N

Institut fir Informatik und Praktische Mathematik

Christian-Albrechts—-Universitdt Kiel

F

-

Specification and Implementation Problems
of Programming Languages Proper for
Hieraxchical Data Types

Bericht Nr. 8410
Dezember 1984

A. Kreczmar M. Krause

A. Salwicki H. Langmaack

Institute of Informatics Institut. fir Informatik
University of Warsaw und Praktische Mathematik
PKiN p.o.box 12170 Universitét XKiel
PL-00-901 Warsaw Olshausenstr. 40

D-2300 Kiel 7




Abstract

LOGLAN is a pregramming language proper for hier’rchical data types.

LOGLAN is an extension of SIMULA-67 and especially allows pre-—
fixing of modules by classes at many levels. This language con-

struct causes semantics specification and implementation problems.

In order to study these problems the programming language Mini-
LOGLAN is introduced which is a smallest extension of ALGOL-~like
languages that allows prefixing. Based on the notion of original
prefix elimination an algebraic pure static scope semantics of
Mini-LOGLAN-programs is given, By means of complement modules
and their unigue existence a new principle of associating lists
of display register numbers to modules is introduced. The

number of necessary display registers is bounded by the height
of the nesting tree of program modules. The proposed scheme of
addressing does not cause display register reloadings while
computing in one prefix chain. The designed run time system
implementing pure static scoping admits a more efficient imple-
mentation of many level prefixing than the existing implementa-
tion of LOGLAN with its quasi-static scoping does.

Keywords
LOGLAN, SIMULA, class, many level prefixing, hierarchical data

types, static scoping, algebraic semantics, complement mcdules,
implementation, run time system, display registers.




Contents

G.Introduction

1.

Semantics specification

1.1
1.2
1.3
1.4
1.5
1.6
1.7

A contextfree-like grammar for Mini-LOGLAN

Basic definitions ////
Binding functions and prefix chains

Qriginal prefix elimination
Discussion of original prefix elimiration
Algebraic semantics of programs with prefixing

Prefix elimination by transformation into procedures

Implementation

2.1
2.2

2.4
2.5

Complement modules

Association of lists of display register numbers
to modules

Design of the run time system for programs with
many level »refixing

Compilation of essential program constructs

A run time system with short linkages

Appendices A - H

Literature




0. Introduction

There are many situations in programming which need an appropriate

software tool. Let us guote some cases.

1. Abstract data types. Following Hoare [Ho72] one can find

his advice of factorization a convenient and useful principle.
Let us recall what the orinciple says: Whenever possible split
any reasonable "closed'piece of software inte two modules: An
abstract program accampanied by a module implementing the data
type (i.e. representation of data and operations on them). The
advantages of the factorization are easily seen. One can use
the implementing module for several abstract programs and/or
one can retain the abstract program and change the implementing
module in order to gain better efficiency. When we think of
separate compilation of modules, the principle of factorization
seems to be a good advice. However, there are only a few languages
supporting this style of pregramming.

2. Enforcing certain rules or axioms. The best example is the

protocol of mutual exclusion of entry procedures of a monitor.
3. Description of families of data structures.

3.1. It is frequently so that we treat a declaration of a data
type as a description of the set of objects which can potentially
be constructed and memorized in a computer. In many situations
there is a need to develop a hierarchy of (potential) sets

of objects. BE.g. in the automatization of a bank we must define

a hierarchy of various types of records.

3.2, Similarly one can think of hierarchies cf abstract data
types. Suppcse we have defined a problem oriented language as a
data structure, an algebra A extended in various ways by
structures B,C,... In this way one can arrive at a tree-like
structure of problem oriented languages, ¢f. simulation class
in LOGLAN. '




3.3. In programming we meet often a need to define and implement
dynamic systems in which objects can also play an active role

(realized either as coroutines or processes).

4. Factorization of algorithms. Sometimes two or more algorithms
have common initial parts {cf. insert, member, delete in binary
search trees). In such situations it is natural teo extract the
common part in order to avoid repetitions of text. Obviously one
can achieve the desired result with the help <f procedures, but
prefixing all the procedures by a common prefix would be also
interesting. B
Regarding the situations 1.-4. we see that in almest every case
we can achieve the desired gcal by means of prefixing.Prefixing
which can alsc be explained as a rule of composition of modules
has been invented by 0.J.Dahl, B,Myhrhaug and K.Nygaard [Da70]
and introcduced in SIMULA-67 for the first time. In order to
understand prefixing one has to be acquainted with the notion
of class (again SIMULA-67 was the first language which incor-

porated classes}.

Prefixing is a two argument operation on modules of programs.
The prefix should be a class, the prefixed module can be of
any kind: class, procedure, functien or block. Roughly speaking
the result of prefixing is the module obtained by concatenation
af the declarative parts of two modules and by enclosing the
statement part of the prefixed module by the prologue and epi-
logue coming from the prefixing module. The details will be
. explained later. What is more difficult to accept at a first
encountering with prefixing is that the result is not a visible
module. In some sense we operate in a free algebra of modules
with the prefixing operation, i.e. the module

<name> : <prefix identifier> <prefixed module>

represents the result of prefixing.

This form of program construction has an unexpectedly broad

spectrum of applications. In fact, we can not say that all




bRty

possible advantages of prefixing are known already.

The reader should not be misled by a first impression: The
concatenation rule can be explained in terms of textual cpera-
tions, but the realization should not be done by textual opera-
tions.Let us recall the analogy between the copy rulé”for proce-
dures and implementations of procedures in computer

The history of prefixing can be traced back to SIMULA-67. This
attractive software tool has been overlooked for years and the
community of software engineers had poor conscience of the

possibilities offered by prefixing.

Before we shall pass to further history let us mention a few
drawbacks of SIMULA's concept of prefixing. In SIMULA there are
two system classes which serve as problem oriented languages:
SIMSET and SIMULATION which is prefixed by SIMSET. There is no
tool for enlarging the set of system classes however. SIMULA

has also a restriction: Both arguments of prefixing operation
must be brothers or cousins in the tree of nesting structure of
program modules (same level of prefixing)}, they canncot be in a
nephew-uncle relation (multi-level prefixing). Due to this limi-
tation there is no chance to extend the library of system classes.
Also separate compilation of medules is difficult and of limited
application due to the same reason. LOGLAN a programming language
designed and implemented at the Institute of Informatics, Univer-—
sity of Warsaw, abandons this limitation. It has turned out
however that

1. it is not clear how to understand the prefixing operation if
the restriction is abandoned,

2. it is difficult to find an efficient and correct implementation
of prefixing by a computer system {compiler plus runtime system).
S.Krogdahl [Kr79] has discussed problems concerning many level
prefixing and its implementation. There have been long studies

and discussions in the Warsaw group. A first sclution has been
proposed in 1979 and realized in 1981 by a team led by A.Kreczmar.
The results were interesting and of commercial value.




































































































































































































