
LOGLAN'82
Quick Reference Card

Syntax Form its (informal) meaning

 program <name>;
 <declarations>
 begin
 <instructions>;
 end

Program is a unit. It is the root of a tree of units.
During an execution of the program this tree is
used as a collection of patterns for instances. An
instance of a unit is either an activation record (of
a procedure) or an object(of a class).

Declarations

there are five forms of a declaration: var, const, unit, signal, handlers

 var x: T, y,z: U; declaration of variables x of type T, y,z of type U

 unit A: B<kind>(params);
 <declarations>
 begin
 <instructions>;
 last_will: <instructions>
 end A;

evidently there is no obligation to inherit from a
module, in this case the name B will not appear
at all

declaration of a module A which inherits from B.
kind may be one of: procedure, class, coroutine,
process, block, handler, function
params is a list of formal parameters,
REMARKS
- block has no name
 its first line is: block or pref C block
- function has a type of result after parameters,
- handler has a different form., see below,
- last_will instruction are executed exceptionally.

 const cc=80 declaration of a constant

 signal S;
 signal Alarm(x: T, y: Q);

declaration of a signal S
it may have a list of formal parameters

 handlers
 when sig1,SIGN3: Inst; return;
 when sig2: instructions2; wind;
 others in; terminate
 end handlers

declaration of a module handling exceptions,
sig1, sig2, SIGN3 are names of exceptions,
Inst, instructions2,in are sequences of instructions

handlers appear as the last declaration in a unit

Parametrisation of Units

modes of transmission: input, output, inout values of expressions

also procedure, function, type can be
transmitted as a parameter

formal procedures(functions) should be specified
i.e. the types of arguments and results should be
given.
a formal type T alone is of limited use, however it
may accompany other parameters using T.

Processes are distributed it means that
they cannot share objects. You can
transmit only values of simple types and
names of processes or formal procedures
to be used for alien calls.

Processes can reside on different systems of your
network. This explains the reasons for the
restrictions.
The present implementation of processes has
several limitations. Sorry.

Instructions

Atomic instructions

 x := <expression> assignment instruction

 x := copy (<expression>) copying assignment instruction, has sense only for
object expressions

 call Aprocedure(params) procedure call instruction

 return leaving procedure or function

 exit or exit exit or exit exit exit leaving one, two or three nested loops do od

 new Aclass(params) instruction generating an object

 Objects

 x := new Aclass(params) creates an object of class Aclass with params
and stores it under the name of x

 end Aclass or return terminating initialisation of a newly created object

 kill(x) deallocation instruction, causes{x=none}and kills
x
REMARK. No dangling references!
{x=y&x=z} => kill(x) {x=none&y=none&z=none}

 inner pseudoinstruction: a slot for the instructions of an
inheriting unit

 Coroutines

 x := new Cor(params) creates a coroutine object x of type Cor

 attach(x) activates coroutine x, and then makes the current
coroutine chain passive

 detach undoes the last attach

 Processes & Concurrency truly object oriented processes and an objective com-
munication mechanism just by calling methods of a
distant process

 proces5:=new procesType(...); creates an object of
 unit procesType: process(<formParams>); ...

 resume(proces5) activate a passive process process5

 stop the current process passivates

 enable hisprocedure adds the name hisprocedure to the MASK of the
process, enabling other processes to communicate
with the process by means of hisprocedure

 disable aProcedure,aFunction deletes aProcedure,aFunction from the MASK

 accept aProc1, aProc2, aFnctn process waits (inactively) for another process
calling a method;
accept makes possible rendez-vous of this process
and another process calling his method

 return disable aProc1 enable aQ return from a rendez-vous reestablishes the MASK
of the called process; it is posible to modify its
MASK disabling some procedures and enabling
others

 call proces5.hisprocedure(par)

 this is alien call

the current process demands process5 process to
execute hisprocedure with the transmitted par
parameters and waits for the eventual outputs;
1° this instruction may meet with an accept
instruction of process5 process - in such case there
is a rendez-vous of two process,
2° otherwise the call tents to interrupt the normal
flow of execution of the called process5 process.

 Exception handling

 raise Asignal Asignal is raised. This lances the research of a
module handling the signal along the chain of DL
links i.e. along dynamic fathers of instances.

 return returns to after raise statement

 wind 3 forms of terminating an exception handling
 terminate destructs (lastwill) several instances of units

Composed instructions

 if γ then I else J fi γ is a Boolean expression
I, J are sequences of instructions {else J is optional}

 do I od looping instruction; it is suggested to put an exit
instruction among the instructions I, see below

 while γ do I od γ is a Boolean expression
I a sequence of instructions
equivalent to
do
 if γ then I else exit fi
od

 for i:= A to B do I od i integer variable, A, B integer expressions,
I a sequence of instructions

 case c
 when c1: I;
 otherwise J
 esac

case instruction
I, J are sequences of instructions
c is an expression, c1 is a constant

Expressions

Arithmetic expressions

Boolean expressions remark in and is object relations, e.g. if x in Clas2

Object expressions

 new T(actual_params) create new object of class (coroutine, process) T
passing the actual_params list to it

 this T returns as a value the object of type T containing
this expression

 E qua A qualifies the value of E as of type A
Raises error if not E in A

 copy(E) returns a copy of value of the object expression E

Character expressions

String expressions only constant strings!

Inheritance & Nesting [
2 fundamental methods of unit's composition

Multi-level inheritance permits to make
extensions of classes, coroutines,
processes defined on different level of
the nesting structure of units.

Multi-kind inheritance permits to inherit in a
block, procedure, function, class, coroutine or
process.

Multiple inheritance is doable by means
of multi-level inheritance and other
ingredients of Loglan.

Generic modules are doable in various ways: by
formal types, by multi-level inheritance combined
with nesting, to say nothing about virtuals.

	LOGLAN'82
Quick Reference Card

