Axiomatic definitions of sublanguages of Loglan'82
On these pages we shall attempt to develop a sequence of algorithmic theories that correspond to a sequence of sublanguages of of Loglan'82 language.
Here we shall present an increasing sequence of sublanguages [math]\mathcal{L}_0\subset\mathcal{L}_1\subset\mathcal{L}_2\subset \mathcal{L}_3\subset\mathcal{L}_4\subset \dots[/math]Loglan'82. For each language [math]\mathcal{L}_i[/math] we shall present its grammar and some axioms and inference rules that define its semantics.
Spis treści
Program
Program in Loglan'82 has the following structure
| definiendum | definiens | 
|---|---|
| program | program <name>; 
 begin 
 end | 
where name is any identifier, i.e. a finite sequence of letters and digits beginning with a letter.
The declarations and instructions are finite sequences of declarations and instructions respectively, empty squence included.
This allow us to define the first sublanguage [math]\mathcal{L}_0[/math] of Loglan'82.
[math]\mathcal{L}_0 \stackrel{df}{=}\{p\in \mathcal{A}^*: p=\textbf{program}\ \textit{id}; \textbf{begin end} \}[/math]
Programs of the language [math]\mathcal{L}_0[/math] are empty programs, they posses just a name. Their list of instructions as well as list of declarations are empty. The effect of execution of such program is do nothing.
Now we shall define a new language [math]\mathcal{L}_{0.1}[/math]. First, we say that any expression of the form:
writeln;  
 
write(integer); 
write("here your text"); 
is an output instruction.
[math]\mathcal{L}_{0.1} \stackrel{df}{=}\{p\in \mathcal{A}^*: p=\textbf{program} \textit{ id}; \textbf{begin} \lt\textit{output instructions}\gt \textbf{end} \}[/math]
| program print; begin  
 end  | 
Primitive types
Characters
The type char is a finite set of characters. No operation is defined on charcters. However one can compare two characters.
'a' = 'a'
'a' =/= 'c'
The language [math]\mathcal{L}_{1.1} [/math] allows to declare variables of type char and to assign values to the variables. Assignments
Example
program characters;
-  var c1,c2,c3:char
 
begin
- c1:='p';
 
- c2:='d';
 
- writeln(c1,c2); 
 
- c3:=c1; 
 
- c1:=c2; 
 
- c2:=c3; 
 
- writeln(c1,c2) 
 
end
Exercise
Guess what will print this program.
One need not to guess. We have much better tool. 
Lemma
[math](c_1=a \land c_2=b)\Rightarrow [c_3:=c_1; c_1:=c_2; c_2:=c_3](c_1=b \land c_2=a) [/math]
I.e. the execution of three instructions causes swap of the values of variables [math] c_1, c_2 [/math].
Proof uses two axioms of algorithmic logic: 
[math]\begin{equation}\tag{Ax:=}[x:=\tau]\alpha \Leftrightarrow \alpha(x/\tau) \end{equation} [/math] 
this axiom of assignment instruction reads: formula  [math]\alpha(x/\tau)[/math]  holds iff after execution of instruction   [math]x:=\tau[/math] formula  [math]\alpha[/math]  holds.
[math]\begin{equation}\tag{Ax ;}[K; M]\alpha \Leftrightarrow [K][M]\alpha  \end{equation} [/math]
and the inference rule 
[math]\begin{equation}\tag{R2}\dfrac{\alpha \Rightarrow \beta}{M\alpha \Rightarrow M\beta}   \end{equation} [/math]
Now observe that the following formulas are equivalent
[math]\begin{align*}{}
&(c_1 =a \land c_2=b)&             & \\
\Leftrightarrow &(c_1 =a \land c_2=b \land c1=a)&             & \mbox{by propositional calculus} \\
\Leftrightarrow & [c_3:=c_1](c_3=a \land c_2 =b \land c_3=a) &       & \mbox{by Ax :=} \\
\Leftrightarrow &  [c_3:=c_1][c_1:=c_2](c_3=a \land c_1 =b \land c_3=a) &       & \mbox{by Ax := and R2} \\
\Leftrightarrow &  [c_3:=c_1; c_1:=c_2](c_3=a \land c_1 =b \land c_3=a) &       & \mbox{by Ax ;} \\
\Leftrightarrow &  [c_3:=c_1; c_1:=c_2][c_2 :=c_3](c_2=a \land c_1 =b \land c_3=a) &       & \mbox{by Ax := and R2}\\
\Leftrightarrow &  [c_3:=c_1; c_1:=c_2; c_2 :=c_3](c_2=a \land c_1 =b \land c_3=a) &       & \mbox{by Ax ;} \\
\end{align*}  [/math]
Boolean
Syntax
Axioms
Example
program Boole;
-  var a, b, c, b1, b2:Boolean
 
begin
- b1:=a or b;
 
- b2:=b1 and c;
 
- writeln(b1, b2)
 
end
Declarations of variables. Assignment instructions
Example
program  P2 ;
- var x,y: integer;
 
begin
- y:=74;
 
- x:= y+ 8;
 
end
Grammar
Context free grammar
Well formed expressions
Axiom
[math]\{x:=\tau\}( \alpha ) \Leftrightarrow \alpha(x/\tau)[/math]
