0.0, integer with 0, boolean with false etc.). Upon return 
its value is assigned to the corresponding actual parameter, in which case it must be a 
variable. However the address of such an actual parameter is determined upon entry to 
the body. Inout parameter acts as an input parameter and output parameter together.

Example:

  unit squareeq: procedure(a,b,c:real;output xr,xi,yr,yi:real);

 
   (* given a,b,c the procedure solves  square equation :
      ax*x+bx+c=0.
       xr,xi- real and imaginary part of the first root
       yr,yi- real and imaginary part of the second root *)
  var delta: real;

  
  begin     (*a=/=0*)

  
    a:=2*a; c:=2*c; delta:=b*b-a*c;
    if delta <= 0

    
    then

    
      xr,yr:=-b/a;
      if delta=0 then  return fi;     (*xi=yi=0 by default*)
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      delta:=sqrt(-delta);
      xi:=delta/a; yi:=-xi;
      return

      
    fi;

    
    delta:=sqrt(delta);
    if b=0

   
    then

    
      xr:=delta/a; yr:=-xr;
      return

      
    fi;

    
    if b>0 then b:=b+delta else b:=b-delta fi;
    xr:=-b/a; yr:=-c/b;
  end squareeq;

  A procedure call to the above unit may be the following:

  call squareeq(3.75*H,b+7,3.14,g,gi,h,hi); 

where g,h,gi,hi are real variables.

 No  restriction   is  imposed  on  the  order  of  declarations.  In  particular,  recursive 
procedures and functions can be declared without additional announcements (in contrast 
to Pascal).

Example:

  For two recursive sequences defined as:

  a(n)=b(n-1)+n+2         n>0
  b(n)=a(n-1)+(n-1)*n     n>0
  a(0)=b(0)=0

one can declare two functions:

  unit a: function(n:integer):integer;
  begin
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    if n>0 then result:=b(n-1)+n+2 fi
  end a;

  
  unit b: function(n:integer):integer; 
  begin

  
    if n>0 then result:=a(n-1)+(n-1)*n fi

 
  end b;

  

and invoke them:

  k:=a(100)*b(50)+a(15);

  Functions and procedures can be formal parameters as well.

Example:

unit Bisec: procedure(a,b,eps:real;output x:real;function 
f(x:real):real);

(*this procedures searches for zero of the continous function f in 
the segment (a,b) *)

var h:real,s:integer;
begin
  s:=sign(f(a));
  if sign(f(b))=s then return fi;   (* wrong segment *)

  
  h:=b-a;
  do

  
    h:=h/2; x:=a+h;
    if h < eps then  return fi;
    if sign(f(x))=s then a:=x else b:=x fi
  od

  
end Bisec;

In  the above declaration,  after  the  input  variable  parameters  a,b,eps  and the output 
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variable parameter x, a function parameter f appears. Note that its specification part is 
complete.  Thus  the  check  of  actual-formal  parameter  compatibility  is  possible  at 
compilation time. Making use of this syntactic facility is not possible in general, if a 
formal  procedure  (function)  is  again  a  formal  parameter  of  a  formal  procedure 
(function). The second degree of formal procedures (functions) nesting is rather scarce, 
but LOGLAN-82 admits such a  construct. Then  formal  procedure (function)  has no 
specification part and the full check of actual-formal parameter compatibility is left to 
be done at run time.

Example:

  unit P: procedure(j:integer; procedure G (i:integer;
                                         procedure H));
    ...
  begin

  
    ...
    call G(j,P);
  end P;

   

 Procedure G is a first degree parameter, therefore it occurs with complete specification 
part. Procedure H is a second degree parameter and has no specification part. In this 
case a procedure call can be strongly recursive:

     call P(i+10,P);

 

4. Classes

 Class  is  a  facility  which  covers  such  programming  constructs  as  structured  type, 
package, access type, data structure etc. To begin with the presentation of this construct, 
let us consider a structured type assembled from primitive ones:

  unit bill: class;
     var  dollars           :real, 
          not_paid          :boolean,
          year,month,day    :integer;
  end bill;
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 The above class declaration has the attributes : dollars (real), not_paid (boolean), and 
year,month,day (integer).  Wherever class bill is visibile one can declare variables of 
type bill:

    var x,y,z: bill;

 The values of variables x, y,  z can be the addresses of objects of class bill.  These 
variables  are  called  reference  variables.  With  reference variable  one can create  and 
operate the objects of reference variable type.

 An object of a class is created by the class generation statement (new), and thereafter, 
its attributes are accessed through dot
 notation.

    x:=new bill; (* a new object of class bill is created *)
    x.dollars:=500.5;  (* define amount *)
    x.year:=1982;      (* define year *)
    x.month:=3;        (* define month *)
    x.day:=8;          (* define day *)
    y:=new bill;       (* create a new object *)

  
    y.not_paid:=true;  (* bill not_paid *)
    z:=y;       (* variable z points the same object as y *)

 If an object of class bill has been created (new bill) and its
 address has been assigned to variable x (x:=new bill), then the
 attributes  of  that  object  are  accessible  through  dot  notation  (remote  access).  The 
expression x.dollars gives , for instance, the remote access to attribute dollars of the 
object referenced by x. All attributes of class objects are initialized as usual. For the 
above example the object referenced by x, after the execution of the specified sequence 
of statements, has the following structure:

      ÚÄÄÄÄÄÄÄÄÄÄÄÄÄż
      ł    500.5    ł     dollars
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł    false    ł     not_paid
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł    1982     ł     year
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł      3      ł     month
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł      8      ł     day
      ŔÄÄÄÄÄÄÄÄÄÄÄÄÄŮ
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 The object referenced by y and z has the following structure:

      ÚÄÄÄÄÄÄÄÄÄÄÄÄÄż
      ł      0      ł     dollars
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł    true     ł     not_paid
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł      0      ł     year
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł      0      ł     month
      ĂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
      ł      0      ł     day
      ŔÄÄÄÄÄÄÄÄÄÄÄÄÄŮ

  The value none is the default initial value of any reference
 variable and denotes no object. A remote access to an attribute of none raises a run 
time error. 

 Class  may  have  also  formal  parameters  (as  procedures  and  functions).  Kinds  and 
transmission modes of formal parameters are the same as in the case of procedures.

Example:

    unit node: class (a:integer);
     var left,right:node;

  
    end node; 

 Let, for instance, variables z1, z2, z3 be of type node. Then the sequence of statements:

     z1:=new node(5);
     z2:=new node(3);

  
     z3:=new node(7);

 
     z1.left:=z2; z1.right:=z3;

 creates the structure:
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                   ÚÄÄÄÄÄÄÄÄÄż
           z1ÄÄÄÄÄÄ´    5    ł
                   ĂÄÄÄÄÄÄÄÄÄ´
            ÚÄÄÄÄÄÄ´   left  ł
            ł      ĂÄÄÄÄÄÄÄÄÄ´
            ł      ł   right ĂÄÄÄÄÄÄÄÄż
            ł      ŔÄÄÄÄÄÄÄÄÄŮ        ł
            ł                         ł
       ÚÄÄÄÄÁÄÄÄÄÄż             ÚÄÄÄÄÄÁÄÄÄÄż
z2ÄÄÄÄÄ´    3     ł             ł     7    ĂÄÄÄÄÄÄz3
       ĂÄÄÄÄÄÄÄÄÄÄ´             ĂÄÄÄÄÄÄÄÄÄÄ´
       ł   none   ł             ł    none  ł 
       ĂÄÄÄÄÄÄÄÄÄÄ´             ĂÄÄÄÄÄÄÄÄÄÄ´
       ł   none   ł             ł    none  ł 
       ŔÄÄÄÄÄÄÄÄÄÄŮ             ŔÄÄÄÄÄÄÄÄÄÄŮ

where arrows denote the values of the reference variables.

 Class may also have a sequence of statements (as any other unit). That sequence can 
initialize the attributes of the class objects.

Example:

  unit complex:class(re,im:real);

  
  var module:real;

 
  begin

  
    module:=sqrt(re*re+im*im)
  end complex;

  

 Attribute module is evaluated for any object generation of class complex:

  z1:=new complex(0,1); (* z1.module equals 1 *) 
  z2:=new complex(2,0); (* z2.module equals 2 *)

  

 For the execution of a class generator,  first a class object is created, then the input 
parameters  are  transmitted  ,  and  finally,  the  sequence  of  statements  (if  any)  is 
performed. Return is made with the execution of return statement or the final end of a 
unit. Upon return the output parameters are transmitted.
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 Procedure object is automatically deallocated when return is made to the caller. Class 
object is not deallocated , its address can be assigned to a reference variable, and its 
attributes can be thereafter accessed via this variable. 

 The classes presented so far had only variable attributes. In general, class attributes 
may be also other syntactic entities, such as  constants, procedures, functions, classes 
etc. Classes with procedure and function attributes provide a good facility to define data 
structures.

Example:

A push_down memory of integers may be implemented in the following way:

  unit push_down :class;

  
    unit elem:class(value:integer,next:elem);
     (* elem - stack element *)
    end elem;

    
    var top:elem;

    
    unit pop: function :integer;

  
    begin

    
      if top=/= none

 
      then

      
        result:=top.value; top:=top.next
      fi;

      
    end pop;

    
    unit push:procedure(x:integer); (* x - pushed integer *)
    begin

    
      top:=new elem(x,top);
    end push;
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  end push_down;

 Assume that  somewhere  in  a  program reference  variables  of  type  push_down are 
declared (of course, in place where push_down is visibile):

  var s,t,z:push_down;

  

 Three different push_down memories may be now generated:

  s:=new push_down(100); t:=new push_down(911); z:=new push_down(5);

  

 One can use these push_down memories as follows:

  call s.push(7); (* push  7 to s *)

  
  call t.push(1); (* push  1 to t *)

   
  i:=z.pop;       (* pop an element from z *)

  etc.

5. Adjustable arrays

 In LOGLAN-82 arrays are adjustable at run time. They may be treated as objects of 
specified  standard  type  with  index  instead  of  identifier  selecting  an  attribute.  An 
adjustable array should be declare somewhere among the lists of declarations and then 
may be generated in the sequence of statements.

Example:

 block

 
  var n,j:integer;

  
  var A:arrayof integer;  (* here is the declaration of A *) 
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 begin

 
  read(n);
  array A dim (1:n);   (* here is the generation of A *)

 
  for i:=1 to n

 
  do

  
   read(A(i));
  od;

  
  (* etc.*)
 end

 

 A variable A is an array variable. Its value should be the reference to an integer array,  
i.e. a composite object consisting of integer components each one defined by an integer 
index. 
Array generation statement:

 array A dim (1:n);
  

allocates a one-dimensional integer array with the index bounds 1,n , and assigns its 
address to variable A. 
The figure below illustrates this situation:

        ÚÄÄÄÄÄÄÄÄż              ÚÄÄÄÄÄÄÄÄÄż
        ł        ł              ł  A(1)   ł        ł        ł              ĂÄÄÄÄÄÄÄÄÄ´
        ł   ...  ł              ł  A(2)   ł        ĂÄÄÄÄÄÄÄÄ´              ĂÄÄÄÄÄÄÄÄÄ´
        ł    n   ł              ł         ł        ĂÄÄÄÄÄÄÄÄ´              ł   ...   ł        ł    j   ł  
ł         ł        ĂÄÄÄÄÄÄÄÄ´              ĂÄÄÄÄÄÄÄÄÄ´
        ł    A   ĂÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´   A(n)  ł        ŔÄÄÄÄÄÄÄÄŮ 
ŔÄÄÄÄÄÄÄÄÄŮ
          Block object             Array object

A general case of array generation statement has the form:

    array A dim (lower:upper)

  

where lower and upper are arithmetic expressions which define the range of the array 
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index.

Example:

 Two-dimensional array declaration :

   var A: arrayof arrayof integer;

  

and generation:

    array A dim (1:n)
    for i:=1 to n do array A(i) dim (1:m) od;

  

create the structure:
                                    ÚÄÄÄÄÄÄÄÄż
                                    ł A(1,1) ł
                                    ĂÄÄÄÄÄÄÄÄ´
                                    ł        ł
                                    ł   ...  ł
                                    ł        ł
         ÚÄÄÄÄÄÄÄÄÄÄż               ĂÄÄÄÄÄÄÄÄł
         ł   A(1)   ĂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ A(1,m) ł
         łÄÄÄÄÄÄÄÄÄÄ´               ŔÄÄÄÄÄÄÄÄŮ
         ł          ł
         ł    ...   ł
         ł          ł
         ĂÄÄÄÄÄÄÄÄÄÄ´               ÚÄÄÄÄÄÄÄÄż
         ł   A(n)   ĂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ A(n,1) ł
         ŔÄÄÄÄÄÄÄÄÄÄŮ               ĂÄÄÄÄÄÄÄÄ´
                                    ł        ł
                                    ł   ...  ł
                                    ł        ł
                                    ĂÄÄÄÄÄÄÄÄ´
                                    ł A(n,m) ł
                                    ŔÄÄÄÄÄÄÄÄŮ

  block

  
    var i,j:integer, A,B: arrayof arrayof real, n:integer; 
  begin
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    read(n);
    array A dim (1:n);  
    for i:=1 to n do array A(i) dim (1:n) od;

  
     (* A is square array *)
    array B dim (1:n);

  
    for i:=1 to n do array B(i) dim(1:i) od; 
     (* B is lower triangular array *)
    A(n,n):=B(n,n);
    B(1):=A(1);
    B(1):=copy(A(1)); 
  end

  

 Array A is the square array n by n. Each element A(i) , 1≤i≤n contains the address of 
row A(i,j),  1≤j≤n.  Array B is the lower-triangular  array.  Each element  B(i),  1≤i≤n, 
contains the address of row B(i,j), 1≤j≤i. Thus an assignment statement A(n,n):=B(n,n) 
transmits real value B(n,n) to real variable A(n,n). Assignment B(1):=A(1) transmits the 
address of the first row of A to variable B(1). Finally assignment B(1):=copy (A(1)) 
creates a copy of
 the first row of A and assigns its address to B(1).

 Upper and lower bounds of an adjustable array A are determined by standard operators 
lower(A) and upper(A).

Example:

  unit sort: procedure(A:arrayof integer);
   (*  insertion sort *) 
    var n,i,j:integer; var x:integer; 
  begin

  
    n:=upper(A);              (* assume lower bound is 1 *)
    for i:=2 to n

    
    do

    
      x:=A(i); j:=i-1;
      do

      
        if x >= A(j) then exit fi;
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        A(j+1):=A(j);  j:=j-1;
        if j=0 then exit fi;
      od;

      
      A(j+1):=x
    od;

    
  end sort;

  

  If an array variable A refers to no array its value is equal none
 (the  standard  default  value  of  any  array  variable).  An  attempt  to  access  an  array 
element (e.g. A(i)) or a bound (e.g. lower(A)), where A is none, raises a run time error.

6. Coroutines and semicoroutines

 Coroutine is a generalization of class. A coroutine object is an object such that the 
execution  of  its  sequence  of  statements  can  be  suspended  and  reactivated  in  a 
programmed manner. Consider first a simple class with a sequence of statements such 
that after return some
 non-executed  statements remain. The generation of  its  object terminates with the 
execution of return statement,  although the object can be later reactivated.  If  such a 
class is declared as a coroutine, then its objects may be reactivated. This can be realized 
by attach
 statement:

  attach(X)

  

where X is a reference variable designating the activating coroutine object.

 In  general,  since  the  moment  of  generation  a  coroutine  object  is  either  active  or 
suspended. Any reactivation of a suspended coroutine object X (by attach(X)) causes 
the active coroutine object to be
  suspended and continues the execution of X from the statement following the last 
executed one.

Main program is also a coroutine. It is accessed through the standard variable main and 
may be reactivated (if suspended) by the
 statement     attach(main).
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Example:

In the example below the cooperation of two coroutines is presented. One reads the real 
values from an input device, another prints these values in columns on a line-printer, n 
numbers in a line. The input stream ends with 0.

program prodcons;
  var prod:producer,cons:consumer,n:integer,mag:real,last:bool;  
  unit producer: coroutine; 
  begin

  
    return;

    
    do

    
      read(mag);  (* mag- nonlocal variable, common store *)
      if mag=0

      
      then             (* end of data *)  
        last:=true;
        exit

        
      fi;

      
      attach(cons);

      
    od;

    
    attach(cons)

    
  end producer;

 

  unit consumer: coroutine(n:integer); 
  var Buf:arrayof real; 
  var i,j:integer;

  
  begin
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    array Buf dim(1:n); 
    return;

    
    do

    
      for i:=1 to n

      
      do

      
        Buf(i):=mag;
        attach(prod);

        
        if last then exit exit fi; 
      od;

      
      for i:=1 to n

 
      do     (* print Buf *)

  
        write(' ',Buf(i):10:2)
      od;

      
      writeln;
    od;

    
    (* print the rest of Buf *)
    for j:=1 to i do write(' ',Buf(j):10:2) od;

  
    writeln;
    attach(main);

    
  end consumer;

  

 begin

 
    prod:=new producer;
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    read(n);
    cons:=new consumer(n);

   
    attach(prod);

    
    writeln;
 end prodcons;

 

 The above task could be programmed without coroutines at all. The presented solution 
is, however, strictly modular, i.e. one unit realizes the input process, another realizes 
the output process, and both are ready to cooperate with each other.

 LOGLAN-82  provides also  a facility for  the  semi-coroutine operations.  This is 
gained by the simple statement detach. If X is the active coroutine object, then detach 
reactivates that coroutine object
 at where the last attach(X) was executed. This statement meets the
 need  for  the  asymetric  coroutine  cooperations.  (by  so  it  is  called  semi-coroutine 
operation). Operation attach requires a reactivated coroutine to be defined explicitly by 
the user as an actual parameter. Operation detach corresponds in some manner to return 
in procedures. It gives the control back to a coroutine object where the last attach(X) 
was  executed,  and  that  coroutine  object  need  not  be  known  explicitly  in  X.  This 
mechanism is, however, not so secure as the normal control transfers during procedure 
calls and returns.

 In fact, the user is able to loop two coroutines traces by :

   attach(Y) in X
       attach(X) in Y
   

Then detach in X reactivates Y, detach in Y reactivates X. 

 In the example below the application of detach statement is illustrated.

Example:

program reader_writers; 
(* In this example a single input stream consisting of blocks of numbers, each 
ending with 0, is printed on two printers of different width. The choice of the 
printer is determined by the block header which indicates the desired number of 
print columns. The input stream ends with a double 0. m1 - the width of 
printer_1, m2 - the width of printer_2 *)
 const m1=10,m2=20;

              
 var reader:reading,printer_1,printer_2:writing;
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 var n:integer,new_sequence:boolean,mag:real;

                                         
 
   unit writing:coroutine(n:integer);

   
      var Buf: arrayof real, i,j:integer;

  
   begin

  
     array Buf dim (1:n);      (* array  generation *)

      
     return;(* return terminates coroutine initialization *)

    
     do

 
       attach(reader);   (* reactivates coroutine reader *)
       if new_sequence

       
       then 
     (* a new sequence causes buffer Buf to be cleared up *)
         for j:=1 to i do write(' ',Buf(j):10:2) od;
         writeln;
         i:=0; new_sequence:=false;  attach(main)

  
       else

 
         i:=i+1;   Buf(i):=mag;
         if i=n

 
         then

 
           for j:=1 to n do write(' ',Buf(j):10:2) od;
           writeln;
           i:=0;
         fi

 
       fi
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     od

 
   end writing;

 

   unit reading: coroutine;

 
   begin

 
     return;

 
     do

 
       read(mag);
       if mag=0  then  new_sequence:=true;   fi;

 
       detach;
         (* detach returns control to printer_1 or printer_2 

 depending which one reactivated the reader *)
     od

 
   end reading;

 

   begin

 
     reader:=new reading;

 
     printer_1:=new writing(m1); printer_2:=new writing(m2);
     do

 
       read(n);
       case n

 
         when 0:  exit

 
         when m1: attach(printer_1)
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         when m2: attach(printer_2)

  
         otherwise  write(" wrong data"); exit

 
       esac

 
     od

   
   end;

   

 Coroutines play the substantial role in process simulation. Class Simulation provided in 
Simula-67 makes use of  coroutines at  most  degree.  LOGLAN-82 provides  for  easy 
simulation as well. The LOGLAN-82 class Simulation is implemented on a heap what 
gives lg(n)  time cost (in  contrast  with O(n)  cost of the original  implementation).  It  
covers also various simulation  problems of large size and degree of complexity.

7. Prefixing

 Classes and prefixing are ingenius inventions of Simula-67(cf [1]). Unfortunately they 
were hardly  ever  known and,  perhaps,  by this  have not  been introduced into  many 
programming  language  that  gained  certain  popularity.  Moreover,  implementation 
constraints of Simula-67 bind prefixing and classes workableness to such a degree that 
both facilities  cannot  be used in  all  respects.  We hope that  LOGLAN-82,  adopting 
merits and rooting up deficiencies of these constructs, will smooth their variations and 
vivify theirs usefulness.

 What is prefixing ? First of all it is a method for unit extending. Consider the simplest 
example:

  unit bill: class;

 
     var

   dollars           :real,
           not_paid          :boolean,
           year,month,day    :integer;
  end bill;



                                                           Loglan'82                                                         35

 

Assume the user desires to extend this class with new attributes. Instead of writing a 
completely new class, he may enlarge the existing one:

  unit gas_bill:bill class;

 
    var cube_meters: real;

 
  end gas_bill;

 

 Class gas_bill  is prefixed by class bill.  This new declaration may appear anywhere 
within the scope of declaration of class bill. (In Simula-67 such a prefixing is forbidden 
in nested units.) Class gas_bill has all the attributes of class bill and additionally its own 
attributes (in  this case the only one: cube_meters).  The generation statement of this 
class has the form:

z:=new gas_bill;

 

where  z  is  a reference  variable  of  type gas_bill.  Remote access to  the attributes of 
prefixed class is standard:

z.dollars:=500.5; z.year:=1982; z.month:=3; z.day:=8;
z.cube_meters:=100000;

Consider now the example of a class with parameters.

Assume that in a program a class:

unit id_card: class(name:string,age:integer);

 
end id_card;

 

and its extension:



36 A.Kreczmar Nov.1990

unit idf_card:id card class(first name:string);

 
end idf_card;

 

are declared.

 Then for variable z of type id_card and variable t of type idf_card the corresponding 
generation statement may be the following:

   z:=new id_card("kreczmar",37);

 
   t:=new idf_card("Kreczmar",37,"Antoni");

 

Thus the formal parameters of a class are concatenated with the formal parameters of its 
prefix.

One can still extend class idf_card. For instance:

  unit idr_card:idf_card class;

 
    var children_number:integer;

 
    var birth_place:string;

 
  end idr_card;

 

 Prefixing  allows to  build  up hierarchies  of  classes.  Each  one  hierarchy has  a  tree 
structure. A root of such a tree is a class without prefix. One class is a successor of  
another class iff the first is prefixed by the latter one.

 Consider the prefix structure:

                   A
                 . . .
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                .  .  .
               .   .   .
             B.    .C   .D
               .
                .
                 .E
                  .
                   .
                    .F
                   . .
                  .   .
                G.     .H

 Class H has a prefix sequence A, B, E, F, H. Let a, b, ... , h denote the cor responding 
unique attributes of classes A, B, ... , H, respectively. The objects of these classes have 
the following forms: 

      ÚÄÄÄÄÄÄÄÄÄÄż  ÚÄÄÄÄÄÄÄÄÄÄż  ÚÄÄÄÄÄÄÄÄÄÄż 
ÚÄÄÄÄÄÄÄÄÄÄż
      ł     a    ł  ł     a    ł  ł     a    ł  ł     a    ł
      ŔÄÄÄÄÄÄÄÄÄÄŮ  ĂÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´ 
ĂÄÄÄÄÄÄÄÄÄÄ´
       object A     ł     b    ł  ł     c    ł  ł     d    ł
                    ŔÄÄÄÄÄÄÄÄÄÄŮ  ŔÄÄÄÄÄÄÄÄÄÄŮ  ŔÄÄÄÄÄÄÄÄÄÄŮ
                      object B      object C      object D

      ÚÄÄÄÄÄÄÄÄÄÄż  ÚÄÄÄÄÄÄÄÄÄÄż  ÚÄÄÄÄÄÄÄÄÄÄż 
ÚÄÄÄÄÄÄÄÄÄÄż
      ł     a    ł  ł     a    ł  ł     a    ł  ł     a    ł
      ĂÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´ 
ĂÄÄÄÄÄÄÄÄÄÄ´
      ł     b    ł  ł     b    ł  ł     b    ł  ł     b    ł
      ĂÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´ 
ĂÄÄÄÄÄÄÄÄÄÄ´
      ł     e    ł  ł     e    ł  ł     e    ł  ł     e    ł
      ŔÄÄÄÄÄÄÄÄÄÄŮ  łÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´ 
ĂÄÄÄÄÄÄÄÄÄÄ´
       object E     ł     f    ł  ł     f    ł  ł     f    ł
                    ŔÄÄÄÄÄÄÄÄÄÄŮ  ĂÄÄÄÄÄÄÄÄÄÄ´  ĂÄÄÄÄÄÄÄÄÄÄ´
                      object F    ł     g    ł  ł     h    ł
                                  ŔÄÄÄÄÄÄÄÄÄÄŮ  ŔÄÄÄÄÄÄÄÄÄÄŮ
                                   object G      object H

Let Ra, Rb,..., Rh denote reference variables of types A, B,..., H, respectively. Then the 
following expressions are correct:

  Ra.a,  Rb.b, Rb.a,  Rg.g, Rg.f, Rh.h, Rh.f, Rh.e, Rh.b, Rh.a  etc.
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Variable Ra may designate the object of class B (or C,..., H), i.e. the statement:

   Ra:=new B

    

is legal. But then attribute b is not accessible through dot via Ra, i.e. Ra.b is incorrect. 
This follows from insecurity of such a remote access. In fact, variable Ra may point any 
object of a class prefixed by A, in particular, Ra may point the object of A itself, which 
has no attribute b. If Ra.b had been correct, a compiler should have distiguish the cases 
Ra  points  to  the  object  of  A  or  not.  But  this,  of  course,  is  undistinguishable  at 
compilation time.

 To allow, however, the user's access to attribute b (after instruction Ra:=new B), the 
instantaneous type modification is provided within the language:

   Ra qua B

 

 The correctness of this expression is checked at run time. If Ra designates an object of 
B  or  prefixed  ba  B,  the  type  of  the  expression  is  B.  Otherwise  the  expression  is 
erroneous. Thus, for instance, the expressions:

   Ra qua G.b,    Ra qua G.e    etc.

 

enable remote access to the attributes b, c, ... via Ra.

 So far  the  question  of  attribute  concatenation  was merely  discussed.  However  the 
sequences of statements can be also concatenated.

 Consider class B prefixed with class A. In the sequence of statements of class A the 
keyword inner may occur anywhere, but only once. The sequence of statements of class 
B consists of the sequence of statements of class A with inner replaced by the sequence 
of
 statements of class B.

    unit A :class                    unit B:A class
 
        ...                                   ...
    begin                               begin
  
       ...                             ÚÄÄÄ...
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                                       ł                                inner 
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ inner
 
                                       ł
       ...                             ŔÄÄÄ...
    end A;                              end B;
    

   

 In this case inner in class B is equivalent to the empty statement.
 If class B prefixes another class, say C, then inner in B is replaced
 by the sequence of statements of class C, and so on.  If inner does not occur explicitly, 
an implicit occurrence of inner
 before the final end of a class is assumed.
 

Example

 Let class complex be declared as usual:

  unit complex: class(re,im:real);

  
  end complex;

 

and  assume  one  desires  to  declare  a  class  mcomplex  with  the  additional  attribute 
module. In order the generation of class mcomplex define the value of attribute module, 
one can declare a class:

  unit mcomplex:complex class;

 
  var module:real;

 
  begin

 
    module:=sqrt(re*re+im*im)
  end mcomplex;

 

 Class mcomplex may be still extended:
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  unit pcomplex:mcomplex class;

 
    var alfa:real;

 
  begin

 
    alfa:=arccos(re/module)
  end pcomplex;

 

 For these declarations each generation of class mcomplex defines the value of attribute 
module, each generation of class pcomplex defines the values of attributes module and 
alfa.

 For  reference  variables  z1,  z2  z3  of  type  complex,  the  following  sequence  of 
statements illustrates the presented constructs:

  z1:=new complex(0,1);

      
  z2:=new mcomplex(4,7);

 
  z3:=new pcomplex(-10,12);

 
  if z2 qua mcomplex.module > 1

                  
  then

 
      z1:=z2;
  fi;

 
  if z3 qua pcomplex.alfa < 3.14

  
  then

  
     z3.re:=-z3.re;  z3.alfa:=z3.alfa+3.14;
  fi;
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  z1 qua mcomplex.module:= 0;

  
  z1.re,z1.im:=0;                                

Example:

 Binary search tree (Bst) is a binary tree where for each node x the nodes in the left  
subtree are less than x, the nodes in the right subtree are greater than x. It is the well-
known exercise to program the algorithms for the following operations on Bst:  

member(x) = true iff x belongs to Bst
insert(x),  enlarge Bst with x, if x does not yet belong to Bst

We define both these operations in a class:

  unit Bst: class;

 
    unit node: class(value:integer);  (*  tree node  *)

  
      var left,right:node;

 
    end node;

 
    var root:node;

 
    unit help: class(x:integer);      (* auxiliary class *)

 
      var p,q:node;

 
    begin

  
       q:=root;
       while q=/= none

 
       do

 
         if x < q.value

    
         then
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           p:=q; q:=q.left;
           repeat  (* jump to the beginning of a loop *)

   
         fi;

 
         if q.value < x

 
         then

 
           p:=q; q:=q.right;  repeat

 
         fi;

 
         exit

 
       od;

 
       inner
       (* virtual instruction to be˙replaced

 by the body of
         a module prefixed by help  *)
    end help;

 
    unit member:help function:boolean;

 
  (* x is a formal parameter derived from the prefix help *)
    begin

 
       result:=q=/=none

 
    end member;

 
    unit insert:help procedure;

 
  (* x is a formal parameter derived from the prefix help *)
    begin

   
       if q=/=none then return fi;



                                                           Loglan'82                                                         43

  
       q:=new node(x);

 
       if p=none then root:=q; return fi;

 
       if p.value < x then p.right:=q else p.left:=q fi;

 
    end insert;

 
  begin

 
    inner;

 
  end Bst;

 

 In the example the common actions of member and insert are programmed in class 
help. Then it suffices to use class help as a prefix of function member and procedure 
insert, instead of redundant occurrences of the corresponding sequence of statements in 
both units. 

Class Bst may be applied as follows:

  var X,Y:Bst;

 
  begin

 
       X:=new Bst;  Y:=new Bst;

 
       call X.insert(5);

 
       if Y.member(-17) then ....

 
  end

 

 As shown in the declaration of Bst, class may prefix not only other classes but also 
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procedures and functions. Class may prefix blocks as well.

Example:

 Let class push_down (p. 5) prefix a block:

   pref push_down(1000) block

 
   var ...

  
   begin

 
      ...
      call push(50); ...

  
      i:=pop;
      ...
   end

  

 In the above block prefixed with class push_down one can use pop and push as local 
attributes. (They are local since the block is embedded in the prefix push down.)

Example:

   pref push down(1000) block

 
   begin

 
      ...
      pref Bst block

 
      begin

 
      (* in this block both structures
            push down and Bst are visible *)
        call push(50);

 
        call insert(13);
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        if member(10) then ...

 
        i:=pop;
        ...
      end

 
   end

   

 In place where classes push_down and Bst are visible together a block prefixed with 
Bst may be nested in a block prefixed with push_down (or vice versa). In the inner 
block both data structures are directly accessible. Note that this construct is illegal in 
Simula 67. 

8. Formal types

Formal types serve for unit parametrization with respect to any non-primitive type.

Example:

  unit Gsort:procedure(type T; A:arrayof T; function less
 (x, y: T): boolean);

  var n,i,j:integer; var x:T;

 
  begin

  
    n:=upper(A);
    for i:=2 to n

 
    do

   
      x:=A(i); j:=i-1;
      do

 
        if less(A(j),x) then exit fi;

   
        A(j+1):=A(j); j:=j-1;
        if j=0 then exit fi;
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      od;

 
      A(j+1):=x;
    od

 
  end Gsort;

 

Procedure Gsort (the generalization of procedure sort from p.4) has type parameter T. A 
corresponding  actual  parameter  may  be  an  arbitrary  non-primitive  type.  An  actual 
parameter  corresponding to A should be an array of  elements of  the actual  type T. 
Function less should define the linear ordering on the domain T.

 For instance, the array A of type bill (cf p.7) may be sorted with respect to attribute 
dollars , if the function:

  unit less: function(t,u:bill):boolean;

 
  begin

 
    result:=t.dollars <= u.dollars
  end less;

is used as an actual parameter:

  call Gsort(bill,A,less);

 

If the user desires to sort A with respect to date, it is sufficient to declare :

  unit earlier:function(t,u:bill):boolean;

 
  begin

 
    if t.year < u.year then result:= true; return  fi;

 
    if t.year=u.year

  
    then
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      if t.month < u.month then result:=true; return fi;

 
      if t.month=u.month then result:=t.day<=u.day  fi

 
    fi;

 
   end earlier;

 

and to call: call Gsort(bill,A,earlier);
 

9. Protection techniques

 Protection  techniques  ease  secure  programming.  If  a  program is  large,  uses  some 
system classes, is designed by a team etc., this is important (and non-trivial) to impose 
some restrictions on access to non-local attributes.

 Let us consider a data structure declared as a class. Some of its attributes should be 
accessible for the class users, the others should not. For instance, in class Bst (p.7) the 
attributes member and insert are to be accessible. On the other hand the attributes root, 
node and help should not be accessible, even for a meddlesome user. An improper use 
of them may jeopardize the data structure invariants.

 To forbid the access to some class attributes the three following protection mechanisms 
are provided:

  close, hidden, and taken.
 

 The protection close defined in a class forbids remote access to the
 specified attributes. For example, consider the class declaration:

  unit A: class;

 
    close x,y,z;

 
    var  x: integer, y,z:real;

 
    ....
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  end A

 

Remote access to the attributes x,y,z from outside of A is forbidden.

The protection hidden (with akin syntax) does not allow to use the
 specified attributes form outside of A neither by the remote access nor in the units 
prefixed by A. The only way to use a hidden attribute is to use it within the body of 
class A.
Protection taken defines these attributes derived from prefix, which
 the user wishes to use in the prefixed unit. Consider a unit B prefixed by a class A. In 
unit B one may specify the attributes of A which are used in B. This protects the user 
against an unconscious use of an attribute of class A in unit B (because of identifier 
conflict). When taken list does not occur, then by default, all non-hidden attributes of 
class A are accessible in unit B. 

10. Programmed deallocation

  The classical methods implemented to deallocate class objects are based on reference 
counters  or  garbage  collection.  Sometimes  the  both  methods  may  be  combined.  A 
reference counter is a system attribute holding the number of references pointing to the 
given object. Hence any change of the value of a reference variable X is followed by a 
corresponding increase or  decrease of  the  value  of  its  reference  counter.  When the 
reference counter becomes equal 0, the object can be deallocated.

 The  deallocation  of  class  objects  may  also  occur  during  the  process  of  garbage 
collection. During this process all unreferenced objects are found and removed (while 
memory may be compactified). In order to keep the garbage collector able to collect all 
the garbage, the user should clear all reference variables , i.e. set to None, whenever 
possible. This system has many disadvantages. First of all, the programmer is forced to 
clear all  reference variables,  even those which are of auxiliary character.  Moreover, 
garbage  collector  is  a  very  expensive  mechanism and  thus  it  can  be  used  only  in 
emergency cases.

 In LOGLAN a dual operation to the object generator, the so-called object deallocator is 
provided. Its syntactic form is as follows:

           kill(X)

  

where X is a reference expression. If the value of X points to no object (none) then 
kill(X) is equivalent to an empty statement. If the
 value of X points to an object O, then after the execution of kill(X),
 the object O is deallocated. Moreover all reference variables which pointed to O are set 
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to none. This deallocator provides full security,
 i.e. the attempt to access the deallocated object O is checked and results in a run-time 
error.

  For example:

      Y:=X;  kill(X);   Y.W:=Z;

 

causes the same run-time error as:

      X:=none;  X.W:=Z;

 

 The system of storage management is arranged in such a way that the frames of killed 
objects  may  be  immediately  reused  without  the  necessity  of  calling  the  garbage 
collector, i.e. the relocation is performed automatically. There is nothing for it but to 
remember not to  use remote access to a killed object.  (Note that the same problem 
appears when remote access X.W is used and X=none).
  

Example:

 Below a practical   example of the programmed deallocation is presented.  Consider 
class Bst (p.7). Let us define a procedure that deallocates the whole tree and is called 
with the termination of the class Bst.

  unit Bst:class;

 
    (* standard declarations list of  Bst *)
   unit kill_all:procedure(p:node);

 
   (* procedure kill_all deallocates a tree with root p *)
   begin

 
     if p= none then return fi;

 
     call kill_all(p.left);
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     call kill_all(p.right);

  
     kill(p)

 
   end kill_all;

 
   begin

 
     inner;

 
     call kill_all(root)

  
  end Bst;

      

Bst may be applied as a prefix:

  pref Bst block

 
    ...
  end

 

and  automatically  will  cause  the  deallocation  of  the  whole  tree  after  return  to  call 
kill_all(root) from the prefixed block.
 

 To use properly this structure by remote accessing one must call kill_all by himself:

  unit var X,Y:Bst;

 
    ...
  begin

 
     X:=new Bst;  Y:=new Bst;

 
        ...
     (* after the structures' application *)
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     call X.kill_all(X.root);

  
     kill(X);

 
     call Y.kill_all(Y.root);

 
     kill(Y);

 
     ...
  end

 

 Finally note that deallocator kill enables deallocation of array
 objects, and suspended coroutines and processes as well (cf p.13). 

11.  Exception handling

 Exceptions are events that cause interruption of normal program execution. One kind 
of  exceptions  are  those  which  are  raised  as  a  result  of  some run  time  errors.  For 
instance, when an attempt is made to access a killed object, when the result of numeric 
operation  does  not  lie  within  the  range,  when  the  dynamic  storage  allocated  to  a 
program is exceeded etc.

 Another kind of exceptions are those which are raised explicitly by a user (with the 
execution of the raise statement).

 The  response  to  exceptions  (one  or  more)  is  defined  by  an  exception  handler.  A 
handler may appear at the end of declarations of any unit. The corresponding actions 
are defined as sequences of statements preceded by keyword when and an exception 
identifier.
 

Example:

 In procedure squareeq (p.3) we wish to include the case when a=0. It may be treated as 
an exception (division by zero).

  unit squareeq(a,b,c:real;output xr,xi,yr,yi:real);

 
     var delta:real;

 



52 A.Kreczmar Nov.1990

     handlers

 
       when division_by_zero:

 
       if b =/= 0

     
       then

  
         xi,yr,yi:=0; xr:=-c/b; terminate

 
       else

  
         raise Wrong_data(" no roots")

 
       fi; 
  end

 
  begin

 
    ...
  end squareeq;

 

 The  handler  declared  in  that  procedure  handles  the  only  one  exception 
(division_by_zero).

 When an exception is raised, the corresponding handler is searched for, starting from 
the active object and going through return traces. If there is no object containing the 
declaration  of  the  handler,  then  the  program  (or  the  corresponding  process)  is 
terminated. Otherwise the control is transferred to the first found handler. 

 In our example the handler is declared within the unit itself, so control is passed to a 
sequence:

  if b=/=0

    ...

 Therefore, when b=/=0, the unique root of square equation will be determined and the 
procedure will be normally terminated (terminate).
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   In general, terminate causes that all the objects are terminated,
 starting from that one where the exception was raised and ending on that one where the 
handler was found. Then the computation is continued in a normal way.

 In our example, when b=0, a new exception is raised by the user. For this kind of 
exceptions , the exception itself should be declared (because it is not predefined as a run 
time error). Its declaration may have parameters which are transmitted to a handler. The 
exception declaration need not be visible by the exception handler. However the way 
the handler is searched for does not differ from the standard one.  Consider an example:

  block
   signal Wrong_data(t:string);

                       
   unit squareeq: 
        ...
   end squareeq;
   ...
  begin

 
      ...
  end

 

 Exception Wrong_data may be raised wherever its declaration (signal
 Wrong_data) is visible. When its handler is found the specified sequence of actions is 
performed. In the example above different handlers may be defined in inner units to the 
main block where squereeq is called.

 The case a=0 could be included, of course, in a normal way, i.e. by a corresponding 
conditional statement occurring in the procedure body. But the case a=0 was assumed to 
be  exceptional  (happens  scarcely).  Thus  the  evaluation  of  condition  a=0  would  be 
mostly unnecessary. As can be noticed thanks to exceptions the above problem can be 
solved with the minimal waste of run time. 

12. Concurrent processes.

   Loglan  allows  to  create  and  execute  objects-processes.  They  can  operate 
simultaneously on different computers linked into a LAN network or a few processes 
can share one processor (its time-slices).

   Process  modules  are  different  from the  classes and coroutines  for,  they use the 
keyword  process. The syntax of process modules is otherwise the same. In a process 
one can use a few more instructions: resume (resume a process which is passive), stop - 
make the current process passive, etc.  
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 All  processes  (even  those  executed  on  the  same  computer)  are  implemented  as 
distributed, i.e. without any shared memory. This fact implies some restrictions on how 
processes may be used. Not all restrictions are enforced by the present compiler, so it is 
the programmer's responsibility to respect them. For the details see the User's Manual.

  Semantics of the generator  new is slightly modified when applied to the processes. 
The first  parameter  of  the first  process unit  in the prefix sequence must be of type 
INTEGER. This parameter denotes the node number of the computer  on which this 
process will be created. For a single computer operation this parameter must be equal to 
0.

Example:

unit A:class(msg:string);
...
end A;
unit P:A process(node:integer, pi:real);
...
end P;
...
var x:P;
...
begin
...
 (* Create process on node  4.  The  first  parameter  is  the  *) 
 (*string required by the prefix A, the second is the node number *)
 x := new P("Hello", 4, 3.141592653);
...
end

  COMMUNICATION MECHANISM

Processes may communicate and synchronize by a mechanism based on rendez-vous. It 
will be referred to as "alien call" in the following description.

An alien call is either:
  - a procedure  call performed by a remote access to a process object, or
  - a call of a procedure which is a formal parameter of a process,  or
  - a call of a procedure which is a formal parameter of an alien-called procedure (this is a 
recursive definition).

Every  process object  has  an enable  mask.  It  is  defined as  a  subset  of  all  procedures 
declared directly inside a process unit or any unit from its prefix sequence (i.e. subset of 
all procedures that may be alien-called).
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A procedure  is  enabled  in  a  process  if  it  belongs  to  that  process'  enable  mask.  A 
procedure is disabled if it does not belong to the enable mask. 

Immediately  after  generation  of  a  process  object  its  enable  mask  is  empty  (all 
procedures are disabled).

Semantics of the alien call is different from the remote call described in the report. Both 
the calling process and the process in which the procedure is declared (i.e. the called 
process)  are  involved  in  the  alien  call.  This  way  the  alien  call  may  be  used  as  a 
synchronization mechanism.

The calling process passes the input parameters and waits for the call to be completed.

The  alien-called  procedure  is  executed  by  the  called  process.  Execution  of  the 
procedure will not begin before certain conditions are satisfied. First, the called process 
must not be suspended in any way. The only exception is that it may be waiting during 
the ACCEPT statement  (see below).  Second,  the procedure  must  be enabled in  the 
called process.

When the above two conditions are met the called process is interrupted and forced to 
execute the alien-called procedure (with parameters passed by the calling process).

Upon entry to the alien-called procedure all procedures become disabled in the called 
process.

  Upon exit the enable mask of the called process is restored to that from before the call  
(regardless of how it has been changed during the execution of the procedure).  The 
called  process  is  resumed  at  the  point  of  the  interruption.  The  execution  of  the 
ACCEPT statement is ended if the called process was waiting during the ACCEPT (see 
below). At last the calling process reads back the output parameters and resumes its 
execution after the call statement.

  The process executing an alien-called procedure can easily be interrupted by another 
alien call if the enable mask is changed.

  There are some new language constructs associated with the alien call mechanism. The 
following statements change the enable mask of a process:

ENABLE p1, ..., pn

enables the procedures with identifiers p1, ..., pn. If there are any processes waiting for 
an  alien  call  of  one  of  these  procedures,  one  of  them is  chosen and its  request  is 
processed. The scheduling is done on a FIFO basis, so it is strongly fair. The statement:

    DISABLE p1, ..., pn 

disables the procedures with identifiers p1, ..., pn.

  In addition a special form of the RETURN statement:

    RETURN ENABLE p1, ..., pn DISABLE q1, ..., qn 

allows to enable the procedures p1, ..., pn and disable the procedures q1,...,qn after the 
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enable mask is restored on exit from the alien-called procedure. It is legal only in  the 
alien-called procedures (the legality is not enforced by the compiler).

 A called process may avoid busy waiting for an alien call by means of the ACCEPT 
statement:

ACCEPT p1, ..., pn 

adds the procedures p1, ..., pn to the current mask, and waits for an alien call of one of 
the currently enabled procedures. After the procedure return the enable mask is restored 
to that from before the ACCEPT statement.

 Note  that  the  ACCEPT  statement  alone  (i.e.  without  any  ENABLE/DISABLE 
statements or options) provides a sufficient communication mechanism. In this case the 
called  process  may  execute  the  alien-called  procedure  only  during  the  ACCEPT 
statement (because otherwise all procedures are disabled). It means that the enable mask 
may be forgotten altogether and the alien call may be used as a pure totally synchronous 
rendez-vous.  Other  constructs  are  introduced  to  make  partially  asynchronous 
communication patterns possible.

Below find a complete listing of a simple example - monitors.

program monitors;
 
(* this an example showing 5 processes: two of them are in fact monitors, one 
controls the screen=ekran *)

  unit ANSI: class;  
  (* CHECK whether config.sys contains a line
       device=ansi.sys
     the class ANSI enables operations on cursor,
                       and bold, blink, underscore etc. *) 
                               
  unit Bold : procedure;
  begin
    write( chr(27), "[1m")
  end Bold;
    
  unit Blink : procedure;
  begin
    write( chr(27), "[5m")
  end Blink;
  
  unit Reverse : procedure;
  begin
    write( chr(27), "[7m")
  end Reverse;

  unit Normal : procedure;
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  begin
    write( chr(27), "[0m")
  end Normal;
  
  unit Underscore : procedure;
  begin
    write( chr(27), "[4m")
  end Underscore;

  unit inchar : IIUWgraph function : integer;
    (*podaj nr znaku przeslanego z klawiatury *)
    var i : integer;
  begin
    do
      i := inkey;
      if i <> 0 then exit fi;
    od;
    result := i;
  end inchar;
  
  unit NewPage : procedure;
  begin
    write( chr(27), "[2J")
  end NewPage;
  
  unit  SetCursor : procedure(row, column : integer);
    var c,d,e,f  : char,
        i,j : integer;
  begin
    i := row div 10;
    j := row mod 10;
    c := chr(48+i);
    d := chr(48+j);
    i := column div 10;
    j := column mod 10;
    e := chr(48+i);
    f := chr(48+j);
    write( chr(27), "[", c, d, ";", e, f, "H")
  end SetCursor;        
end ANSI;

  
    unit monitor:  process(node:integer, size:integer,e: ekran);

       var buf: arrayof integer,
           nr,i,j,k1,k2,n1,n2: integer;

    unit lire: procedure(output k: integer);
    begin
      call e.druk(13,2+nr*30+k1,0,k2);
      call e.druk(13,2+nr*30+(i-1)*6,1,buf(i));
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      k1:=(i-1)*6;
      k:=buf(i);
      k2:=k;
      i:= (i mod size)+1;
      if i=j
      then
        call e.printtext("i equal j")
      fi; 
    end lire;
    
    unit ecrire: procedure(n:integer);
    begin
      call e.druk(13,2+nr*30+n1,0,n2);
      call e.druk(13,2+nr*30+(j-1)*6,2,n);
      n1:=(j-1)*6;
      buf(j) := n;
      n2:=buf(j);
      j := (j mod size)+1;
      if i=j
      then
        call e.printtext("j equal i")
      fi; 
    end ecrire;
  begin
    array buf dim(1:size);
    nr := size - 4;
    for i := 1 to size
    do
      buf(i) :=  i+nr*4;
      call e.druk(13,2+nr*30+(i-1)*6,0,buf(i));
    od;
    i:=1;  
    j := size;
    k1:=0;
    k2:=buf(1);
    n1:=(size-1)*6;
    n2:=buf(size);
    (* end initialize buffer *)
    return;
    
    do
      accept lire, ecrire
    od
  end monitor;
  
  unit prcs:  process(node,nr:integer, mleft,mright:

 monitor, e: ekran);
    var l,o: integer;

  begin
    call e.SetCursor(8+(nr-1)*10,29);
    if nr = 1
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    then
      call e.printtext("<-- p1 <--");
    else
      call e.printtext("--> p2 -->");
    fi;    
    return;
    do
      call mleft.lire(l) ;
      call e.druk(11+(nr-1)*4,31-(nr-1)*8,1,l);
      l:= l+1;
      call mright.ecrire(l) ; 
      call e.druk(10+(nr-1)*6,23+(nr-1)*8,2,l);
      if l mod 15 = 0 
      then
        o:= e.inchar;

      if o = -79 then call endrun fi;
      fi;
    od;
  end prcs;
  

unit ekran : ANSI process(nrprocesora: integer);
    unit printtext: procedure(s:string);
    begin
      write(s);
      call Normal;
    end printtext;

    unit  druk: procedure(gdzieW,gdzieK,jak,co:integer);
    begin
      call SetCursor(gdzieW,gdzieK);
      write("   ");
      if jak=0 then call Normal else
        if jak=1 then call Reverse else
          if jak=2 then call Bold 
          fi
        fi
      fi;
      write(co:3);
      call Normal;
    end druk;

    unit print: procedure (i:integer);
    begin
      write(i:4)
    end print;
  begin
    return;
    
    do accept inchar, 
              Normal,NewPage, SetCursor, Bold, Underscore,

      Reverse, Blink, print, printtext, druk
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    od
  end ekran;
  
var m1,m2:monitor,
    e:ekran,
    p1,p2:prcs;
     
begin     (* ----- HERE IS THE MAIN PROGRAM ----- *)
  (* create a  configuration *)
  e:= new ekran(0);
  resume(e);
  call e.Normal;
  call e.NewPage;
  m1 := new monitor(0,4,e);
  m2 := new monitor(0,5,e);
  
  p1 := new prcs(0,1,m2,m1,e);
  p2 := new prcs(0,2,m1,m2,e);
    
  resume(m1);
  resume(m2);
  resume(p1);
  resume(p2);
end monitors;
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