Ułamek piętrowy: Różnice pomiędzy wersjami

Z Lem
Skocz do: nawigacji, wyszukiwania
Linia 5: Linia 5:
 
<math>\dfrac{\dfrac{2^{k_{x}}-1}{3}  \cdot{2^{k_{x-1}}-1}}{3}  </math><br />
 
<math>\dfrac{\dfrac{2^{k_{x}}-1}{3}  \cdot{2^{k_{x-1}}-1}}{3}  </math><br />
 
lub <br />
 
lub <br />
<math>  \dfrac{\dfrac{\dfrac{2^{k_{x}}-1}{3}  \cdot {2^{k_{x-1}}-1}}\cdot 2^{k_{x-2}}-1 }{3}  }}{3}</math><br />
+
<math>  \dfrac{\dfrac{\dfrac{2^{k_{x}}-1}{3}  \cdot {2^{k_{x-1}}-1}}\cdot 2^{k_{x-2}}-1 }{3}  }{3}</math><br />

Wersja z 20:50, 3 cze 2024

Czy każdą liczbę naturalną można przedstawić jako yłamek piętrowy następującej postaci?

[math]\dfrac{2^{k_{x}}-1}{3} [/math]
lub
[math]\dfrac{\dfrac{2^{k_{x}}-1}{3} \cdot{2^{k_{x-1}}-1}}{3} [/math]
lub
[math] \dfrac{\dfrac{\dfrac{2^{k_{x}}-1}{3} \cdot {2^{k_{x-1}}-1}}\cdot 2^{k_{x-2}}-1 }{3} }{3}[/math]