Collatz theorem: Różnice pomiędzy wersjami

Z Lem
Skocz do: nawigacji, wyszukiwania
(Elementary theory od addition of natural numbers and its models)
(Elementary theory od addition of natural numbers and its models)
Linia 56: Linia 56:
  
 
Nonstandard model of Presburger arithmetic
 
Nonstandard model of Presburger arithmetic
<math>
+
<gallery>
<script type="text/tikz">
+
Plik:http://lem12.uksw.edu.pl/images/2/2e/MonStandardModel.png|Podpis1
  \begin{tikzpicture}
+
</gallery>
    \draw (0,0) circle (1in);
+
  \end{tikzpicture}
+
</script>
+
</math>
+
  
 
==Algorithmic theory of natural numbers ==
 
==Algorithmic theory of natural numbers ==

Wersja z 05:54, 27 wrz 2022

Collatz conjecture is valid in the standard structure of natural numbers, therefore it is Collatz theorem .

Finally!
Many people worked on the Collatz problem for more than 83 years.
We succeeded. The statute of 'Collatz conjecture" is now Collatz theorem.
Here is a version of June 5, 2022 theorem of Collatz submitted to TCS Journal .
An abridged version of the proof is here.

ntroduction

Rozpatrzmy zdanie
dla każdej liczby naturalnej [math]n[/math], poniższy program [math]Cl [/math] ma obliczenie sończone
[math]\color{blue}\qquad Cl:\,\left\{\begin{array}{l} \mathbf{while}\ n \neq 0 \ \mathbf{do} \\ \quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbf{fi} \\ \mathbf{od} \end{array}\right\} [/math]
Zaczynamy od uwagi, że prawdziwośc powyższego zdania pociaga za sobą prawdzowość tezy Collatza, tak jak ona została sformułowana przed II wojną światową.
Ale w r.1937 nie istniały komputery ani języki programowania
.Z drugiej strony istniała i była już mocno rozwinięta teoria algorytmów. Teorię funkcji rekurencyjnych rozwijanow w Getyndze (David Hilbert i jego uczniowie), Budapeszcie (Rozsza Pterer, Laszlo Kalmar), ...
W Londynie Alan Turing stworzył abstrakcyjną maszynę Turinga.
W Moskwie Kołmogorow i w Kazaniu Malcew badali pojęcie funkcji obliczalnej.

W Warszawie Alfred Tarski wraz z uczniami Mojżeszem Presburgerem, Stanisławem Jaskowskim uzyskali ważne wyniki dotycące teorii dodawania liczb naturalnych.

Remark made in 2004

  • algorytm nie potrzebuje operacji mnożenia ani dzielenia przez 2,
  • w strukturze algebraicznej, która jest niestandardowym modelem elementarnej teorii dodawania liczb naturalnych (jest taka) algorytm [math]Cl[/math] ma dla pewnych argumentów obliczenie nieskończone.
  • a więc tezy Collatza nie można udowodnić na podstawie aksjomatów elementarnej teorii dodawania liczb naturalnych,
  • co więcej, w języku elementarnej teorii dodawania nie istnieje formuła stopu dl algorytmu Collatza!. Czego więc mamy dowieść?

Collatz thesis reformulate

W standardowej strukturze liczb naturalnych z operacją dodawania nasz program ma obliczenie skończone, dla każdego argumentu n..

Halting formula

Należy zatem stworzyć formułę [math]\theta[/math] (wyrażenie logiczne) taką, że przyjmuje ona wrtośc prawda wtedy i tylko wtedy gdy obliczenie programu [math]Cl[/math] jest skończone. Takich formuł jest wiele w języku urachunku programów, tj. logiki algorytmicznej.
,[math]\qquad \theta:\,\left\{\begin{array}{l} \mathbf{while}\ n \neq 0 \ \mathbf{do} \\ \quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbf{fi} \\ \mathbf{od} \end{array}\right\} (n=1) [/math]
Można też rozważać inne formuły, np,
,[math]\qquad \xi:\,\bigcup \left\{K:\,\begin{array}{l} \mathbf{if}\ n \neq 0 \ \mathbf{then} \\ \quad \mathbf{if}\ nieparzyste(n) \ \mathbf{then}\ n:=3n+1 \ \mathbf{else}\ n:=n/2\ \mathbf{fi} \\ \mathbf{fi} \end{array}\right\} (n=1) [/math]
{co się czyta: istnieje taka iteracja ,[math]K^i[/math] programu [math]K[/math], że po wykonaniu [math]K^i[/math] zachodzi równość [math]n=1[/math] .}
Druga część zadania jest znacznie trudniejsza: nalezy przeprowadzić dowód formuły stopu posiłkując się aksjomatami rachunku programów i aksjomatami algorytmicznej teorii liczb naturalnych.


Elementary theory od addition of natural numbers and its models

Poprzednia obserwacja stwierdzająca, że w tej teorii nie można przeprowadzić dowodu tezy Collatza pozostaje w mocy. Jednak, w dalszych rozważaniach pomocne będą własności niestandardowego modelu tej teorii a także parę twierdzeń tej teorii.

Teoria ta jest wyznaczona przez podanie trzech składników: języka, logiki czyli operacji konsekencji oraz aksjomatów specyficznych dla tej teorii.
Język. Wyrażenia języka zbudowane są z następujących symboli: symbole zmiennych np. x,y,n, symbou + dwuargumentoweji operacji, symbolu = dwuargumentowej relacji, symboli 0,1 stałych i symboli funktorów logicznych oraz symboli pomocniczych np. nawiasy
. Przykładami wyrażeń są ...

Logika. Operacja konsekwencji (wnioskowania) jest wyznaczona przez podanie aksjomatów logiki pierwszego rzędu i reguł wnioskowania.
Aksjomaty.


Nonstandard model of Presburger arithmetic

Algorithmic theory of natural numbers

  • Język. Alfabet języka zawiera zbiór zmiennych, np. x,y. funktor + dwiargumentowego działania dodawania, dwie stałe 0 i 1, znak relacji = równości.

Termy (tj. wyrażenia nazwowe: jest to najmniejszy zbiór wyrażeeń zawierający zmienne, stałe i zamknięty ze wzgledu na lączenie dwu termów w ten sposób (t1 + t2).
Formuły.

  • Logika. Rachunek programów. Rachunek programów zawiera w sobie logikę pierwszego rzędu. Język rachunku programów oprócz formuł pierwszego rzędu zaiera formuły algorytmiczne. Najprostsza taka formuła to napis składający się z programu i następującej po nim formuły (zwykle formuły pierwszego rzędu).

Do aksjomatów logiki pierszego rzędu należy dodać aksjomaty opisujące własności spójników programotwórczych, zob. Logika algorytmiczna. Do reguł wnioskowania logiki pierwszego rzędu należy dodać reguły specyficzne dla rachunku programów.

  • Aksjomaty teorii.

Tylko trzy formuły.
[math] \begin{eqnarray} \tag{ATN1} \forall_x\, x+1 \neq 0 &&\\ \tag{ATN2} \forall_{x,y}\,x+1=y+1 \implies x=y &&\\ \tag{ATN3}\forall_x\, \{y :=0; \mathbf{while}\ y\neq x\ \mathbf{do}\ y:=y+1\ \mathbf{od} \}\,(y=x) && \end{eqnarray} [/math]

Są to właściwie aksjomaty teorii następnika.
Formuła ATN1 stwierdza, że 0 nie jest następnikiem żadnej liczby naturalnej.
Formuła ATN2 stwierdza, że następnik jest funkcją róznowartosciową.
Formuła ATN3 stwierdza, że każda liczba naturalna jest osiągalna z zera przez dodanie skończonej liczby jedynek.
W tej teorii można napisać definicje działań dodawania, mnożenia i każdej funkcji obliczalnej.

Analiza formuły stopu

xxx

Triples

Spostrzeżenie (wynikłe z przygladania się formule stopu).

[math]\forall_{n \neq 0} \exists_{x,y,z}\ n \cdot 3^x+y=2^z [/math]

Collatz tree

xxx

Własności obliczeń na trójkach

Archive

\On Collatz theorem II.pdf wersja z 5 czerwca 2022

]wersja z 20 wrzesnia 2021

algorytmy wokół Collatzowe

wersja z 27 wrzesnia 2021

wersja z 7 pażdziernika 2021