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The present paper comes with three messages:

First, we compare four models of deallocation coming to the following conclusion: the allocation/deallocation
system of managing of objects, invented by Antoni Kreczmar [c.f. Cioni and Kreczmar 1984], is better in
every aspect than the systems used in most popular object programming languages. This discussion is
summed up in the Table I.

Second, we (briefly) discuss the eventual benefits of application of Kreczmar’s system in languages like Java
and C++.

Third, for those who eventually would try to incorporate the Kreczmar’s system we are offering its specifica-
tion ATHM. The specification has two parts. First part is an interface-like. Any interface (Java style) limits
itself to listing the functions to be implemented and their types. However, no interface tells what properties
are to be guaranteed. Hence, second part (of specification) is a collection Athm of (algorithmic) formulas.
Together, both parts form the definition of (formalized) algorithmic theory. Now, the goal of implementing
the specification ATHM consist in constructing a class C such that every axiom of Athm is an invariant of
the class C.
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1. INTRODUCTION

The management of objects, especially the problem of efficient and safe memory allo-
cation, plays an essential role in object-oriented programming. A practical system ad-
dressing the problem must be safe (i.e., a deallocated object should be clearly perceived
as absent from all places in the program, preventing an unintended interpretation of
“bad memory” as the contents of an object that formally no longer exists) and efficient,
meaning that the cost of referencing an object (dereferencing an object pointer) cannot
increase too significantly beyond the cost of a simple (machine-level) indirect mem-
ory reference. Typically, the dynamic instances of a program’s modules reside in two
disjoint areas in memory: the stack and the heap. The activation records of functions,
methods, contructors, and blocks are allocated on the stack, while the dynamic in-
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A2 A. Salwicki and A. Zadrozny

stances of structures, classes, and, sometimes, more exotic objects, like coroutines (for
those languages that admit such objects) are stored in the heap. That latter category
of objects is of our primary concern. Owing to the fact that, unlike the former category,
the patterns of their creation and destruction do not follow a simple ordered paradigm,
but are essentially random and arbitrary, the mechanisms of their allocation and req-
uisite bookkeeping are open for discussion and invention, being thus also susceptible
to trends. The first generation of popular programming languages with rudiments of
objects: Pascal and C, opted for simplicity (read efficiency) at the cost of safety. Follow-
ing the (explicit) deallocation of an object, any replicate references to the object within
the program would still point to the old chunk of memory originally used to store the
object, thus creating a hazard. It was up to the programmer to sidestep that hazard by
not touching the old references (pointers) until reset. Note that a mistake consisting
in a reference to a deallocatad object would not, in those circumstances, translate into
an immediate error: a read access would return an incorrect result (that might trigger
an error a potentially long while later), while a write access would potentially corrupt
some legitimate object, often with delayed symptoms difficult to diagnose. When C++
appeared later, inheriting and absorbing the legacy of C under its umbrella, it did not
revolutionize the paradigm of memory allocation for objects, primarily for two reasons:
(1) C++ still preferred efficiency over safety (it was supposed to replace C without af-
fecting the implementation aspects of its C subset) (2) C++ wanted to be compatible
with C (C functions, using the traditional memory allocator, had to be able to coex-
ist with C++ functions within the same program allowing both types of functions to
operate on the same pointers).

Java brought a response to the lack of safety inherent in the traditional approach to
memory allocation for objects in the postulate to completely hide the action of object
deallocation from the programmer’s view. By abandoning pointers (plus the large bag
of pointer trick available to experts in C and C++), and replacing deallocation with the
implicit and invisible garbage collection, Java also simplified object-oriented program-
ming, thus making it accessible to a wider population of programmers (who no longer
needed to be experts on such low-level and mundane aspects of computing as pointers).
C#, introduced by Microsoft as their own “Java”, was basically the same creation when
seen from the viewpoint of run-time memory management. That global paradigm shift
was compatible with the rapid advancements in CPU and RAM technologies making
large and sloppy (less efficient) programs vastly more acceptable than in the early days
of C++. These days, few people care whether the efficiency of non-number-crunching
program can be improved by the factor of 10 or 20 in terms of execution speed or mem-
ory demands for as long as the program appears to work. Following the short initial
euphoria, the sealed, one-size-fits-all memory allocation system of Java (and friends)
begun to exhibit its own shortcomings. The problem was the inability of the program-
mer to indicate to the garbage collector that some objects were less needed than oth-
ers, even though references to them were still present in the program. The standard
example of a situation where this kind of indication would be useful is opportunistic
caching where, by definition, an object stored in the cache (and thus being referenced
by a “pointer”) can (should) be removed when memory becomes scarce. Thus, in 1998
(i.e., three years after the introduction of the first version of Java), the concept of weak
reference was added to the language. The idea was to let the garbage collector remove
an object, if it was reachable solely via weak references. Notably, that solution didn’t
quite solve all problems. As of today, there are four reference types in Java: strong,
soft, weak, and phantom (in the decreasing order of strength) whose role is to cater
to the various flavors of discarding an object without eliminating its reference first.
Judging by the amount of discussion on the web, the four reference types cause more
problems to apprentice Java programmers than pointers ever did to newcomers to C
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or C++. In the latter case the issue was quite simple: one either understood pointers
in their entirety or not at all, whereas in Java the situation is exacerbated by the fact
that one can go some way without any understanding of the underlying problem at
all. The problem, of course, is that there are important circumstances where the cog-
nizant programmer would (should) prefer to exercise more or less direct control over
memory allocation for objects. That was realised quite promptly, also within the com-
munity of (expert) Java developers, despite their initial optimistic attitude towards
garbage collection as the sole and ultimate remedy for all problems of memory alloca-
tion. In this context, as the pendulum seems to have reached the end of its swing, and
is in fact beginning to move in the opposite direction, we believe that the time is ripe
to revisit the valuable and somewhat forgotten ideas behind a solution that strikes
a compromise between the two extremes, i.e., direct (unsafe) deallocation and (total,
unqualified) garbage collection. This solution comes as safe programmed deallocation.

The structure of the paper is as follows. The next section presents the main problems
of object managing systems. Section 3 exhibits three basic ways of object dealloca-
tion. The table I sums up the advantages and disadvantages of the systems discussed
above. We mention that to adapt the system of Kreczmar to existing programming lan-
guages is not an easy task. The future implementors of Kreczmar’s system in JVM or
in the running system of other programming language will need a specification that
is consistent and complete. Section 4 brings such a specification ATHM. We prove the
consistency of it showing a model. We use algorithmic formulas for they are able to
express some properties of Kreczmar’s system that are not expressible in the language
of first-order logic.

2. MANAGING OBJECTS

Proper management of objects plays an essential role in execution of object-oriented
programs. It must ensure safety and efficiency. Poorly designed ways to remove ob-
jects appear unsafe. On the other hand, keeping unnecessary objects slows down the
calculations and may lead to a collapse.

It is commonly accepted that dynamic instances of program’s modules reside in two
non-overlapping fields in memory. The activation records of procedures, functions, con-
structors, and blocks are alocated on a stack. The dynamic instances of classes (and
also of coroutines, if a programming language allows) are alocated on a heap. This pa-
per presents a choice of problems related to the management of heap. In 1980 Antoni
Kreczmar conceived a running system (a virtual machine) for Loglan programming
language c.f.[Kreczmar 1987]]. Later, in the paper [Cioni and Kreczmar 1984] an the ob-
ject management system which is free of dangling references and is efficient has been
described. Hanna Oktaba studied the system and constructed the algorithmic theory
of references and analysed its metamathematical properties [Oktaba 1982]. The pa-
pers of Cioni and Kreczmar and of Oktaba accomplished the task of verification of the
Kreczmar’s system. The system has been thoroughly validated, for it is in use since
more than 30 years as a part of the running system of Loglan’82 object programming
language [Salwicki 2013].

We believe the time has come to compare the system of Kreczmar to other object
management systems and to explain it in terms of an algorithmic theory (different
from the Oktaba’s theory).

Most of presently used object oriented programming languages appeared after 1984
(C++ in 1985, Java in 1995, Python in 1989, Ruby 1993 [Gupta A. 2010[]). No one of
them has a system similar to the Kreczmar’s one.

In C++ deallocation of objects is fast. However, it is well known that the system of
C++ has no protection against dangling reference errors. The instruction delete() is
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executed without any form of control. The same may be said about the programming
language Pascal and its instruction: dispose().

Java programming language forbids the explicit removal of objects. Its system is
free of dangling reference errors, however it is inefficient in protecting against risk of
memory leakage.

We think that it is worthwhile to discover the inventions contained in [[Cioni and
Kreczmar 1984]] and to apply them in practice, for they offer the safety without any
loss on efficiency.

Let us briefly expose the problems. Objects are 1° created, 2° shared, 3° used, and,
4° eventually become not needed, anymore. We shall abstract from many technical
details of object’s creation such as its size, the type of object, the ways the free memory
is organized.

Creation of objects is done through evaluation of object generator expressions, e.g. in
the assignment x := new ClassType(actparams). An object, once created, can be shared
among several variables, inspected, and updated.

Sharing is accomplished by execution of assignment instructions e.g. the assignment
y:=x causes that now the object pointed by x is shared by the variables x and .

Other forms of object’s usage reduce to one of three cases:
inspection — reading the value of an attribute attr of an object e.g. x.attr,
updating — writing the value of an attribute, e.g. x.attr:=8,
servicing — done by calling a method of the object e.g. call x.meth(81).

All three forms of usage should begin with the checking whether the variable x points
to an alive object.

Eventually no further actions on the object will be taken. It is wise to dispose of it.
In these circumstances the designer of an object management system is confronted to
three major threats:

— memory leak problem,
— memory fragmentation,
—dangling references problem.

Below, we explain these terms:

memory leak occurs when objects are created and remain unused. Program
consumes memory. It leads to the slowdown of computations or
even to a complete blockade.

dangling reference A situation when in past some variable x pointed to an object o,
but at present, the object o no longer exists. One says, the vari-
able z is a dangling pointer if any attempt to use the variable
x is treated without an alarm. The system is free of dangling
reference error if any attempt to use the variable x raises an
exception, e.g. caused alarm: reference to none.

contradiction Two variables of different types mutually contradict them-
selves: variable z says I am pointing to an object of type A,
variable y says I am pointing to an object of type B and both
variables point to the same address. This situation may happen
when deallocation created dangling reference(s).

destruction Suppose the object memory system admits the dangling refer-
ences. It may happen that, after execution of delete(x), the dan-
gling pointer y points to the memory frame where a new object
z resides. Then the delayed instruction delete(y) will cause the
destruction of the object z.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Explicit Deallocation without Dangling References | A5

fragmentation There are many slots of free memory, none is large enough to
hold a new object.

A few words on dangling reference error are in order: one may distinguish between
detected and undetected dangling reference error. The second error is a real danger.
Detected dangling reference happens when the virtual machine finds that the value of
a pointer is none (or null). This is an unpleasant situation, for the programmer must
find the cause of it. Undetected dangling reference is much worse for many reasons,
see above. One may ask: if so then perhaps it is possible to equip the compiler in a tool
to detect dangling references errors in advance — before an execution of a program? The
answer is: NO, such an algorithm does not exist. [T]

There exists a variety of object management systems. One may classify them with
respect to different definitions of garbage.

The first, most natural, definition of garbage reads “An object o is a garbage, when-
ever the program instructs (the runtime system) it is no longer needed.”. This definition
is accepted in C++ programming language. A C++ program may contain instruction
delete(x). However, the instruction has a side effect: the dangling reference may ap-
pear. Namely, one can observe some variables that point to segments of memory where
no object resides. A dangling reference may lead to another error of contradicting in-
formation. This phenomenon occurs when two variables point to the same address and
one says: “I am pointing to an object of type A” and the other says “I am pointing to
an object of type B”. Errors of both kinds are difficult in diagnosis and very dangerous
ones. There is no algorithm to detect the dangling reference in the text of program. For
the problem is reducible to the halting problem.

Another definition of garbage reads: “Object with no references to it, is a garbage”.
Some programming languages try to keep track of references with reference counters
(e.g. Python [Wikipedia 2013b]). In this way a garbage collector can easily identify
objects with reference counters equal zero as garbage. However, by introducing refer-
ence counters one creates an overhead in code’s length and also in execution time. The
result is a slowdown of execution (A. Appel says “On the whole, the problems with ref-
erence counting outweigh its advantages” [Appel 1998] p.264). The same opinion had
0O.-J. Dahl, the father of object oriented programming [Dahl 1974]. Let us recall that
reference counters do not help in recognition of cycles of no longer needed objects.

Subsequent definitions of garbage base on different types of references. Namely, one
differentiates weak references from normal ones. Now, “Object o is an garbage if there
is no normal reference to it, even if there exist weak reference to o”. The weak references
were introduced with two aims: 1° to decrease the cost of reference counting, 2° to
diminish the risk that some objects will be kept because the programmer forgot to
nullify all references to it.

All three types of object management systems have certain deficiencies. The question
arises: is it possible to replace operation delete by another operation, say kill, such that
kill has no side effect of dangling reference. In [Cioni and Kreczmar 1984] it was shown
that there exists an objects management system with kill operation.

Any program that intensively creates objects and deallocates some, may cause frag-
mentation of the object memory. Sometimes, the situation may be improved by the
defragmentation |

1Should an algorithm A for detection of dangling reference errors in source program exist, then we would
construct another algorithm B to detect whether any given program will terminate or not. This is known to
be impossible.

2In [Cioni and Kreczmar 1984] the authors use the word compactification.
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The system designed by Kreczmar integrates the features mentioned above. For it
allows to:

— deallocate no longer needed objects (kill operation),
— compactify heap of object (defragmentation),
— collect garbage, i.e. objects that are not accessible.

Below we compare four different systems of managing objects.
We indicate that it is desirable that the languages and running systems satisfy the
following conditions:

rl) For every type (class) 7', for every variable z. If the variable x is of type T then its
value is an object of a subclass U of class T or x = none.
(This is a fundamental invariant (i.e. axiom) of any true object system)

r2) For every object s it is possible to distinguish the fields containing pointers to
objects from the fields that hold values of primitive types, like e.g. integer, float,
boolean,...

3. VARIOUS SYSTEMS OF OBJECT MANAGEMENT

In this section we briefly present the solutions taken in different object oriented lan-
guages.

3.1. Model A - e.g. C++, object Pascal, Objective C

We shall limit our considerations to the programs free of malloc instruction. For malloc
instructions break the rules r1, r2, listed above.

Object y can be deleted with delete(y) statement. The effect of this instruction can be
exemplified by the following implication

(x ==y ==zl = null) = {delete(y);y = null; } (y == null Az == z! = null).

before statement after

The variables z,z that were pointing to the removed object preserve their value. It
leads to the dangling references error. It is normal and expected that an attempt to
read the value of y.attr throws an exception. However an evaluation of x.attr may re-
turn a nonsensical value instead of exception — this is the danger of dangling reference
error — a signal is not raised when it should be.

The error can be avoided if all those variables are nullified x = null;...2 = null;.
It is a task of a programmer to remember all variables referring to the object getting
deallocated and to nullify all of them prior to instruction delete. Obviously it is an error
prone approach. An automatic completion of the instruction delete(y) by the instruction
y=null can be done easily in many ways. However, it is programmer only who can add
the instructions x=null; z=null;

3.2. Model B - e.g. Java, Python et al.

Already the report on language Modula3 [[Cardelli et al. 1989|] drew attention to the
threats of hanging references and summoned non-existence of an algorithm that could
detect such errors. In Java white paper [Gosling and McGilton 1995]] there are quite
a few statements describing this problem and justifying the ban of delete instruction.
Instead of delete() instruction there is a Garbage Collector mechanism, which frees
programmer from manual removing of references to objects.

Soon, the opinion that garbage collector is an ultimate solution in objects manage-
ment was verified. Three years after first version of Java (1995), in JDK 1.2, weak
references have been introduced. Why? It turned out, that in many cases a program-
mer forgot to nullify ALL references to an object destined to deletion, or one simply was
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not aware of some references created by a data structure. To decrease the number of
such mistakes, the notion of weak reference was proposed. [Wikipedia 2013c]. A devel-
oper can declare variable as weak reference. Weak references do not change reference
counter in cPython [Wikipedia 2013all, and garbage collection algorithm does not take
them into account in Java. If there are no strong references to object it is considered
for collection. Even if there are some weak references to it.

Remark 3.1. Let’s consider the following situation from Java:

weak
r1:21 — 0 and  Yyear = 1

One may say: if weak reference y refers to some object o, then there exists a strong reference x;
to the same object

Yweak * Yweak —7 O = (3 in) Ti—0
This is only partially true. After operation z; := null the weak reference y...r continues to
refer to original object o for some time. Only after run of garbage collection mechanism object
is disposed, and weak reference is nullified. Due to non-deterministic implementations of most
garbage collectors developers cannot predict, nor effectively enforce collection.

O

Remark 3.2. As long as weak reference to the object exists one can create a situa-
tion when object intended for collection will be restored to life:

Disposable tg = new Disposable();
/* A new Disposable object o is created, tg is a reference to the object o */
WeakReference<Disposable> weak_tg = new WeakReference<Disposable>(tg);
/* creates Weak Reference to the same object o */
tg =null;  /* remove last normal reference to the object o
The object o is ready to be collected */
System.gc(); /¥ This is a hint — not an obligation — to activate GC */
Disposable tg2 = weak_tg.get();
/* It may happen that GC was not activated.
And operation get will reestablish a strong reference to the object o */

This will happen when instruction System.gc() will be ignored for some reason by the
virtual machine.

3.3. Model C — Tombstones

There is a way to handle objects that allows to deallocate objects and to avoid dangling
references. The technique is known as tombstones cf. [Lomet 1975], [Gabbrielli and
Martini1 2010] p.248. Every time an object o is created (e.g. by execution of x:= new
C(...) ), the virtual machine creates an additional object ¢ - the tombstone of the
object 0. The content of the tombstone is either physical address of object o or null.
The value of the variable x of type C is the physical address of the tombstone ¢. An
assignment y:=x; copies the address of ¢ to y. Any access to the object o requires two
memory cycles. Deletion of the object o can be done safely. It suffices to put null as the
new value of the tombstone ¢ and recycle the memory frame occupied by the object
o. It seems that no object programming language uses this technique. There is some
amount of prejudice concerning the cost of tombstones. Most comments repeats that
the overhead is too big. One may observe that these comments are not accompanied
by any form of arguments. We may add that the extra cost in time and space is worth
its price for the threat of dangling references is enormous. Moreover, the critique of
costs was written some 30 years ago when the speed of computers and the size of
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memory were significantly smaller. Tombstones seem to be an ideal solution. For they
offer the safety for a reasonable price. However the tombstones have some drawbacks.
Namely, there is no way to get rid of tombstones themselves. They accumulate and one
is confronted with the phenomenon of memory leak again. Perhaps this is the reason,
for which no popular programming language uses the tombstones.

An attempt to overcome this problem was proposed in [Fisher and Leblanc 1980],
in a paper on debugging Pascal programs. We quote the entire description of their
proposal.

“An attractive method of pointer checking is to represent a pointer as a pair (key, ad-
dress) and head each allocation from the heap with a lock field. When a pointer is used,
the key value must agree with the lock field of the object referenced. This is again a very
efficient run-time test. It does not provide absolute security since the key field is sim-
ply a bit pattern that could be fabricated by a malicious user. This relative security is
acceptable if accidental fabrication is very improbable.”.

This concept was implemented 30 years later c.f. [Nagarakatte et al. 2010]. The paper
describes the results of applying the idea of Fisher and Leblanc in debugging the C
programs. Curiously, the authors are unaware of the earlier work.

The structure is known as “keys and locks" c.f.[Gabbrielli and Martini 2010]]. Krecz-
mar, independently found a similar solution. The paper [Cion1 and Kreczmar 1984]
contains details of implementation as well as the proof of correctness.

3.4. Model D — Loglan’82

In 1979 Antoni Kreczmar asked the question: is there a data structure with three oper-
ations: allocation, member and deallocation, such that operation of deallocation is safe
and efficient and the operation member is of low cost? He invented such data struc-
ture and implemented it as a part of Loglan’s running-system. We are stressing, that
the approach was a comprehensive one. It does not limit itself to the operations of
allocation and deallocation. A. Kreczmar was conscious of the great importance of the
operation member. For it is very frequently executed, at each acces to an attribute of an
object. The cost of member is small, three machine instructions. Moreover, a program-
mer may switch off the checking if he/she is certain that no dangling reference appear.
In the sequel we shall use an abbreviation AK to denote the Kreczmar’s system. The
results were presented at Poznan symposium [Bartol et al. 1980] in 1980. In 1984 an
article [[Cioni and Kreczmar 1984] apperared with the details of implementation and
the proof of correctness. Since 36+ years the system is in use in the Virtual Loglan Pro-
cessor and hence it is fully validated in addition to the verificaton done in the paper
[Cioni and Kreczmar 1984]. An informal presentation was done above in section [1} Its
specification is contained in the section

3.5. Comparison

In the Table Il we compare the ways different programming languages deallocate ob-
jects. We distinguish three groups of the languages: the first group consists of the
Loglan’82. The languages of the second group admit programmed deallocation (C++,
Pascal, etc.) The third group contains the languages that forbid deallocation, and rely
on garbage collection. The following five aspects were taken into consideration: Pre-
condition - common in all cases, Code - that leads to deallocation, Post-conditions -
observe the differences, Cost - order of time units needed, Risk - that deallocation
fails and leaves the object intact, or that an error occurs.

Some explanations concerning cost of deallocation operation seem necessary: The
cost of delete() in C++, dispose() in Pascal, and free() in Ada are known [Stroustrup
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2013} lJensen and Wirth 1974} [Barnes 1996]. The cost of kill() is calculated in [Cioni
and Kreczmar 1984], and it will be explained below, see Appendix A. The cost of any
garbage collector gc() is known as O(m), where m is the size of heap i.e. object memory.

Note, any garbage collecting algorithm must visit each object in the heap.

Table I. Three models of deallocation of objects.

Model D
(e.g. Loglan’82)

Model A
(e.g. C++, Pascal)

Model B
(e.g. Java, Python)

Pre- Certain object o is referenced by the variables z1 = z2 = ... =z, 1<i<n.
Code r1 = null;
kill(z;) delete(z;); z2 = null;
x; = null
Ty = null;
Now, the instruction
gc()
the object o will be deleted.
Post-  All the variables took the Object o has been deleted. Object o has been deleted
value none. The variable z; has the - under condition that all
Object o is deleted. value null. Other variables the strong (normal) refer-
point to the deleted frame ences to the object have
— it is a dangerous error — been earlier assigned the
dangling reference. null value.
Cost o(1) O(1) O(n+m)
m is the global size of the
heap of objects.
Risk No risk(!) If n>1 then dangling refer- Chances that programmer
For each attempt to read ence error occurs. will forget to nullify some
and/or write from the High probability of the er- reference to the object o

deleted object will raise an
error signal reference to
none.

ror of contradicting infor-
mation and/or destruction
error.

and hence that the object
will remain not deleted.

4. IS IT WORTH TO INSTALL THE SYSTEM AKIN ...?

In this section we discuss briefly the possible advantages of implementing the Krecz-
mar’s system in most popular programming languages.

4.1. Java?

Java is proud of banning the free command of the language, see [[Gosling and McGilton
1995]. It says: no free command — no dangling reference errors and the gc() command
will take care of memory leakage problem. It is true, but at what cost?

Consider the following piece of code

class Complex { }
/* A declaration of class complex with methods: add and mult */
Complex x,t,z;
[* three variables of type complex are declared */
z=new Complex(3.0, -4.5);
t=new complex(-21.9, 21.9);
x=t.add(z.mult(new complex(3.2, 4.3)));
z=x.mult(z.add(x));
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[* seven objects created, four of them are garbage®/

Nothing unusual yet. The garbage collector gc() will dispose them. Now, imagine that
the program creates a lot of garbage. This happens in scientific or engineering projects.
Imagine the four assignments seen above, are inserted inside a for- statement and
executed say 100000 times. How many garbage objects are created?

Using kill() instruction would save a lot of work. Right...?

4.2. C++

We are convinced that it is worthwhile to equip C++ with a system similar to this of
Kreczmar.

— For it eliminates the risk of dangling references. Each attempt to acces a killed
object will raise an exception reference to none and a proper diagnostic of the error.

— It also protects against the errors of destruction and contradiction.

— Together with the operations kill and member, the operation gc() - garbage collector
— may be offered to programmers use.

Someone may argue that debugging a program allows to identify the threats and
eliminate them. It is not true.

System of Kreczmar garantees that Debugging may mitigate the risk of
eventual dangling reference will be exploits, however it does not elimi-
detected and a warning will be issued nate the risk of undetected dangling
in the form of exception. reference.

We are leaving to the reader the estimation of profits.
For those who object: "the cost of new system of heap management is too high", we pro-
pose to use a compile-time switch that turns off the checks. Attention! the programmer
may switch off checks at his/her responsibility.

One simple remark: installing the system AK in Java or C++ is not an easy task.

5. ALGORITHMIC SPECIFICATION OF KRECZMAR’S SYSTEM

Below, we present a specification of the Kreczmar’s heap management system. A spec-
ification S is an extension of an interface by a set Ax of algorithmic formulasE] The set
Axz may be used in the process of analysis of an application. We present an example
of reasoning on a program in Appendix B. The formulas of the set Ax are used as ax-
ioms. The same set of formulas may be used as a criterion of correctness. Namely, we
shall accept a class C as a model of the specification S if the class C' implements all
the methods listed in the specification S and moreover it does it in such a way that all
formulas of the set Ax are invariants of the class C.

The specification contains a few lines with the signature of operations (in Java it
would be called an interface) and a few lines of invariants (or axioms). The invariants
are algorithmic formulas.

We are showing that there exists a programmable model of the specification. By the
more general property of algorithmic logic it follows that the specification S is free of
contradictions i.e. it is consistent.

3We suggest the reader to browse the book [Mirkowska and Salwicki 1987]] on algorithmic logic.
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5.1. Informal description

The universe of a heap managing HM system consists of states and objects. A state may
be viewed as a finite set of objects. For the purpose of the present work we can abstract
from the structure of objects, of their types, even from their size. Therefore we shall
speak of frames instead of objects. In order to make our presentation easier to follow,
e abstract from the limitations on the size of states. This limitation is inessential one.

The universe of HM system consist of three sets
U = Frames U States U {none}
with the following operations:

reserve : States — Frames

insert : Frames x States — States

delete : Frames x States — States
member : Frames x States — {true, false}
initSt € States

kill : Frame x States — States

States are finite sets of frames. For each state s function reserve returns a frame f
from outside the state s, that is f does not belong to s. For each pair (e, s) operation
insert returns the set-theoretical union of the set s, and the element e. Similarly, oper-
ation delete returns the set s’ that results by the deletion of element e from the set s.
The element initSt is the empty set.

One can easily translate all we said above into an interface:

HM interface {
Frame reserve(State s);
State insert(Frame f, State s);

State kill(Frame f, State s):
!

But, how to express the properties of all these methods? How to exclude a chance that
someone will implement insert as a push f into stack? etc. We are going to use the
language of algorithmic logic (aka calculus of programs) to write down the properties
of HM system. The calculus will help us to study the questions of consistency and
completeness of this set of formulas.

5.2. Algorithmic theory ATHM of heap management

In this subsection we develop a specification of the Kreczmar’s system in the form of an
algorithmic theory, i.e. a theory based on algorithmic logic instead of first-order logic
c.f. [Mirkowska and Salwicki 1987]]. Our theory AT HM differs from the one proposed
by Hanna Oktaba [[Oktaba 1982] by the presence of functor kill and the corresponding
axiom of kill.

40One can add these ingredients of object’s size and its content later.
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Each formalized algorithmic theory 7 can be identified with a triple 7 =
(L,C, A), where L is a formalized algorithmic language, C is the syntactical con-
sequence operation defined by the notion of proof. The last element of the triple
is the set A of axioms specific for the theory 7. We can assume that the notion of
proof is defined on the basis of the sets Ay of axioms and R the set of inference
rules of algorithmic logic.

The formalized algorithmic language £ of our theory AT HM consists of three
sets of well formed expressions: terms T, formulas F, and programs P. The al-
phabet of the language contains the sets of variables, of functors, of logical func-
tors, of program connectives, and auxiliary symbols like parentheses, commas,
etc.

The set of algorithmic formulas is the least set of expressions that contains all
first-order formulas over the same alfabet and is closed with respect to the usual
formation rules.Moreover, for any program K and any algorithmic formula «, the
expression K« is an algorithmic formula.

We shall consider variables of type F - for frames, usually denoted by f, f/,... and of
type S - for states,usually denoted by s, ¢/, ....
The set of functors and predicates of the theory’s language consists of:

res: S — F

amb: S — F

ns: FxS—S8

del: FxS—S

mb: F x S — {true, false}
kill:F xS — S

and two constants none ¢ {F'U S} and eS € S. The value of any variable f of type F is
a frame, or none.

The logical consequence operation - is defined as in [Mirkowska and Salwicki 1987]
Axioms specific of the theory AT HM are given below

HM,) Vses ~mb(res(s),s)
For every state s, operation res(s) returns a new frame, not an element of s
HM,) Vyep ~mb(f,eS)

the initstate eS is the empty set of frames

while s £ ¢S do
HM3) Vses { s := delete(amb(s), s) } (s=e9)
od

For every state s, the program while (above) terminates, hence, every state is a finite set of frames
HM,) Vies s # eS = mb(amb(s), s)

For every non-empty state, function amb returns a member of the state s
HM;) Ve rVes{s' = ins(f,s)}mb(f,s') AVper(f # f = mb(f',s) < mb(f',s"))

operation ins adds frame f to the state s

HMe) VicrVses{s’ = del(f,s)}(=mb(f, ') ANVper(f # f = mb(f',s) < mb(f',s"))

operation del deletes frame f from the state s
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begin
sl :=s; bool := false;
while s1 # eS A —bool
do
HM7) mb(f,s) & f1:=amb(sl); bool
if f = f1 then bool := true fi;
sl:=del(f1,s1);
od
end
This formula defines the properties of relation member. It is not an implementation however. We pos-
tulate that the implemented cost should be constant.

HMy) The operation kill is characterised by the axioms of the following scheme.
The index k£ may be any natural number k£ > 0,let 1 <1 < k.

((fr=...= fu) A\mb(f1,5)) = [s" == kill(f;,s)] (f1 = ... = fr = none)

precondition statement postcondition

Any formula of this form is an axiom, it tells that operation kill in one move nullifies all the references
to the object pointed by the variable f;. And indeed, in the system of Kreczmar the cost of the operation
kill is constant.

5.3. Applications of the specification

The above set of algorithmic formulas defines the requirements imposed on a class to
be implemented. Moreover, it allows to prove some useful facts, i.e. the theorems of the
ATHM theory.

THEOREM 5.1. The program in the axiom HM; never loops, more precisely
begin

sl :=s; bool := false;

while s1 # eS A —bool

do

{HM1 -6} FVeesVser f1:=amb(sl); true
if f = f1 then bool := true fi;
sl:=del(f1,s1);

od
end

For the proof see the Appendix B.

THEOREM 5.2. For every state s, the following program terminates
begin

s’ = eS;

while s # ¢S do

r:=res(s’); _

(HM1-8} - Vses if mb(r, s) then s := del(r, s) fi; (s =e3)
s’ :=ins(r,s)

od
end

i.e. the operation res: reserve a new frame, may replace the operation amb in the pos-
tulate that every state is a finite set of frames.
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The following two instructions are included in a body of operation new
f:= res(s); s:= ins(f}s);

i.e. reserve a new frame and include it into the set of reserved frames. Now, with this
information in mind one may deduce the important fact

THEOREM 5.3. Let T be any class, let (ay, ..., ai) be a list of actual parametres.
{HM1-8} - new T'(aq,...,a;) # new T(aq,...,ax)

5.4. Properties of the specification

One can investigate the properties of the specification itself. We are able to state an
important metatheorem about the system of axioms in HM. The following theorem
was not formulated in [Cioni and Kreczmar 1984]]. H. Oktaba proved a theorem on
consistency for a similar set of axioms [Oktaba 1982], basically it was the set {HM; -
HM; }.

METATHEOREM 1. (on consistency of the set {HM1-8} )
The system of axioms HM| — HMg has a model.

For a sketch of the proof see the Appendix A. The model constructed in the proof will
be called the standard model.

H. Oktaba proved another important fact:

METATHEOREM 2. (representation theorem)
Every two models of the axioms HM, — HM; are isomorphic, up to implementation of
operations amb and res, to the standard model.

Everybody agrees that the operations res and amb may be implemented in several
versions. Many different implementation of res (respectively amb) operation allows to
prove that the requirements mentioned in the axioms HM; and HM, are satisfied.
Therefore, it is not easy to prove the representation theorem for the axioms HM; —
HMj5. One must fix somehow his choice of the res operation.

5.5. Variations of axiom’s system
Are the simplifications we made important? One can easily observe two points:

— One can consider a slightly different operation reserve - with a parameter appetite
defining the size required for an object. This can be easily done by modification of
the signature res : S x N — F' and leads to a new (consistent) set of axioms.

— Another extension of our system HM is defined when one describes the internal
structure of an object. (The structure is determined by the declaration of class). This
extension is also consistent.

Till now we needed not to introduce an operation of garbage collection. In our abstract
version the set of Frames is isomorphic with the set of natural numbers.To make our
theory more realistic we should introduce a postulate that the set of frames is finite.In
this case a need arises of garbage collection.

One can ask how to express the property the set F'r of frames is finite? The answer is
easy:
HMy)  JssestVrerrmb(f, so)
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Which reads: the set of frames is equal to some state, hence Fr is a finite set.

The set of the axioms HM; — HMj is inconsistent. However, it is quite easy to repair it.
We leave this as an exercise. Hint. Introduce a predicate full, a dual to the predicate
empty.

6. FINAL REMARKS

Let us remark that since Java was introduced in 1995, the memory size has grown
thousand times, from megabytes MB to gigabytes GB. The cost of garbage collection
increased accordingly. For each algorithm of garbage collection must touch each cell of
objects memory.

In the paper [Cioni and Kreczmar 1984]] the memory management system is treated
as a whole. The problems of garbage collection and dangling references were not sep-
arated. The safety question does a given pointer points to an alive object takes the
central place of the system.

In Loglan’82 operation kill() is safely implemented with low, fixed cost. Each access
to an object is checked, and it is done through three machine instructions only.

The heap management system of Loglan’82 is richer,it offers five operations:

— creation of a new object — x := new TY(),

— disposal of an object — kill(x),

— member(x) — verification if the value of a variable x is an alive object
— compact() — defragmentation of unused memory

— gc() — garbage collection

The frequency of garbage collection is reduced due to following discipline:

1° kill operation is called whenever an object should be deleted, the freed frame is
added to the list of free memory frames,

2° during an operation of creation new object, the list of free memory frames is
checked and used, prior to slicing a fragment of unoccupied memory (between the
stack and the heap),

3° the operation of compactification (i.e. defragmentation) has priority over operation
of garbage collection. (The cost of defragmentation is less than the cost of garbage
collection.)

Open question.
Is it possible to construct the heap management system of better features (a cheaper
or faster one)? An author of a (verified!) answer will obtain a prize of 50 Euro.
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Appendix A - How to construct a model of ATHM theory?

In this section we gather remarks useful in the process of implementing the axioms/invariants of the theory
ATHM.

METATHEOREM 1. (on consistency of the set {HM1-8} ) The system of axioms HM1 — HMS8 has a model.

This theorem does not appear in the paper [Cioni and Kreczmar 1984]. However, the construction of the
heap management system and the proofs of invariants contained there, lead in a straightforward way to the
proof of the metatheorem 1. We shall not repeat the detailed discussion, instead we present the main points.
The presentation in [Cion1 and Kreczmar 1984] is loaded with the details concerning the ways to treat the
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retrieved memory. For this presentation we shall assume that no limit is imposed on the memory and we
shall not explain how to organize the memory retrieved from deallocated objects. We hope that the reader is
able to fill this gap.

Kreczmar observed that the question: does a variable x points to a live object? is the principal one. The
notion of a dead object was known in the context of garbage collection. A dead object need not to be deleted
immediately. It is enough to guarantee that it will be deleted in some future. And indeed in some program-
ming languages the garbage collection may refuse to start immediately when called by gc() instruction, cf.
[Aho et al. 2007], Kreczmar considered the whole life cycle of object.

new F(...)
' Creates & initializes |
X:=
r Alive |
Kill
Dead

Fig. 1. Diagram of states of an object

Kreczmar remarked that the answer to the question: is the object x alive? is more important than the task
of calculating the physical address of it.

Digression. Nobody is astonished that a compiler first checks whether the indexed variable A[i] exists
and later calculates its physical address. In some languages this check is obligatory. End of digression

The first proposal is to use the concept of tombstones cf. [Gabbrielli and Martini 2010]. Remark that
tombstones do not eliminate the error of memory leakage. Using tombstones one can retrieve the portions
of memory previously occupied by objects. But how to retrieve the tombstones?

Kreczmar proposed another solution: object consists of a frame and a handle to it. The information con-
tained in a handle allows to: 1°identify the frame (i.e. to calculate its physical address), and 2°answer
whether the object is alive or not.

Objects = Frames x Handles
Now, a handle h to an object o contains two pieces of information:

h[0 ] - a reference to the object, i.e. its physical address,
h[1 ] - an identification link of the object = serno.

Each object upon its creation obtains a unique, serial number. This number is stored in the object itself and
also it is stored in the handle, as its second element A[1].

In the table Il below we are sketching the implementation of the operations creation, disposal, member.
Operation create is defined as the composition of operations reserve and insert. Similarly operation disposal
uses the operation delete.

Now, the proof of METATHEOREM 1 may proceed by the induction w.r.t. the number of executed operations
create, access, disposal. The thesis we are going to prove is Let the value of a variable x is (b, key). Then
x # none iff key = lock i.e. =Memory[b+1]
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Table II. High points of Implementation

action

example

code

creation

access x.attr

(is alive?)

disposal kill(x)

x:=new T(length )

find a piece of free memory of the size
length, and second of size 2. Let fr and
h be their addresses respectively.

new object is <fr, h> ;

frl0] < length; h[1]«+ serno;

h[0] < fr; [0] « h; z[1] + serno;
serno < serno +1

h « z[0];

if h[1] = z[1] then addr < h[0] else
signal exceptionReferenceToNone fi;
return addr|attr]

h + z[0]; h[1] < h[1] + 1
and manage the retrieved memory

Appendix B - proof of Theorem 4.1

The aim of this section is to show the advantage of specifications over interfaces. Profits of specification
follow from the possibility to use it as a base for formal proof of an application. The proof uses the calculus

of programs, i.e. algorithmic logic.

THEOREM 4.1 The program in the axiom HM~; never loops, more precisely

{HM1 -6} - Vses

begin

sl :=s; bool := false;
while s1 # eS A —bool

do

f1:=amb(sl); true

if f = f1 then bool := true fi;
sl :=del(f1,s1);

od
end

PROOF. The proof takes only 10 steps. We start with the axiom HM3. In each step we are using one
axiom and/or one rule of algorithmic logic. All these tools are quoted below for the convenience.

begin K; M enda = K (M «).

(= B)

while 8 do K od true = while o do K od true
while a do K od true, (M; K a) = K «

while a do K; M od true

Az1g
Az1g (@ :=7)y=(v(z/7)
R a,(a=B)
B
(o= B)
H (Ka = Kp)
auzy
auzs
a, M true
aurs -
M o
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The formal proof of the theorem is given below.

while s1 # ¢S do

1) Vsies dsl := delete(amb(sl), s1) (s1 =eS) axiom HMs3

o
let us denote the program by K

2) (sl =eS) = true tautology

3) Vsies K(s1 =eS) = Vs1es Ktrue from 2) by R2 rule
while s1 # ¢S do

4) Vs1es dsl := delete(amb(sl), s1) » true from 1) and 3) by R1
o

5) {sl:= delete(amb(sl), sl)} a = {f1:= amb(sl); sl := delete(f1,s1)} o by Az18
« is any formula that does not contain the variable f1
while s1 # eS do
6) Vsies f1:=amb(sl); sl:= delete(f1,s1) » true from 5) and 4)
od

while s1 # ¢S do
f1:=amb(sl); sl:=delete(f1,s1)

7) Vsies if f = f1 then bool := true fi; true by auzl rule
od
while (s1 # eS) A —bool do
1:=amb(sl); sl :=delete(f1,s1)
8) Vsies {ff f1 t(hel)'x bool := true ﬁ It true by aux2 rule
od
sl :=s; bool := false;
while (s1 # eS) A —bool do
9) Vses f1:=amb(sl); sl:=delete(f1,s1) true by auxs applied twice
if f = f1 then bool := true fi;
od
begin
sl :=s; bool := false;
while (s1 # eS) A —bool do
10) Vses f1:=amb(sl); sl:=delete(f1,sl) p true by Ax19
if f = f1 then bool := true fi;
od
end
O
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