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Abstract. All the proofs of correctness of Euclid’s algorithm that we know (in mathematical as well
as in computer science texts, c.f. [Grz71, Sie50, BK82, Knu77]) are of semantical nature. They are
conducted in an intuitive number theory. For 1° they study the computations of the algorithm, 2°
they do not analyze the structure of algorithm, 3° all these proofs assume that the computations are
done in the standard model of natural numbers (unsigned integers). For these and other reasons the
proofs go beyond the elementary Peano’s theory.
We present a new proof of correctness of algorithm of Euclid E. Our proof has the following features:
1° We are proving the halting formula H of the algorithm and the correctness formula 6.1, 2° accord-
ingly, we analyze the structure of the algorithm (our proof makes no references to the computations
of the algorithm), 3° our proof makes use of inference rules of algorithmic logic (i.e. calculus of
programs), 4° only the axioms of the calculus and axioms of algorithmic theory of natural numbers
are accepted without proof.

1. Introduction

History of Euclid’s algorithm is over 2300 years long. The proof of the theorem that the algorithm com-
putes the greatest common divisor of two natural numbers is commonly accepted.
Still there are some open questions. Many mathematical theories are intuitive – this means that neither
the language of theory nor its axioms are precisely described. Since Euclid’s Elements, the majority of
mathematical theories is axiomatized. The formalized theories are studied when one wishes to avoid
paradoxes c.f.[RS63]. Every of known proofs is conducted in an intuitive number theory. Among oth-
ers, it is assumed that the arguments are standard natural numbers. No axioms excluding non-standard
elements accompany the proof. (Yes, we are aware that it is impossible in the frame of any first order
theory. But are we limited to first-order logic?). The computations of the algorithm are studied, without
mentioning that the notion of algorithm does not belong to the theory. The correspondence between the
text of the algorithm and its computations is assumed in an intuitive way. Nothing disturb us, we believe
in the correctness of algorithm of Euclid. The proof is accepted by the vast majority of humans. Is it an
intersubjective proof? Will it be accepted by computer? It is wortwhile to think of creating such a proof
that will be accepted by a proof-checker.
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A bit of history

We shall recapitulate the results achieved in the metamathematics and see how they are related to our
problem.
In XIXth century Peano presented the set of axioms describing the structure of natural numbers (c.f. 4).
It helped in making many precise proofs. However, the proof of the correctnes of Euclid’s algorithm was
still led by a circuitous route, through analysis of its computations. The algorithm itself remained foreign
to the theory. No one analyzed its structure, like was in the case of proofs of (first-order) formulas. The
relation between the algorithm and its computation was intuitive one. In the beggining of XXth century
it turned out (the results of Lövenheim and Skolem) that Peano theory has non-standard models (c.f.
[Grz69] p. 288). Twenty years later K. Goedel obtained a result on undecidability of Peano’s arithmetic.
From this C. Ryll-Nardzewski deduced that there is no finite set S of formulas of first -order logic, such
that the only model of S would be the standard structure of natural numbers ([RN52]). In this way we
learned there there is no elementary theory in which one can construct a proof of correctness of Euclid’s
algorithm.
Summing up, we assert that

the formalized first-order theory T h0 based on the Peano’s axioms APe,

T h0 = 〈L,L.APe〉

does not contain a theorem on correctness of Euclid’s algorithm.
There are three reasons of that: 1° The language L of the theory has no algorithms nor the formulas
expressing the halting property of programs. 2° Calculus of predicates, i.e. first-order logic L has no
tools helping in analysis of algorithms. 3° Peano’s axioms APe have both the standard as well as non-
standard model of natural numbers. In a non-standard model, the Euclid’s algorithm may have infinite
computations c.f. Appendix A. We shall see later, that it is necessary to replace all three components
of the formalized theory in order to obtain a theory that contains the theorem on correctness of Euclid’s
algorithm.

Do we need a new proof?

This text is addressed to programmers and computer scientists as well as to mathematicians. We are
going to convince you that:

• Proving properties of programs is like proving mathematical theorems. One needs: axioms, calcu-
lus of programs and well defined language. In other words, programmers, makers of specifications
(of software), verifiers of software properties should accept algorithmic theories as the workplace.
Such a theory contains classical theorems i.e. first-order formulas and algorithmic theorems as
well. In the proofs of theorems on certain programs we can use earlier theorems on other pro-
grams (and classical theorems also). In the proofs of some first-order theorems we can use some
facts about programs.

• Developers of algorithmic theories od numbers, of graphs, etc. should accept programs as “first
class citizens” of the languages of these theries. Moreover, the language should contain formulas
that express the semantical properties of programs. And, naturally, the reasoning should be done
in a calculus of programs that contains the predicate calculus.
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We believe that by constructing a new proof of correctness of algorithm of Euclid we shall gain a new
insight into the nature of (algorithmic) theory of numbers. It is commonly accepted that algorithms play
important role in this theory. We need the tools adequate to the structure of analyzed texts. By this we
mean that 1° the algorithms should be treated as “first class citizens” of the theory, like the formulas are,
2° the semantical properties of algorithms should be expressed by the formulas, 3° these formulas should
be the subject of studies having as the aim their proof or an counterexample.
We expect that the proofs will be intersubjective ones. I.e. that everyone reading the proof will necessar-
ily agree with the arguments. Finally, such a proof should be analyzable by a proof-checker.

The fact of incompleteness of first-order theory of natural numbers should not be used as an indul-
gence for our laziness.

In the algorithmics the natural numbers and the algorithm of Euclid play a significant role. (In the
most used programming languages one encounters the structure of unsigned integers.) For example, in
some programming languages we find a class1 Int. The details of implementation can be hidden (even
covered by patents). One may doubt, whether such a class is a proper model, and of which theory. In the
appendix A we show such a class Cn that satisfies axioms of the theory of addition. We are also showing
that for some arguments the computations of Euclid’s algorithm need not to be finite.

Which calculus to choose?

It seems important that a theory in which we shall conduct the proof of correctness of Euclid’s algorithm
will not have non-standard models. I.e, we are seeking for a categorical axiomatisation of natural num-
bers. We can choose among: weak second order logic, logic of infinite disjunctions Lω1ω [Eng67, Kar64]
and algorithmic logic LA. We prefer algorithmic logic for it has a system of axioms and inference rules.
Moreover in the language of algorithmic logic we dispose the formulas that express the semantical prop-
erties of programs.
The next question which appears is: should we look for a new set of axioms of natural numbers or per-
haps thes set proposed by Peano will do. Consequently we shall consider three algorithmic theories and
will find which of three is suitable for conducting the proof of correctness of Euclid’s algorithm. The
result of comparison we present in the table 1.

The Euclid’s algorithm is very important for mathematicians as well as for programmers. There is
no doubt on it. However, the proofs of correctness of this algorithm do not satisfy us. Why?
One can split the goal of proving the correctness of an algorithm A with respect to the given precondtion
α and postcondition β onto two subgoals: 1) to prove that if some result exists then it satisfies the
postcondtion β, and 2) to prove that if the arguments satisfy the precondition α then the computation
of the algorithm terminates. The first subgoal is easier. In the case of Euclid’s algorithm, it suffices to
remark that a common divisor of two numbers n and m is also a common divisor of n and the difference
n − m. The second subgoal is harder. We require that a proof of the correctness starts with axioms
(either axioms of logic or axioms of natural numbers) and uses the inference rules of logic to deduce
some intermediate formulas and to terminate with the halting formula.

All the proofs we know, do not satisfy this requirement. Let us take an example. In some monographs
on theoretical arithmetic the proof goes as follow: 1°some intermediate formulas are proven, 2°a claim is
made that the scheme of induction is equivalent to the principle of minimum, 3°therefore for any natural

1class is a kind of program module
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numbers n and m the computation of the Euclid’s algorithm is finite and brings the gcd(n,m).
Let us remark that in a proof like mentioned above :

(i) The claim on finiteness of descending sequences is true conditionally. The so called principle of
minimum is valid only in standard model. One has assume that the algorithm works in standard
model of natural numbers. However, no elementary theory can garantee that every of its models is
isomorphic to the standard one. Moreover, the assumption on standard model is not written at all.

(ii) The proof contains a phrase “for any natural numbers n and m ... This is perfectly ok as long as
the arguments of the algorithm are standard natural numbers. What happens if they come from
another model of Pressburger or Peano axioms? If Euclid’s algorithm is executed in the non-
standard model of Pressburger arithmetic its computations may be infinite ones. See the Appendix
A.

(iii) The proof analyzes some sequences of numbers saying this is an execution sequence of the algo-
rithm. It means that the proof goes around. It would be acceptable if the proof itself lead correctly
to the conclusion.

Table 1. Which theory allows to prove the halting formula of Euclid’s algorithm?

Theory Language & Logic Axioms Is there a proof?

T h0 L – 1-st order Peano No - the language does
not accept algorithms,
nor algorithmic formulas.
There is nothing to prove.

T h1 LA – algorithmic Pressburger No - the halting formula is
independent from the ax-
ioms of this theory.

T h2 LA – algorithmic Peano No - the halting formula is
independent from the ax-
ioms of this theory.

T h3 LA – algorithmic Algorithmic
Arithmetic

Yes - there exists a proof.

2. A few words on calculus of programs

The reader familiar with the algorithmic logic [MS87]can safely skip this section.
A formalized logic L is determined by its language L and the syntactic consequence operation C, L =
〈L,C〉. How to describe the difference between first-order logic FOL and algorithmic logic AL? The
language of algorithmic logic is a superset of the language of first-order logic. In the language of AL
we find all well formed expressions of FOL. The alfabets are similar. Moreover, the language of AL
contains programs and the set of formulas is richer than the set of first-order formulas. As you can see
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propositional calculus PL
WFFPL = {FPL}

predicate calculus FOL
WFFFOL = {TFOL ∪ FFOL}

program calculus AL
WFFAL = {TAL ∪ FAL ∪ PAL}
FFOL  FAL

calculus of program schemes PAL
WFFPAL = {FPAL ∪ PPAL}

Figure 1. comparison of logical calculi w.r.t. theirWFF sets

the languageWFFAL contains programs. Moreover, the set of formulas FAL is a proper superset of the
set of first-order formulas FFOL.

2.1. Three algorithmic theories

From the earlier discussion it follows that the elementary theory T h0 is not suitable for proving the
halting property of Euclid’s algorithm. We shall discuss three algorithmic theories T h1, T h2, T h3. All
three theories have the same formalized language. The theories have different set of specific axioms. The
following expression is a program (in each theory).

while n 6= m do
if n > m then n := n−m else m := m− n fi

od

︸ ︷︷ ︸
Euclid′s algorithm

(E)

And the following formula expresses the stop property of the program E.

∀n 6=0 ∀m 6=0


while n 6= m do

if n > m then n := n−m else m := m− n fi
od

 (n = m)

︸ ︷︷ ︸
halting formula of Euclid′s algorithm

(H)

All three algorithmic theories T h1, T h2, T h3 have the same language L = 〈A,WFF〉. The alphabet
A has the following subsets: set of functors Φ = {s, P,+, ∗, .__}, set of predicates Θ = {=, <}, set
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of logical operators {∧,∨,⇒,¬}, set of program operators {:=, ;, while, if }, and auxiliary symbols,
parentheses and others. The alphabet A contains also the set of variables.

The set WFF of well formed expressions is the union of three sets: set of terms (programmers
may say, set of arithmetical expressions), set of formulas (i.e. set of boolean expressions) and the set of
programs.

Definition 2.1. The set of terms is the least set of expressions T such that

• each variable x is an element of the set T ,

• if an expression τ belongs to the set T , then the expressions s(τ), P (τ) belong to the set T ,

• if expresions τ and σ belong to the set T , then the expressions (τ + σ), (τ ∗ σ), (τ .__ σ) belong
to the set T .

The set of formulas we describe in two steps.

Definition 2.2. The set of open formulas is the least set FO of expressions such that

• if expresions τ and σ are terms, then the expressions (τ = σ), (τ < σ) are open formulas,

• if expresions α and β are open formulas, then the expressions (α ∧ β) (α ∨ β), (α⇒ β), ¬α are
open formulas.

Definition 2.3. The set of programs (in the language of theories T h1, T h2, T h3) is the least set P of
expressions, such that

• If x is a variable and an expresion τ is a term, then the expression x := τ is a program. (Programs
of this form are called assignment instructions. They are atomic programs.)

• if expresions K and M are programs, then the expression K; M is a program,

• if expresion γ is an open formula and expressions K and M , are programs, then the expressions
while γ do M od and if γ thenK else M fi are programs.

We use the braces { } to delimit a program.

Definition 2.4. The set of formulas is the least set of expressions F such, that

• each open formula belongs to the set F ,

• if an expression K is a program and an expression α is a formula, then the expression K α is a
formula,

• if an expressionK is a program and an expression α is a formula, then expressions
⋃
K α i

⋂
K α

are formulas,

• if an expression α is a formula, then the expressions ∀x α and ∃x α are formulas,

• if expressions α and β are formulas, then the expressions (α ∧ β) (α ∨ β), (α ⇒ β), ¬α are
formulas.

Following Tarski we associate to each well formed expression of the language a mapping.
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3. Algorithmic theory of addition T h1

We consider an algorithmic theory, henceforth its language contains programs and algorithmic formulas.
Note, all axioms of this theory are first-order formulas!

Definition 3.1. The set of specific axioms of the theory T h1 consists of the following formulas:

∀x s(x) 6= 0 (1)

∀x∀y s(x) = s(y)⇒ x = y (2)

∀x x+ 0 = x (3)

∀x∀y x+ s(y) = s(x+ y) (4)

x < y ⇔ ∃zy = x+ s(z) (5)

P (0) = 0 (6)

P (s(x)) = x (7)

z .__ 0 = z (8)

z .__ s(x) = P (z .__ x) (9)

and an infinite set of formulas built in accordance with the following scheme of induction:

Φ(x/0) ∧ ∀x
(
Φ(x)⇒ Φ(x/s(x))

)
⇒ ∀x Φ(x) (10)

The last line is a scheme of infinitely many axioms. It is the scheme of induction. The expression Φ
denotes an arbitrary first-order formula with a free variable x. The expression Φ(x/0) denotes a formula
resulting from the expression Φ by the replacement of all free occurrences of variable x by constant 0.
Similarly, the expression Φ(x/s(x)) is the formula that results from Φ by the simultaneous replacement
of all free occurrences of variable x by the term s(x).

Our set of axioms differs insignificantly from those considered by Presburger. c.f. [Pre29, Sta84].

Fact 3.1. The formula H is not a theorem of the theory T h1.

T h1 0 H

Proof:
The formula H is falsifiable in a non-standard model N of theory T h1, c.f. Appendix A . By completeness
of algorithmic logic it follows that the formula is not a theorem of algorithmic theory T h1. ut

Fact 3.2. The formula H is independent of axioms 1 - 10.

4. Algorithmic theory of addition and multiplication T h2

The set of axioms of the next theory T h2 consists of formulas 1 - 9 and two formulas defining the
operation of multiplication. Moreover, the set of axioms contains all the formulas built in accordance
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with scheme of induction,

∀x x ∗ 0 = 0 (11)

∀x∀y x ∗ s(y) = (x ∗ y) + x (12)

scheme of induction:

Φ(x/0) ∧ ∀x
(
Φ(x)⇒ Φ(x/s(x))

)
⇒ ∀x Φ(x)

As in the preceding section, we shall limit the scheme of induction: the formula Φ(x) must be a first-
order formula.
The theory T h2 has (at least) two non-isomorphic models. One is the standard model N0 of theory T h0,
another is a non-standard model N of the same theory.
Despite the fact, that we extended the language adding the operator of multiplication and the set of ax-
ioms adding the definition of the operation of multiplication, the new theory does not contain a theorem
on correctness of Euclid’s algorithm. It is so because, in the non-standard model N the Euclid’s algo-
rithm has infinite computations for non-standard elements.

5. Algorithmic theory of numbers

The set of specific axioms of the theory T h3 contains the following formulas:

∀x s(x) 6= 0 (I)

∀x∀y s(x) = s(y)⇒ x = y (M)

∀x {y := 0;while y 6= x do y := s(y) od}(x = y) (S)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x+ y
df
= {t := 0;w := x;while t 6= y do t := s(t);w := s(w) od}w (A)

x < y
df⇔ {w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w = x ∧ w 6= y) (L)

P (x)
df
= { w := 0; if x 6= 0 then while s(w) 6= x do w := s(w) od fi }(w) (P)

x .__ y
df
= {w := x; t := 0;while t 6= y do t := s(t);w := P (w) od}(w) (O)

The third of axioms [S] is an algorithmic, (not a first-order), formula).
Besides these three formulas [I, M, S] we assume four more axioms [A, L, P, O] that are defining opera-
tions +, P, .__ and predicate <.
This theory T h3 allows to prove the halting formulaH of the Euclids algorithmE. Why? 1°) The theory
is categorical: every model M of this theory is isomorphic to the standard model N0 of natural numbers.
2°) Computations of Euclids algorithm in the structure N0 are finite, 3°) Hence, the formula H is valid
in each model of the theory T h3, 4°) Therefore, the formula H is a theorem of the theory T h3.
Below we are presenting a detailed and formalizable proof of the correctness of Euclid’s algorithm.

1. We begin at proving the formulas, that appear as axioms of the theory T h2.

2. We shall prove also a couple of properties thet occur in the traditional proof of Euclids algorithm.
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3. We omit the proofs of these properties of greatest common divisor, that are theorems of the theory
T h0. E.g. the formula

(
(n > m ∧m > 0) ⇒ gcd(n,m) = gcd(n −m,m)

)
has a proof in the

elementary theory of Peano.

We commence by proving the scheme of induction. We use colors
blue – indicate the
theorems of T h3 theory,
in sepia we print
theorems of calculus
of programs.

5.1. Scheme of induction

Lemma 5.1. The following formula is a theorem of the theory T h3.

T h3 ` {y := 0}
⋃
{y := s(y)}(x = y)

Proof:
The following equivalence is a theorem of algorithmic logic c.f. [MS87] p. 62.

` {y := 0;while y 6= x do y := s(y) od}(x = y)⇔ {y := 0}
⋃
{if y 6= x then y := s(y) fi}(x = y)

Another theorem of algorithmic logic is the following equivalence

` {y := 0}
⋃
{y := s(y)}(x = y)⇔ {y := 0}

⋃
{if y 6= x then y := s(y) fi}(x = y).

By propsitional calculus we have

` {y := 0;while y 6= x do y := s(y) od}(x = y)⇔ {y := 0}
⋃
{y := s(y)}(x = y).

By modus ponens we obtain

T h3 ` {y := 0}
⋃
{y := s(y)}(x = y).

ut

Lemma 5.2. The following equivalences are theorems of algorithmic logic.

` {y := 0}
⋃
{y := s(y)}α(y)⇔ {x := 0}

⋃
{x := s(x)}α(x)

` {y := 0}
⋂
{y := s(y)}α(y)⇔ {x := 0}

⋂
{x := s(x)}α(x)

Proof:
Let α(x) be an arbitrary formula with free variable x. The expression α(y) denotes the formula resulting
from the formula α(x) by the simultaneous replacement of all free occurrences of the variable x by the
variable y. It is easy to remark, that for every natural number i ∈ N the following formula is a theorem

α(y/si(0))⇔ α(x/si(0)).
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By the axiomAx14 of the assignment instruction we obtain another fact , for every natural number i ∈ N
the following formula is a theorem

{y := 0}{y := s(y)}i α(y)⇔ {x := 0}{x := s(x)}i α(x)

Now, we apply the axiom Ax16 and obtain, that for every natural number i the following formula is a
theorem.

{y := 0}{y := s(y)}i α(y)⇒ {x := 0}
⋃
{x := s(x)}α(x)

We are ready to apply the rule R4. We obtain the theorem

{y := 0}
⋃
{y := s(y)}α(y)⇒ {x := 0}

⋃
{x := s(x)}α(x).

In a similar manner we are proving the other implication and the formula

{y := 0}
⋂
{y := s(y)}α(y)⇔ {x := 0}

⋂
{x := s(x)}α(x).

ut

In the proof of scheme of induction we shall use the following theorem.

Metatheorem 1. For every formula α the following formulas are theorems of algorithmic theory of
natural numbers.

T h3 ` ∀x α(x) ⇔ {x := 0}
⋂
{x := s(x)}α(x) (13)

T h3 ` ∃x α(x) ⇔ {x := 0}
⋃
{x := s(x)}α(x) (14)

Proof:
We shall prove the property (14). Let α(x) be a formula.
Every formula of the following form is a theorem of algorithmic logic.

` α(x)⇒ α(x) ∧ {y := 0}
⋃
{y := s(y)}(x = y).

This leads to the following theorem of the theory T h3.

T h3 ` α(x)⇒ {y := 0}
⋃
{y := s(y)}(α(x) ∧ x = y).

In the next step we obtain.

T h3 ` α(x)⇒ {y := 0}
⋃
{y := s(y)}α(y).

Now, we can introduce the existential quantifier into the antecedent of the implication.

T h3 ` ∃x α(x)⇒ {y := 0}
⋃
{y := s(y)}α(y).

By the previous lemma 5.2 we obtain.

T h3 ` ∃x α(x)⇒ {x := 0}
⋃
{x := s(x)}α(x).

The proof of other implication as well as of formula (13) is left as an exercise. ut
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We are going to prove the scheme of induction.

Metatheorem 2. Let α(x) denote an arbitrary formula with a free variable x. The formula built in
accordance withe the following scheme is a theorem of algorithmic theory of natural numbers T h3.

T h3 `
(
α(x/0) ∧ ∀x

(
α(x)⇒ α(x/s(x))

))
⇒ ∀xα(x) (15)

Proof:
In the expression below, β denotes a formula, K denotes a program. Each formula of the form

` ((β ∧
⋂
K (β ⇒ Kβ))⇒

⋂
K β)

is a theorem of calculus of programs, i.e. algorithmic logic (c.f.[MS87] p.71(8)).
Hence, every formula of the following form is a teorem of algorithmic logic.

` ((α(x) ∧
⋂
{x := s(x)} (α(x)⇒ {x := s(x)}α(x)))⇒

⋂
{x := s(x)}α(x))

We apply the inference rule R2
α,K true
K α

(R2)

and obtain another theorem of AL

` {x := 0}((α(x) ∧
⋂
{x := s(x)} (α(x)⇒ {x := s(x)}α(x)))⇒

⋂
{x := s(x)}α(x))

Assignment instruction distributes over conjunction and implication, hence

` (({x := 0}α(x) ∧ {x := 0}
⋂
{x := s(x)} (α(x)⇒ {x := s(x)}α(x)))⇒ {x := 0}

⋂
{x := s(x)}α(x))

We apply the axiom of assignment instruction

` (α(x/0) ∧ {x := 0}
⋂
{x := s(x)} (α(x)⇒ α(x/s(x))))⇒ {x := 0}

⋂
{x := s(x)}α(x))

Now, we use the fact that in the algorithmic theory of natural numbers the classical quantifiers and
iteration quantifiers are mutually expressive. (c.f.13 )

` (α(x/0) ∧ {x := 0}
⋂
{x := s(x)}︸ ︷︷ ︸

∀x

(α(x)⇒ α(x/s(x))))⇒ {x := 0}
⋂
{x := s(x)}︸ ︷︷ ︸

∀x

α(x))

and obtain scheme of induction – each formula of the following scheme is a theorem of algorithmic
theory of natural numbers T h3.

T h3 ` (α(x/0) ∧ (∀x)(α(x)⇒ α(x/s(x))))⇒ (∀x)α(x))

ut
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Observe the following useful property of natural numbers. Many proofs use the the following lemma.

Lemma 5.3. Let α be any formula. Any equivalence built in accordance to the following scheme is a
theorem of theory T h3

T h3 `



t := 0;

while t 6= s(y)

do
t := s(t);

od


α⇔



t := 0;

while t 6= y

do
t := s(t);

od;
if t 6= s(y)

then t := s(t);

fi



α.

Proof:
The proof makes use of the following theorem of AL

`



t := 0;

while t 6= s(y)

do
t := s(t);

od


α⇔



t := 0;

while t 6= s(y)

do
t := s(t);

od;
if t 6= s(y)

then t := s(t);

fi



α.

where α is any formula

and the axiom (M). It suffices to consider the formulas α of the form β ∧ t = s(y) without loss of
generality. ut

The lemma can be formulated in another way: the programs occurring in the lemma 5.3 are equivalent.

5.2. Addition

The operation of addition is defined in the theory T h3 as follows.

Definition 5.1.

x+ y = z
df
= {t := 0;w := x;while t 6= y do t := s(t);w := s(w) od}(z = w) (A)

First, we remark that for every x and y the result w of addition is defined.
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Lemma 5.4.

T h3 ` ∀x ∀y {t := 0;w := x;while t 6= y do t := s(t);w := s(w) od}(t = y)

Proof:
We begin by deducing the following formula. It is a consequence of axiom (S) obtained by the application
of an auxiliary inference rule [MS87] p. .

{t := 0; while t 6= y do t := s(t) od}α
{t := 0; while t 6= y do t := s(t);w := s(w) od}α

The latter formula

T h3 ` {t := 0; while t 6= y do t := s(t);w := s(w) od}(t = y)

can be preceded by the assignment instruction w := x (we use the inference rule R2).

T h3 ` {w := x; t := 0; while t 6= y do t := s(t);w := s(w) od}(t = y)

In the next step we may interchange two assignment instruction, for they have no common variables.

T h3 ` {t := 0; w := x; while t 6= y do t := s(t);w := s(w) od}(t = y)

Finally we can add the qyantifiers and obtain the thesis of lemma.

T h3 ` ∀x ∀y {t := 0; w := x; while t 6= y do t := s(t);w := s(w) od}(t = y).

ut

Our next observation is

Lemma 5.5.
T h3 ` x+ 0 = x

Proof:
Indeed, from the properties of while instruction we obtain the implication.

T h3 ` y = 0⇒ {t := 0;w := x;while t 6= y do t := s(t);w := s(w)}α⇔ {t := 0;w := x; }α.

We conclude that T h3 ` x+ 0 = x. ut

Our next goal is

Lemma 5.6.
T h3 ` x+ s(y) = s(x+ y)
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Proof:
Proof uses the equivalence:



t := 0;

w := x;

while t 6= s(y)

do
t := s(t);

w := s(w)

od


α⇔



t := 0;

w := x;

while t 6= y

do
t := s(t);

w := s(w)

od;
if t 6= s(y)

then t := s(t);w := s(w);

fi



α.

The expression α is any formula. The equivalence is an instance of the lemma 5.3. ut

5.3. Definition of relation <

Definition 5.2.

x < y
df
= {w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w = x ∧ w 6= y).

We shall prove the useful property.

Lemma 5.7.
T h3 ` ∀x∀y (x < y ∨ x = y ∨ y < x).

Proof:
It follows from the axiom (S), that

T h3 ` ∀x∀y {w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w = x ∧ w 6= y ∨ w 6= y ∧ w = y ∨ x = y).

because, the formula (w = x ∧ w 6= y ∨ w 6= y ∧ w = y ∨ x = y) is a theorem of AL and the implica-
tion (w 6= y ∧w 6= x)⇒ w 6= x is a theorem of AL, too. From the axiom of algorithmic logic Ax15 we
deduce

T h3 ` ∀x∀y
(
{w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w = x ∧ w 6= y) (16)

∨{w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w 6= y ∧ w = y) (17)

∨{w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(x = y)
)
. (18)



A. Salwicki / On Euclid’s algorithm 15

It is easy to observe, that the first and second line of the above formula are the definitions of relations
x < y i y < x. We can skip the program in the third line for 1° the program always terminates and 2° the
program does not change the variables x or y2. Finally we obtain T h3 ` ∀x∀y (x < y∨x = y∨ y < x).

ut

Lemma 5.8.
x < y ⇔ ∃z y = x+ s(z)

Proof:
We are recalling the axiom (S) of the theory T h3

T h3 ` {w := 0;while w 6= y do w := s(w) od}(w = y).

From the definition of the predicate < we obtain

T h3 ` x < y ⇒ {w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w = x ∧ w 6= y).

Therefore

T h3 ` x < y ⇒ {w := x;while w 6= y do w := s(w) od}(w = y).

Since x 6= y, hence the assignment instruction w:=s(w) will be executed at least once. Speaking more
precisely, the former formula is equivalent to the following one by the axiom Ax21.

T h3 ` x < y ⇒ {w := x;w := s(w);while w 6= y do w := s(w) od}(w = y).

ut

Lemma 5.9.
T h3 ` ∀x x < s(x)

Lemma 5.10.
(x < y)⇔ {w := x;while w 6= y do w := s(w) od}(w = y)

Lemma 5.11.
T h3 ` ∀x∀y x < y ⇒ x+ z < y + z

Proof:
Proof goes by induction with respect to the value of variable z. ut

2From the axiom S one can easily deduce the formula {w := 0;while w 6= y ∧ w 6= x do w := s(w) od}(w = y ∨ w = x)
and the following formula (x = k) ⇒ {w := 0;while w 6= y do w := s(w) od}(x = k).
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5.4. Predecessor

The operation of predecessor is defined by the following axiom ??.

Definition 5.3.

P (x)
df
=


w := 0;

if x 6= 0 then
while s(w) 6= x do w := s(w) od

fi

 (w) (P)

Lemma 5.12.
P (0) = 0

Lemma 5.13.
x 6= 0⇒ s(P (x)) = x

Lemma 5.14.
x 6= 0⇒ P (x) < x

Lemma 5.15.
(x < y)⇔ {w := y;while w 6= x do w := P (w) od}(w = x)

Lemma 5.16.
P (s(x)) = x

Lemma 5.17. For every natural number i

P i(si(x) = x

We shall prove the fundamental property of the predecessor operator.

Theorem 5.1.
∀x {while x 6= 0 do x := P (x) od}(x = 0)

Proof:
For every i ∈ N the following formula is a theorem of AL

∀x {y := 0; (if y 6= x then y := s(y) fi)i}(x = y)⇒ {y := 0; (if y 6= x then y := s(y) fi)i}(x = y).

We use the scheme of mathematical induction and the lemma 5.17, to prove that for every i ∈ N , the
following formula is a theorem of the theory T h3

∀x {y := 0; (if y 6= x then y := s(y) fi)i}(x = y)⇒ {(if x 6= 0 then x := P (x) fi)i}(x = 0).
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Remark, the antecedent in each implication asserts x = si(0), and the successor of the implication asserts
0 = P i(x).
Hence we can apply the axiom Ax21 of AL and obtain that for every i ∈ N

T h3 ` ∀x {y := 0; (if y 6= x then y := s(y)fi)i}(x = y)⇒ {while x 6= 0do x := P (x) od}(x = 0).

Now, we apply the inference rule R6 to obtain

T h3 ` ∀x {y := 0;while y 6= xdo y := s(y) od}(x = y)⇒ {while x 6= 0do x := P (x) od}(x = 0).

The antecedent of this implication is the axiom (S) of natural numbers. We deduce (by the rule R1)

T h3 ` ∀x {while x 6= 0 do x := P (x) od}(x = 0).

ut

Remark. This theorem states that the algorithm of Euclid halts if one of its arguments is one. We shall
prove the halting property in general case.
Another remark. Every model M of the theory T h1 such that the Euclid’s algorithm halts when one of
arguments is equal 1, is isomorphic to the standard model N0 of natural numbers.
End of remarks.

We need the following inference rule

Lemma 5.18.
Let τ be a term such that no variable of a programM occurs in it, V ar(τ)∩V ar(M) = ∅. If the formula(
(x = τ)⇒M (x = P (τ))

)
is a theorem of the theory T h3, then the formula

{while x 6= 0 do M od}(x = 0) is a theorem of the theory too. Hence, the following inference rule is
sound

T h3 `
(x = τ)⇒M (x = P (τ))

{while x 6= 0 do M od}(x = 0)

in the theory T h3

Proof:
For every i the following formula is a theorem of AL

{x := P (x)}i(x = 0)⇒ {M}i(x = 0).

We are using the premise ((x = k)⇒ {M})(x = P (k)). Hence, for every i ∈ N

{x := P (x)}i(x = 0)⇒ {while x 6= 0 do Mod}(x = 0).

Now, we apply the rule R3 and obtain

{while x 6= 0 do x := P (x) od}(x = 0)⇒ {while x 6= 0 do Mod}(x = 0).

The antecedent of this implication has been proved earlier (Th 5.1), We apply the rule R1 and finish the
proof. ut
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The following lemma is useful in the proof of the main theorem.

Lemma 5.19. The following inference rule is sound in the theory T h3:

T h3 `
(x = k)⇒M (x < P (k))

{while x 6= 0 do M od}(x = 0)

Proof:
The proof is similar to the proof of preceding lemma. We leave it as an exercise. ut

Corollary 5.1. Let x be an arbitrary number x ∈ N . Each descending sequence such that a1 = x and
for every i, ai+1 < ai, is finite and contains at most x elements.

5.5. Subtraction

The operation of subtraction is defined by the following axiom O.

Definition 5.4.

x .__ y
df
= {w := x; t := 0;while t 6= y do t := s(t);w := P (w) od}(w) (O)

Lemma 5.20.
T h3 ` ∀x x .__ 0 = x

Lemma 5.21.
T h3 ` ∀x∀y x .__ s(y) = P (x .__ y)

Lemma 5.22.
T h3 ` ∀x∀y (x > y > 0)⇒ x .__ y < x

Lemma 5.23.
T h3 ` ∀x∀y (x < y)⇒ x .__ y = 0

6. Proof of correctness of algorithm of Euclid.

The proof splits on two subgoals:

(i) to prove that for any natural numbers n and m, the computation of Euclid’s algorithm is finite,
i.e. we are to prove that the halting formula H is a theorem of the theory T h3,

(ii) to prove that the algorithm computes the greatest common divisor of numbers n and m.
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Let us quote the formula H 

while n 6= m do
if n > m

then
n := n .__ m

else
m := m .__ n

fi
od



(n = m) (19)

It is rather easy to prove the following fact

Fact 6.1.

T h3 ` (n 6= m ∧ (max(n,m) = p)⇒



if n > m

then
n := n .__ m

else
m := m− n

fi


(max(n,m) < p) (20)

Proof:
In the proof we use the axiom of if instruction – Ax20 and lemma 5.22. ut

Now, by lemma 5.19, we obtain the desired formula H. Hence the computations of Euclid’s algorithm
are finite.
It remains to be proved

Fact 6.2.

T h3 ` (gcd(n,m) = p)⇒



if n > m

then
n := n .__ m

else
m := m .__ n

fi


(gcd(n,m) = p). (21)

In the proof we use a few useful facts

n > m⇒ gcd(n,m) = gcd(n .__ m,m)

m > n⇒ gcd(n,m) = gcd(n,m .__ n)

n = m⇒ gcd(n,m) = n
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All three implications are well known and we do not replicate their proofs here c.f. [Grz71],[]).
Combining these observations 20 and 21 we come to the conclusion that the formula expressing the
correctness of Euclid’s algorithm is a theorem of theory T h3

Theorem 6.1.

T h3 `



while n 6= m do
if n > m

then
n := n .__ m

else
m := m .__ n

fi
od



(n = gcd(n,m)) (22)

This ends the proof.

Moreover

Making use of the lemma 5.19 we note another theorem of the theory T h3. It says that the following
program has all computations finite

T h3 ` (n > m)⇒


r := n;

while r ≥ m do
r := r .__ m;

od

 (0 ≤ r < m)

This leads to another observation

T h3 ` (n > m)⇒



r := n; q := 0;

while r ≥ m do
r := r .__ m;

q := s(q)

od


(0 ≤ r < m ∧ n = q ∗m+ r)
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And another fact

T h3 ` (n0 > m0)⇒



n := n0; m := m0; r := n;

while r 6= 0 do
r := n;

while r ≥ m do
r := r .__ m

od;
n := m;

m := r

od



(n = gcd(n0,m0))

7. Final remarks

We succeeded in developing a small chapter of algorithmic theory of natural numbers.
We hope, that programmers and computer scientists will note that proving of programs need not to start a
new, with every program one wishes to analyze. In the process of proving some semantical property sP
of a certain program P , one can use lemmas and theorems on other semantical properties of programs,
that have been proved earlier. We demonstrate this pattern within the proof of correctness of Euclid’s
algorithm. In other words, we propose to develop the algorithmic theory of natural numbers. In fact, we
did it in the book [MS87] p. 155. Such a theory may be of interest also to mathematicians. One can note
the appearance of books on algorithmic theory of numbers, algorithmic theory of graphs, etc. We are
offering calculus of programs i.e. algorithmic logic as a foundation to these studies. Hence, algorithmic
theories seem of common interest for programmers and mathematicians.

Appendix A - a class implementing nonstandard model of theory T h1

We shall program a non-standard model M of axioms APr of Presburger arithmetic as a class Cn in
Loglan programming language. We define a class NSN such that, the objects of the class satisfy the
Presburger’s axioms of natural numbers with the operation of addition. We show that for some data the
execution of the Euclid’s algorithm is infinite.
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unit Cn: class;
unit NSN: extends Nat class (intpart,nomprt, denom: integer);
begin

if nomprt= 0 and intpart <0 then raise Exception fi ;
if nomprt < 0 then raise Exception fi ;
if denom =0 then raise Exception fi

end NSN;
unit virtual add: function (n,m: NSN) : NSN;
begin

result:= new NSN(n.intpart+m.intpart,
n.nomprt*m.denom+n.denom*m.nomprt, n.denom*m.denom)

end add;
unit virtual equal: function (n,m: NSN): Boolean;
begin

result := (n.intpart=m.intpart) and (n.nomprt*m.denom=n.denom*m.nomprt)
end equal;
unit virtual zero: function: NSN;
begin

result := new NSN(0,0,1)
end zero;
unit virtual s: function(n: NSN): NSN;
begin

result := new NSN(n.intpart +1, n.nomprt, n.denom)
end s;

end Cn;

Note,

• The set of objects of class NSN is isomorphic to the subset M of Cartesian product Z × R such
that

〈k, x〉 ∈M ⇔ {k ∈ Z ∧ x ∈ R ∧ x ≥ 0 ∧ (x = 0⇒ k ≥ 0)}

where k is an integer, x is a non=negative rational number and when x is 0 then k ≥ 0 ,

• the operation addition is defined componentwise, as usual in a product,

• the successor operation is defined as follow s(〈k, x〉) = 〈k + 1, x〉,

• constant zero 0 is 〈0, 0〉.
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Theorem 7.1. The algebraic structure M which consists of the set of all objects of class NSN together
with the methods add, s, equal and constant zero satisfies the axioms of natural numbers with addition
operation, c.f. section 3.

Proof:
This is a slight modification of the arguments found in Grzegorczyk’s book [Grz71]p.239. ut

Have a look at the following example and verify that the algorithm of Euclides has infinite computations,
i.e. does not halt, when interpreted in the data structure M.

Example 7.1. Suppose that the values of variables x, y, z are determined by the execution of three in-
structions

x := new NSN(12, 0, 1);
y := new NSN(15, 0, 2);
z := new NSN(15, 1, 2);

Now, the computation of the algorithm E(x, y) is finite and results is new NSN(3, 0, 1).
An attempt to compute E(x, z) results in an infinite computation, or more precisely, in a computation
that can be arbitrarily prolonged.

Appendix B - axioms and inference rules of program calculus AL

Axioms

axioms of propositional calculus

Ax1 ((α⇒ β)⇒ ((β ⇒ δ)⇒ (α⇒ δ)))

Ax2 (α⇒ (α ∨ β))
Ax3 (β ⇒ (α ∨ β))
Ax4 ((α⇒ δ) ⇒ ((β ⇒ δ) ⇒ ((α ∨ β)⇒ δ)))

Ax5 ((α ∧ β)⇒ α)

Ax6 ((α ∧ β)⇒ β)

Ax7 ((δ ⇒ α)⇒ ((δ ⇒ β)⇒ (δ ⇒ (α ∧ β))))
Ax8 ((α⇒ (β ⇒ δ))⇔ ((α ∧ β)⇒ δ))

Ax9 ((α ∧ ¬α)⇒ β)

Ax10 ((α⇒ (α ∧ ¬α))⇒ ¬α)
Ax11 (α ∨ ¬α)
axioms of predicate calculus

Ax12 ((∀x)α(x)⇒ α(x/τ)))
where term τ is of the same type as the variable x
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Ax13 (∀x)α(x)⇔ ¬(∃x)¬α(x)
axioms of calculus of programs

Ax14 K((∃x)α(x))⇔ (∃y)(Kα(x/y)) for y /∈ V (K)

Ax15 K(α ∨ β)⇔ ((Kα) ∨ (Kβ))

Ax16 K(α ∧ β)⇔ ((Kα) ∧ (Kβ))

Ax17 K(¬α)⇒ ¬(Kα)
Ax18 ((x := τ)γ ⇔ (γ(x/τ) ∧ (x := τ)true)) ∧ ((q := γ′)γ ⇔ γ(q/γ′))
Ax19 begin K;M end α⇔ K(Mα)

Ax20 if γ then K else M fi α⇔ ((¬γ ∧Mα) ∨ (γ ∧Kα))
Ax21 while γ do K od α⇔ ((¬γ ∧ α) ∨ (γ ∧K(while γ do K od(¬γ ∧ α))))

Ax22
⋂
Kα⇔ (α ∧ (K

⋂
Kα))

Ax23
⋃
Kα⇔ (α ∨ (K

⋃
Kα))

Inference rules

propositional calculus

R1
α, (α⇒ β)

β

predicate calculus

R6
(α(x) ⇒ β)

((∃x)α(x) ⇒ β)

R7
(β ⇒ α(x))

(β ⇒ (∀)α(x))
calculus of programs AL

R2
(α⇒ β)

(Kα⇒ Kβ)

R3
{s(if γ then K fi)i(¬γ ∧ α)⇒ β}i∈N

(s(while γ do K od α)⇒ β)

R4
{(Kiα⇒ β)}i∈N
(
⋃
Kα⇒ β)

R5
{(α⇒ Kiβ)}i∈N
(α⇒

⋂
Kβ)

In rulesR6 andR7, it is assumed that x is a variable which is not free in β, i.e. x /∈ FV (β). The rules
are known as the rule for introducing an existential quantifier into the antecedent of an implication and
the rule for introducing a universal quantifier into the successor of an implication. The rules R4 and R5

are algorithmic counterparts of rules R6 and R7. They are of a different character, however, since their
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sets of premises are infinite. The rule R3 for introducing a while into the antecedent of an implicationis
of a similar nature. These three rules are called ω-rules.

The rule R1 is known as modus ponens, or the cut rule.
In all the above schemes of axioms and inference rules, α, β, δ are arbitrary formulas, γ and γ′ are

arbitrary open formulas, τ is an arbitrary term, s is a finite sequence of assignment instructions, and K
and M are arbitrary programs.
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